Úloha VI.E... alchymistická



Podobné dokumenty
Základy konzervace pro archeology (UA / A0018) Cvičení průzkum kovových předmětů identifikace kovů

Úloha I.E... nabitá brambora

Úloha I.E... tři šedé vlasy dědy Aleše

Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D.

Přechodné prvky, jejich vlastnosti a sloučeniny

Koroze obecn Koroze chemická Koroze elektrochemická Koroze atmosférická

Elektrochemie. 2. Elektrodový potenciál

P + D PRVKY Laboratorní práce

Pracovní list: Opakování učiva 8. ročníku

2.10 Pomědění hřebíků. Projekt Trojlístek

Využití metod atomové spektrometrie v analýzách in situ

1. Jeden elementární záporný náboj 1, C nese částice: a) neutron b) elektron c) proton d) foton

Referát z Fyziky. Detektory ionizujícího záření. Vypracoval: Valenčík Dušan. MVT-bak.

4.4.3 Galvanické články

Průvodka. CZ.1.07/1.5.00/ Zkvalitnění výuky prostřednictvím ICT. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pořadí DUMu v sadě 08

Klíč k vyhodnocení variace učebnice Chemie

Test pro 8. třídy A. 3) Vypočítej kolik potřebuješ gramů soli na přípravu 600 g 5 % roztoku.

STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace. Digitální učební materiály

materiál č. šablony/č. sady/č. materiálu: Autor:

Název školy: Číslo a název sady: klíčové aktivity: VY_32_INOVACE_131_Elektrochemická řada napětí kovů_pwp

Masarykova střední škola zemědělská a Vyšší odborná škola, Opava, příspěvková organizace

Fyzikální korespondenční seminář MFF UK

Zeemanův jev. Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov

4. STANOVENÍ PLANCKOVY KONSTANTY

Pokroky matematiky, fyziky a astronomie


Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

Název materiálu: Vedení elektrického proudu v kapalinách

Barva produkovaná vibracemi a rotacemi

Vyučující po spuštění prezentace může provádět výklad a zároveň vytvářet zápis. Výklad je doprovázen cvičeními k osvojení probírané tématiky.

Chemické výpočty. = 1, kg

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově. 07_4_Elektrický proud v kapalinách a plynech

Praktikum II Elektřina a magnetismus

Reakce kyselin a zásad

Hmotnostní spektrometrie

CHO cvičení, FSv, ČVUT v Praze

Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál

Struktura atomů a molekul

Teplocitlivé fólie ve fyzikálních experimentech

Oborový workshop pro ZŠ CHEMIE

Solné rekordy. Úkol 1a: Na obrázku 1 jsou zobrazeny nejdůležitější soli. Napiš vzorce kyselin, od nichž se tyto soli odvozují.

1 Elektronika pro zpracování optického signálu

ÈÁST VII - K V A N T O V Á F Y Z I K A

Drahé kovy. Fyzikálně-chemické vlastnosti drahých kovů. Výskyt a těžba drahých kovů

METODY ANALÝZY POVRCHŮ

Analýza vrstev pomocí elektronové spektroskopie a podobných metod

Západočeská univerzita v Plzni. Fakulta aplikovaných věd

Otázky a jejich autorské řešení

Dusík a jeho sloučeniny

Ukázky z pracovních listů 1) Vyber, který ion je: a) ve vodném roztoku barevný b) nejstabilnější c) nejlépe oxidovatelný

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU VÁPNÍKU, DRASLÍKU, HOŘČÍKU, SODÍKU A FOSFORU METODOU ICP-OES

OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

VEDENÍ ELEKTRICKÉHO PROUDU V KOVECH

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově. 07_3_Elektrický proud v polovodičích

VY_32_INOVACE_06_III./2._Vodivost polovodičů

Analytické experimenty vhodné do školní výuky

Střední odborná škola a Střední odborné učiliště, Hradec Králové, Vocelova 1338, příspěvková organizace

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: Číslo DUMu: VY_32_INOVACE_13_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné

4.01 Barevné reakce manganistanu draselného. Projekt Trojlístek

Detektory záření. Projektová dokumentace

Reakce organických látek

FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ)

Vakuové součástky. Hlavní dva typy vakuových součástek jsou

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Charakteristiky optoelektronických součástek

Datum: Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07./1.5.00/34.

