Systémy pro podporu rozhodování Modelování a analýza 1
Připomenutí obsahu minulé přednášky Datové sklady, přístup, analýza a vizualizace Povaha a zdroje dat (data, informace, znalosti a interní, externí, personální) Sběr dat a související problémy Internet a komerční databázové služby Systémy pro řízení databází v DSS Organizace a struktura databází Datové sklady 2
Připomenutí obsahu minulé přednášky Architektury datových skladů Složky datových skladů Charakterizace datového skladování Vizualizace dat a multidimenzionalita OLAP: Přístup k datům, dolování, dotazování a analýza Data mining - dolování v datech Inteligentní databáze a dolování v datech Nástroje pro inteligentní dolování v datech 3
5. Modelování a analýza 5.1 Motivační příklad 5.2 Modelování v MSS 5.3 Statické a dynamické modely 5.4 Zpracování nejistoty a rizika 5.5 Influenční diagramy 5.6 Použití tabulkových procesorů 5.7 Rozhodovací tabulky a stromy 5.8 Finanční a plánovací modelování 5.9 Vizuální modelování a simulace 5.10 Programy pro kvantitativní výpočty 5.11 Řízení báze modelů 5.12 Shrnutí problematiky 4
5.1 Motivační příklad Siemens Solar Industries (SSI) uspořil miliony pomocí simulace: Problémy s kvalitou a plynulostí výroby Rozhodnutí zavést technologii zvlášť čistých prostor poprvé v solárním průmyslu, ale žádné předběžné zkušenosti Použití simulace - nástroj ProModel (virtuální laboratoř, testování různých konfigurací) Hlavní přínosy: získání znalostí a pochopení souvislostí, možnost komplexního návrhu Zdokonalení výrobního procesu SSI ušetřila více než 75 milionů dolarů ročně 5
5.2 Modelování v MSS Modelování šetří peníze, čas a další zdroje Na modelu lze snadno provádět změny Modelování je klíčovým prvkem ve většině DSS a je nutností v modelově orientovaných DSS Simulace je oblíbený způsob modelování, ale existují i jiné přístupy: 6
Typy modelů Statistické modely (např. regresní analýza - relace mezi proměnnými) Finanční modely (např. systémy pro finanční plánování) Optimalizační modely (např. lineární programování) DSS může být vystavěn na použití kombinace více modelů, standardních i vytvořených na zakázku Vhodný poměr mezi jednoduchostí a reprezentativností modelu 7
Modely podle stupně abstrakce Ikonické (měřítkové) modely nejméně abstraktní, fyzikální kopie systému, obvykle v jiném měřítku (modely letadel, automobilů, fotografie, GUI) Analogické modely nevypadají jako modelovaný systém, ale chovají se stejně; jsou více abstraktní (organizační tabulky a grafy, mapy, schémata) Matematické (kvantitativní) modely nejvíce abstraktní, nejčastější typ u DSS 8
Hlavní východiska a pojmy modelování Identifikace problému Analýza prostředí Identifikace proměnných Prognostika (předpovídání) Vícenásobné modely Kategorie modelů a jejich výběr Řízení báze modelů Znalostní modelování 9
Identifikace problému a analýza prostředí Identifikace cílů a požadavků a zjištění, jak jsou naplňovány Problém = rozdíl mezi požadovaným a skutečným stavem Stanovení, jaký problém existuje, jaké má symptomy a jak jsou tyto symptomy výrazné Symptomy mohou být považovány za problém Zjišťování existence problému u organizace se provádí monitorováním činnosti a analýzou dat 10
Identifikace proměnných Identifikace proměnných v modelu a vzájemných vazeb mezi nimi je velmi důležitou fází procesu modelování Užitečné mohou být např. influenční diagramy (viz dále) 11
Prognostika (předpovídání) Pro konstrukci a manipulaci s modelem nezbytná - výsledky rozhodování založené na modelování se zpravidla týkají budoucnosti 12