Obecná charakteristika

Elektronová Mikroskopie SEM

Registrační číslo projektu: CZ.1.07/1.4.00/ Název projektu: Investice do vzdělání - příslib do budoucnosti

CMI900. Rychlé a ekonomicky výhodné stanovení tloušťky povlaků a jejich prvkového složení metodou XRF. Robustní / Snadno ovladatelný / Spolehlivý

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření.

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

P + D PRVKY Laboratorní práce

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

VYUŽITÍ TEPELNÉHO ZMLŽOVAČE V AAS

Lasery optické rezonátory

ATOMOVÁ HMOTNOSTNÍ JEDNOTKA

Infračervená spektroskopie

THE IMPACT OF PROCESSING STEEL GRADE ON CORROSIVE DEGRADATION VLIV TEPELNÉHO ZPRACOVÁNÍ OCELI NA KOROZNÍ DEGRADACI

Ústřední komise Chemické olympiády. 53. ročník 2016/2017. KONTROLNÍ TEST ŠKOLNÍHO KOLA kategorie C. ZADÁNÍ: 60 BODŮ časová náročnost: 120 minut

9. MĚŘENÍ TEPELNÉ VODIVOSTI

Koroze Ch_021_Chemické reakce_koroze Autor: Ing. Mariana Mrázková

Pracovní list číslo 01

PŘECHODNÉ PRVKY - II

Ing. Stanislav Jakoubek

Měření Planckovy konstanty

Zařazení materiálu: Šablona: Sada: Inovace a zkvalitnění výuky v oblasti přírodních věd (V/2) Název materiálu: Elektrolýza 2 Autor materiálu:

Ch - Stavba atomu, chemická vazba

Chemie lambda příklady na procvičování výpočtů z rovnic

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

Modul 02 - Přírodovědné předměty

Speciální ZŠ a MŠ Adresa. U Červeného kostela 110, TEPLICE Číslo op. programu CZ Název op. programu

Charakteristika fotovoltaického panelu, elektrolyzéru a palivového článku

KONTROLNÍ TEST ŠKOLNÍHO KOLA (70 BODŮ)

ELEKTRONIKA PRO ZPRACOVÁNÍ SIGNÁLU

Voltův článek, ampérmetr, voltmetr, ohmmetr

1 ZÁKLADNÍ VLASTNOSTI TECHNICKÝCH MATERIÁLŮ Vlastnosti kovů a jejich slitin jsou dány především jejich chemickým složením a strukturou.

Materiály s tvarovou pamětí

Demonstrujeme teplotní vodivost

Ukázky z pracovních listů B

Název: Exotermický a endotermický děj

Transkript:

Úloha VI.E... alchymistická 8 bodů; průměr 5,81; řešilo 36 studentů Na Zeměploše je regulérním povoláním alchymie. Proto jsme se rozhodli, že byste si to měli také zkusit. Představte si, že skládáte zkoušku, abyste mohli vstoupit do Cechu alchymistů. Společně s brožurkou zadání série vám přišly tři zabalené vzorky kovů. Jedná se o tenké plátkové kovy dávejte si pozor, abyste je neponičili a ideálně na ně přímo nesahejte. Vaším úkolem je zjistit, jaké (drahé?) kovy jsme vám zaslali. Kovy po vás nechceme zpátky můžete tedy používat libovolné, i destruktivní postupy, ale uznáme pouze ty dostatečně vědecké. Vaším řešením tedy bude popis postupu a co nejpřesnější určení každého vzorku s tím, že je nutné, abyste uvedli u každého z nich jeho označení, které je na jeho přebalu. Nezapomínejte, že je cenné i určit, o které kovy se nejedná. Poznámka Pokud by se někdo chtěl stát novým řešitelem a řešit tuto úlohu, nechť co nejdříve napíše na email alchymie@fykos.cz s tím, že zásilku může očekávat zhruba za týden až 10 dnů. Karel chtěl rozeslat nakoupené zlato, platinu a palladium. Posílali jsme různé druhy vzorků, každý dostal nějaké tři ze seznamu hliník, měď, palladium, stříbro, platina, zlato a mosaz (slitina mědi a zinku). V následujícím budeme popisovat, jak jednotlivé vzorky reagovaly nebo nereagovaly na naše pokusy. Žíhání Při žíhání se látky zahřejí na vysokou teplotu. Tím u nich může dojít ke změně chemického složení (např. oxidaci), k odstranění nežádoucí příměsi, ke spálení apod. Taky jsou v plameni excitovány elektrony v atomech kovu, které při přechodech zpátky na nižší energetické hladiny vyzařují světlo charakteristických vlnových délek. Důsledkem je v některých případech změna barvy plamene. Používali jsme plamen z propan-butanového kempového vařiče, který může na vzduchu dosahovat teplot až zhruba 2 000 C. 1 Tabulka 1 uvádí pozorované reakce. Tabulka 1: Žíhání kovů pozorované reakce. kov hliník měď palladium stříbro platina zlato mosaz pozorováno velmi jasný plamen zezelenání plamene nevzplane roztavilo se nevzplane roztavilo se občasné zezelenání plamene Výsledek dopadl podle očekávání hliník a měď (i v mosazi) vypadaly tak, jak měly; zbytek, kromě roztavení, víceméně nereagoval. Pro zajímavost hliník se používá v prskavkách, kdy během hoření mimo jiné vznikají oxid hlinitý a oxid železitý, které se starají o typický vzhled prskavky. 1 http://www.engineeringtoolbox.com/flame-temperatures-gases-d_422.html 1