Vícenásobné modely DSS mohou obsahovat řadu modelů (pro různé subproblémy rozhodovacího problému) Některé jsou standardní, vestavěné ve vývojových nástrojích Některé jsou standardní, samostatný sw Nestandardní je třeba vytvořit 13
Kategorie modelů Optimalizace problému s několika alternativami: Cíl: najít nejlepší řešení z malého počtu alternativ Příklad metody: rozhodovací tabulky, rozhodovací stromy Optimalizace pomocí algoritmu: Cíl: najít nejlepší řešení z velkého až nekonečného počtu alternativ použitím procesu postupného zlepšování Příklad metody: modely matematického programování (lineární, apod.), síťové modely 14
Kategorie modelů Optimalizace pomocí analytické formule: Cíl: najít nejlepší řešení v jediném kroku, použitím formule Příklad metody: některé modely zásob Simulace: Cíl: najít dostatečně dobré řešení, nebo nejlepší řešení mezi testovanými alternativami použitím experimentů Příklad metody: různé typy simulace Heuristiky: Cíl: najít dostatečně dobré řešení použitím pravidel Příklad metody: heuristické programování, expertní systémy 15
Kategorie modelů Prediktivní modely: Cíl: předpověď budoucího vývoje daného scénáře Příklad metody: Markovova analýza Jiné modely: Cíl: analýza what-if použitím formule Příklad metody: finanční modelování 16
Řízení báze modelů Pro udržení integrity a využitelnosti Sw pro řízení báze modelů (viz dále) 17
Znalostní modelování DSS zpravidla používají kvantitativní modely Expertní systémy používají kvalitativní, znalostní modely Pro konstrukci použitelných modelů jsou zapotřebí určité znalosti 18
5.3 Statické a dynamické modely Statická analýza Na základě statického průřezu analyzovanou situací Např. rozhodnutí zda vyrobit či koupit nějaký produkt Dynamická analýza Dynamické modely Vyhodnocení scénářů závislých na čase Ukazují trendy a časové průběhy událostí Statické modely lze mnohdy rozšířit na dynamické 19
5.4 Zpracování nejistoty a rizika Modelování za jistoty Nejistota (neurčitost) Riziko 20
Modelování za jistoty Máme ho rádi Lehce se s ním pracuje a dává optimální výsledky Mnoho finančních modelů je konstruováno za předpokladů jistoty Speciální zájem si zasluhují problémy, které mají nekonečný (nebo mimořádně vysoký) počet možných řešení 21
Modelování za nejistoty Manažeři se snaží maximálně eliminovat nejistotu Snaží se získat co nejvíce dodatečných informací, aby bylo možné problém řešit buďto za jistoty, nebo s kalkulovaným rizikem Nelze-li získat více informací, s problémem je nutno zacházet jako s neurčitým 22
Modelování za rizika Většina manažerských rozhodnutí je za předpokladu jistého rizika Pro analýzu rizika je k dispozici několik technik, např.: rozhodovací tabulky rozhodovací stromy simulace faktory neurčitosti fuzzy logika 23
5.5 Influenční diagramy Grafická reprezentace modelu, která pomáhá při návrhu modelu, při jeho dalším zpracování a jeho pochopení Poskytuje prostředek vizuální komunikace pro řešitelský tým Slouží také jako rámec pro vyjádření vztahů v modelu INFLUENCE = vyjádření závislosti mezi proměnnými v modelu 24
Konvence Grafické znázornění Bloky (rozhodovací, neřízené a výsledné proměnné) Spojky (směr a typ působení) Tvary bloků a spojek Libovolná úroveň podrobností 25
Příklad - model Zisk (Smith, 1995) Profit = Income Expenses Income = Units sold x Unit price Units sold = 0,5 x Amount used in advertisement Expenses = Unit cost x Unit sold + Fixed costs 26
Influenční diagram modelu Zisk Fixed cost Expenses Unit cost Profit ~ Amount used in advertisement Units sold Income Unit price
Softwarové řešení Analytica DPL DS Lab INDIA NETICA Precision Tree... Standardní grafické a CASE (Computer-aided software engineering) programové balíky 28
5.6 Použití tabulkových procesorů Tabulkové procesory: nejpopulárnější nástroj modelování určený pro koncové uživatele Obsahuje mocné funkce finanční, statistické, matematické, logické, pro práci s časem, pro zpracování řetězců, apod. Možnost použití externích přídavných (add-in) funkcí a tzv. řešitelů pro optimalizaci Důležité pro analýzu, plánování, modelování Jsou programovatelné (využití maker) Jednoduché prvky pro řízení databází 29
5.7 Rozhodovací tabulky a stromy Analýza problému pro rozhodování při malém počtu alternativ Očekávané příspěvky alternativ a jejich pravděpodobnost vzhledem k cíli Řešení situací s jediným cílem Rozhodovací tabulky Rozhodovací stromy 30
Rozhodovací tabulky Příklad investic Jediný cíl: Maximalizovat výnos po jednom roce = vybrat nejlepší investiční alternativu Výnos závisí na stavu ekonomiky: Růst Stagnace Inflace 31
Rozhodovací tabulky 1. Je-li ekonomický růst, obligace se zhodnotí o 12%; akcie o 15% a termínované vklady o 6,5% 2. Převládá-li ekonomická stagnace, obligace se zhodnocují o 6%, akcie o 3% a termínované vklady opět o 6,5% 3. Převládá-li inflace, obligace vzrostou o 3%, akcie přinesou ztrátu 2% a termínované vklady dají znovu 6,5% výnos 32
Rozhodovací tabulky ~ hra dvou hráčů: investor příroda Rozhodovací tabulka - tabulka výplat (viz snímek 34) Rozhodovací proměnné (alternativy) Neřízené proměnné (stav ekonomiky) Výslední proměnná (předpokládaný výnos) 33
Rozhodovací tabulka pro problém investic Stav ekonomiky Alternativy Růst Stagnace Inflace Obligace Akcie 12,0% 6,0% 3,0% 15,0% 3,0% -2,0% Termínovaný vklad 6,5% 6,5% 6,5%
Práce s neurčitostí Optimistický přístup Uvažujeme nejlepší možný výsledek nejlepší alternativy (= akcie) Pesimistický přístup Uvažujeme nejlepší z nejhorších výsledků jednotlivých alternativ (= termínované vklady) 35
Zvládnutí rizika Použití známých (odhadovaných) pravděpodobností (Snímek 37) Analýza rizika: Výpočet očekávaných hodnot a výběr alternativy s nejlepším výsledkem Může být nebezpečné - i mizivá pravděpodobnost katastrofické ztráty může mít podstatný vliv na očekávanou hodnotu 36
Řešení rozhodování za rizika Růst Stagnace Inflace Alternativy 0,5 0,3 0,2 Očekávaná hodnota Obligace 12,% 6,0% 3,0% 8,4% Akcie 15,0% 3,0% -2,0% 8,0% Termínovaný vklad 6,5% 6,5% 6,5% 6,5%
Rozhodovací stromy Jiné metody analýzy rizika Simulace Faktory jistoty Fuzzy logika Vícenásobné cíle Snímek 39: Výnos, jistota, likvidita Uvažování nejistoty a rizika AHP (Analytic Hierarchy Process) 38
Výnos vs. jistota vs. likvidita Alternativy Výnos Jistota Likvidita Obligace 8,4% Vysoká Vysoká Akcie 8,0% Nízká Vysoká (?) Termínovaný vklad 6,5% Velmi vysoká Vysoká
5.8 Finanční a plánovací modelování Specielní nástroje pro rychlé, účinné a výkonné budování dobře využitelných DSS Modely jsou algebraicky orientované 40
Definice a pozadí plánovacího modelování Programovací jazyky 4. generace Modely jsou vytvořeny použitím syntaxe blízké přirozenému jazyku (angličtině) Dokumentace je součástí modelů Kroky modelů jsou neprocedurální Příklady Visual IFPS / Plus ENCORE Plus! SORITEC Některé jsou vnořené do nástrojů EIS a OLAP 41
Typické aplikace plánovacích modelů Finanční prognózy Plánování lidských zdrojů Kapitálové rozpočty Daňové plánování Rozvrhování výroby Rozhodování mezi leasingem a koupí Plánování zisku Investiční analýza atd. 42
5.9 Vizuální modelování a simulace Vizuální interaktivní modelování (VIM) Jiné názvy: Vizuální interaktivní řešení problémů Vizuální interaktivní modelování Vizuální interaktivní simulace Použití počítačové grafiky ke zviditelnění vlivu různých manažerských rozhodnutí Uživatelé provádějí analýzu citlivosti Statické nebo dynamické (animační) systémy 43