Leptání Další cestou, jak rozlišit kovy a slitiny, je studium jejich chování v kyselém a zásaditém prostředí. Kovy si nejdříve rozdělíme podle barev. Jediný oranžový kov, co máme, je měď. Tu lze dál prokázat kápnutím zředěné kyseliny dusičné (v poměru 1 : 1), povrch by se měl zbarvit modře (jde o typickou barvu měďnatých iontů). Další skupinou jsou žluté vzorky, to může být zlato nebo slitiny mědi, tedy mosaz (měď se zinkem) nebo bronz (měď s cínem). Vyzkoušíme reakci s HNO 3. Zlato by s ní nemělo reagovat; dále ho můžeme dokázat nanesením pár kapek lučavky královské 2 na povrch zlato by se mělo rozpustit a roztok zabarvit žlutě. Pro rozlišení mosazi a bronzu je vhodné udělat test na zinek a cín. Pokud je přítomen zinek, po krátkém působení kapky koncentrované HCl a dvou kapek 10% roztoku sulfidu sodného by se mělo objevit bílé zabarvení ZnS. Pokud je přítomen cín, stejným postupem bychom měli dostat žlutohnědé zabarvení SnS. Většina ostatních kovů je šedá. Rychle vyloučíme alkalické kovy a kovy alkalických zemin, které by buď nevydržely tak dlouho jen tak na vzduchu, nebo by reagovaly s vodou, nebo by byly alespoň jasně poznat v plameni. Také jsme vám neposílali žádné radioaktivní prvky. Při hrátkách s magnetem lze přijít na to, že vzorky jsou nemagnetické, a tedy vyloučit železo, nikl, chrom. Neušlechtilé kovy by měly z vody vytěsňovat vodík z našich vzorků by tedy hliník měl po ponoření do vody uvolňovat bublinky plynu, avšak pouze za zvýšené teploty a za předpokladu, že zvětšíme reakční povrch kovu (např. nadrcením). Za pokojové teploty nebude reakce probíhat, přičemž k nereaktivitě významně přispívá samovolná pasivace kovu na vzduchu, tj. pokrytí vrstvičkou oxidu hlinitého. Můžeme vyzkoušet, zda neušlechtilé kovy reagují s různými kyselinami nebo zásadami, podle výsledků si vytipovat, o jakou látku by se mohlo jednat, a následně si svůj tip ověřit. NaOH většinu ušlechtilých kovů nerozpouští. Z našich kovů je jediný neušlechtilý hliník, který se jako jediný v NaOH rozpustí. Máme-li hliník v roztoku, lze jej dokázat takto: přidáme 1% roztok alizarinu 3 a přidáváme amoniak, dokud vzorek nezfialoví. Poté přidáváme kyselinou octovou, dokud vzorek nezmění barvu je-li přítomen hliník, měla by být červená, jinak žlutá. Důvodem je, že volný alizarin je v kyselém prostředí žlutý, ale v přítomnosti hliníku s ním tvoří červený komplex. S koncentrovanou kyselinou dusičnou z našich prvků reaguje pouze stříbro. To lze dál dokázat tak, že na povrch naneseme dvě kapky zředěné HNO 3 (v poměru 1 : 1), necháme krátce působit a přiložíme filtrační papír, na který kápneme několik kapek 10% dichromanu draselného. Mělo by se objevit červenohnědé zabarvení, způsobené sraženinou dichromanu stříbrného. Palladium i platina jsou v Beketovově řadě kovů až na konci. Nelze je rozpustit v HNO 3 ani v H 2 SO 4, rozpouštějí se ale v lučavce královské. Palladium reaguje s koncentrovanou HCl za vzniku komplexu žlutozelené barvy. Během našich experimentů jsme neměli dostatek chemikálií na to, abychom ověřili všechny výše uvedené postupy, uvádíme tedy jen reakce s NaOH a HNO 3. Pro další posuzování jsme používali jiné metody. Nejprve jsme všechny kovy vložili do NaOH. Pouze hliník se rozpustil, ostatní kovy nereagovaly. 2 Směs koncentrované HNO 3 a HCl v objemovém poměru 1 : 3. 3 1,2-dihydroxyantrachinon, hojně rozšířené červené organické barvivo. 2

Dále jsme použili HNO 3. Mosaz se nejprve zbarvila na hnědo a poté se rozpustila, což ukazuje přítomnost mědi. Jediné kovy se zlatou barvou s mědí jsou mosaz a bronz. Zinek by měl být v leptán v HNO 3 a také byl, mosaz tedy reagovala, jak měla. Z dalších stříbrných vzorků s HNO 3 reagovalo pouze stříbro. Vidíme, že většina kovů reagovala dle očekávání. Nereaktivnost hliníku s kyselinou vysvětlujeme vrstvou oxidu na povrchu. Měření teploty tání Bod tání je pro každý kov charakteristický a povede-li se nám jej určit, získáme cennou informaci. Vytvoříme si pícku z kanthalového drátu, který žhavíme. Porovnáváme jeho barvu s barvou vlákna žárovky, do kterého pouštíme známý proud a je na známém napětí (považujeme-li je za černá tělesa, mají při stejné teplotě stejnou barvu). Můžeme tedy spočítat odpor. Změříme odpor R 0 za pokojové teploty T 0. Do klícky vložíme kov a žhavíme, dokud nezačne tát. V tom okamžiku si zaznamenáme odpor R. V požadovaném rozmezí teplot roste odpor wolframu lineárně s teplotou, proto známe-li teplotní odporový koeficient α wolframu, můžeme určit teplotu tání T t z rovnice R = R 0 [1 + α(t t T 0 )]. Pokud známe teplotní závislost odporu drátu pícky, můžeme přímo měřit napětí a proud procházející píckou a z nich počítat odpor a teplotu. K tomuto měření nemůžeme víc říct, protože jsme jej z časových důvodů neprovedli. SEM, EDX Nejsofistikovanějším způsobem bylo použití SEMu (scanning electron microscope) od firmy TESCAN, typu Mira I LMH, a detektoru EDX (energy-dispersive X-ray spectroscopy) typu Bruker AXS. Nejprve si osvětlíme, co tyto zkratky znamenají. SEM je skenovací elektronový mikroskop. Jeho schéma je na obr. 1. Celé zařízení je umístěno v hlubokém vakuu, které zajišťuje, aby se kromě měřených elektronů nedostaly do detektorů i nějaké nečistoty z atmosféry. Na rozdíl od optického mikroskopu, který používá k prohlížení vzorku viditelné světlo, tento používá elektronový svazek. Elektrony jsou emitovány horkou katodou, na kterou je přivedeno vysoké napětí (to urychluje elektrony pryč od katody a brání jejich zpětnému absorbování). Tyto elektrony, kterým říkáme primární, jsou dále pomocí elektromagnetických čoček fokusovány na vzorek. Pomocí rastrovacích cívek je možno svazkem pohybovat po vzorku, tedy skenovat ho (odtud název). Kolem vzorku jsou umístěny různé detektory a kamery, abychom mohli získané informace zaznamenat. Při dopadu primárních elektronů na vzorek dochází ke složité interakci, při níž se emituje řada různých záření a částic, přičemž každé z nich má jinou fyzikální podstatu a původ. Elektrony, které se od vzorku pružně odrazí, nazýváme zpětně odražené. Nepatrná část se odráží nepružně elektron pronikne k vnitřním slupkám atomů a vyrazí z nich sekundární elektron. Na uvolněné místo seskočí elektron z vyšších slupek za současné emise dalšího, tzv. Augerova elektronu. Při interakci vzniká také rentgenové záření, které se skládá ze dvou složek. První, tzv. brzdné záření, má charakter spojitého spektra a vzniká v důsledku toho, že dopadající elektrony jsou brzděny elektromagnetickým polem ve vzorku. Vzorek tedy musí být alespoň trochu vodivý a plní funkci anody. Druhá část, tzv. charakteristické záření, vzniká, pokud je při obsazování uvolněných vnitřních slupek atomů elektrony z vyšších slupek vyzářen foton. V rentgenovém 3