Vizuální interaktivní simulace (VIS) Tvůrce rozhodnutí je v interakci se simulačním modelem a sleduje změnu výsledků v čase Uživatel se může dozvědět mnohé o svých prioritách Vizuální interaktivní modely a DSS VIM (Vizuální interaktivní modelování) Aplikace teorie front Extrémní simulátory Virtuální realita 44
5.10 Programy pro kvantitativní výpočty Předem naprogramované modely mohou ušetřit čas konstruktérům DSS Některé modely lze použít jako stavební kameny pro jiné kvantitativní modely Balíky statistických programů Balíky optimalizačních programů Finanční modelování Jiné předem připravené aplikace Také přídavné moduly k tabulkovým procesorům (add-ins) 45
Representative Ready-made Specific DSS Name of Package AutoMod, AutoSched Budgeting & Reporting FACTOR/AIM PACKAGING MedModel, ServiceModel OIS OptiPlan Professional, OptiCaps, OptiCalc Vendor AutoSimulations Bountiful, UT http://www.autosim.com Helmsman Group, Inc. Plainsboro, NJ http://www.helmsmangroup.com Pritsker Corp. Indianapolis, IN http://www.pritsker.com ProModel Corp. Orem, UT http://www.promodel.com Olsen & Associates Ltd. Zürich, Switzerland http://www.olsen.ch Advanced Planning Systems, Inc. Alpharetta, GA Description 3 D walk-through animations for manufacturing and material handling; Manufacturing scheduling Financial data warehousing Manufacturing simulator with costing capabilities, High speed/high volume food and beverage industry simulator Healthcare simulation, Service industry simulation Directional forecasts, trading models, risk management Supply chain planning
PLANNING WORKBENCH StatPac Gold TRAPEZE TruckStops, OptiSite, BUSTOPS Proasis Ltd. Chislehurst, Kent, England http://www.proasis.co.uk Stat Pac Inc. Edina, MN Trapeze Software Group Mississauga, ON http://www.trapsoft.com MicroAnalytics, Inc. Arlington, VA Graphically-based planning system for the process industry Survey analysis package Planning, scheduling and operations Distribution management and transportation
5.11 Řízení báze modelů SŘBM: vlastnosti podobné vlastnostem SŘBD (?) Bohužel však neexistují všeobecně použitelné systémy pro řízení báze modelů (na rozdíl od SŘBD) Každá organizace má svůj způsob používání modelů Existuje mnoho tříd modelů na rozdíl od databázových struktur Některé vlastnosti SŘBM vyžadují expertízu a odvozování - lákavý problém pro umělou inteligenci... 48
Požadované vlastnosti SŘBM Řízení (plně automatické i ruční) Flexibilita (změna přístupu k problému v průběhu modelování) Odezva (zpětná vazba systém - uživatel) Rozhraní (uživatelsky příjemné) Redukce redundance Vysoká konzistence (sjednocení používaných verzí modelů) 49
Systém řízení báze modelů musí uživateli poskytovat Přístup k existujícím modelům a možnost jejich výběru Zkoumání a manipulaci s existujícími modely Uchovávání modelů Údržbu modelů Konstrukci nových modelů s vynaložením rozumného úsilí 50
5.12 Shrnutí problematiky Modely mají podstatnou roli v DSS Modely mohou být statické nebo dynamické Analýza se děje za předpokládané jistoty, rizika nebo nejistoty Influenční diagramy Tabulkové procesory Rozhodovací tabulky a rozhodovací stromy Optimalizační nástroj: matematické programování 51
Shrnutí (pokračování ) Lineární programování Heuristické programování Simulace může pracovat se složitějšími situacemi Expert Choice Metody předpovídání Multidimenzionální modelování 52
Shrnutí (dokončení) Vestavěné kvantitativní modely (finanční, statistické) Speciální jazyky finančního modelování Visuální interaktivní modelování Visuální interaktivní simulace (VIS) Modelování v tabulkových procesorech SŘBM jsou podobné SŘDB Použití metod UI v SŘBM 53