Obr. 1: Schéma skenovacího elektronového mikroskopu. Zdroj: Studijní text k praktikům MFF k úloze (A24) Využití rentgenové ED analýzy v materiálovém výzkumu, http://physics.mff.cuni.cz/vyuka/zfp/zadani/424. spektru se tyto přeskoky projeví jako ostré píky. Poloha těchto píků je pro každý prvek typická a lze podle ní určit, o jaký materiál, případně materiály, se jedná. Navíc je možné podle intenzity píku určit, jaké množství daného prvku vzorek obsahuje; nám ale bude stačit kvalitativní analýza, tj. bude nás zajímat pouze poloha píků. Dalším přídavkem rentgenového záření je fluorescence, která nastává při absorpci primárního rentgenového záření. To způsobí přeskok nějakého elektronu do vyšší energetické hladiny, který je při zpětném přeskoku provázen opět rentgenovým zářením. K detekci rentgenového záření budeme používat EDX, energiově disperzní X-ray detektor. Když na takový detektor, který je obvykle z dopovaného křemíku, tedy z polovodiče, dopadne foton, absorbuje se a vytvoří se pár elektron-díra. Na krystal je aplikováno vysoké napětí, které usměrní pohyb elektronů a děr k opačným elektrodám a vznikne napěťový pulz, který je zaznamenán. Výhodou EDX detektorů je schopnost načítat kontinuálně celé spektrum energií a velká citlivost. Detektor použitý v této úloze disponuje softwarem Esprit pro analýzu dat, který má již zabudovanou databázi charakteristických spekter různých prvků, s kterou naměřená spektra porovnává. Rovnou nám tedy řekne, o který prvek se jedná, a my jsme téměř bez práce. Měření na mosazi potvrdilo přítomnost mědi a zinku ve vzorku. Obrázky z mikroskopu jsou na obr. 2. Závěr Tato úloha nebyla jednoduchá. Provedení ztěžovala malá hmotnost a tloušťka vzorků. Výsledky chemických reakcí nemusely odpovídat očekávání kvůli převaze povrchových vlastností, 4

Obr. 2: Obrázky mosazi ze SEMu. Vlevo černobílý obrázek vzorku, vpravo barevně odlišené dva nejvíce zastoupené prvky: Cu, Zn. vytvořené vrstvě oxidu či naneseným nečistotám. Některé si také žádaly delší čas. Přesto však s pomocí vizuálního pozorování a několika dalších experimentů šlo kovy určit, nebo alespoň říci, které by to mohly být. Komentáře k došlým řešením Většina z vás se poprala s úlohou víceméně úspěšně. Objevila se řada způsobů řešení, od vnějšího pozorování, přes nejrůznější chemické metody až po využití spektrografu. Určení nebylo jednoduché úlohu ztěžovala forma kovů; u takto tenkých vzorků mohly při působení chemikálií převládnout povrchové vlastnosti, mohly se objevit nečistoty. Očekávané reakce také mohly proběhnout za delší dobu, mohlo tedy být třeba trpělivosti. Úlohu jsme hodnotili mírně, hlavními kritérii byla úplnost, přehlednost, správnost zpracování. Mezi časté chyby patřilo měření odporu prostým připojením multimetru a následným počítáním rezistivity podle vzorečku pro drát. Ten pro takovéto tenké vzorky nefunguje; pro plošné vzorky se hodí použít třeba tzv. čtyřbodová metoda. Někteří řešitelé se také podivovali nad tím, že vzorek plave na vodě to je proto, že je tak tenký a lehký, že ho na hladině udrží povrchové napětí. Je také možné, že se pod ním vytvořily/zůstaly bublinky, které tlačily vzorek vzhůru. Dominika Kalasová dominika@fykos.cz Lukáš Timko lukast@fykos.cz Lukáš Ledvina lukasl@fykos.cz 5

Jiří Nárožný nahry@fykos.cz Jakub Kocák jakub@fykos.cz Fyzikální korespondenční seminář je organizován studenty MFF UK. Je zastřešen Oddělením pro vnější vztahy a propagaci MFF UK a podporován Ústavem teoretické fyziky MFF UK, jeho zaměstnanci a Jednotou českých matematiků a fyziků. Toto dílo je šířeno pod licencí Creative Commons Attribution-Share Alike 3.0 Unported. Pro zobrazení kopie této licence, navštivte http://creativecommons.org/licenses/by-sa/3.0/. 6