Chemická vazba. Důvody pro vazbu = menší energie atomů ve vázaném stavu než energie jednotlivých oddělených atomů

Podobné dokumenty
Chemická vazba. Důvody pro vazbu = menší energie atomů ve vázaném stavu než energie jednotlivých oddělených atomů

Chemická vazba. Důvody pro vazbu = menší energie atomů ve vázaném stavu než energie jednotlivých oddělených atomů

Překryv orbitalů. Vznik vazby překryvem orbitalů na dvou různých atomech A, B Obsazeno dvojicí elektronů Ψ = Ψ A Ψ Β

Orbitaly, VSEPR 1 / 18

Orbitaly, VSEPR. Zdeněk Moravec, 16. listopadu / 21

Teorie chemické vazby a molekulární geometrie Molekulární geometrie VSEPR

Teorie hybridizace. Vysvětluje vznik energeticky rovnocenných kovalentních vazeb a umožňuje předpovědět prostorový tvar molekul.

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou


Molekuly 1 12/4/2011. Molekula definice IUPAC. Molekuly. Proč existují molekuly? Kosselův model. Představy o molekulách

Tvary víceatomových molekul. Nevazebné mezimolekulové interakce

Vazby v pevných látkách

John Dalton Amadeo Avogadro

Průvodka. CZ.1.07/1.5.00/ Zkvalitnění výuky prostřednictvím ICT. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

Chemická vazba. John Dalton Amadeo Avogadro

Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118

Valenční elektrony a chemická vazba

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

2.3 CHEMICKÁ VAZBA. Molekula bílého fosforu P 4 a kyseliny sírové H 2 SO 4. Předpona piko p je dílčí jednotkou a udává velikost m.

Víceatomové molekuly s jedním centrálním atomem

3) Vazba a struktura. Na zaslal(a): Lenka

Periodická soustava prvků

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal.

CHEMICKÁ VAZBA. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý

Molekuly 2. Víceatomové molekuly s jedním centrálním atomem. Hybridizace. Hybridizace sp 3. Hybridizace

Teorie Molekulových Orbitalů (MO)

Opakování

Ch - Elektronegativita, chemická vazba

Inovace studia molekulární a buněčné biologie

Chemická vazba. Molekula vodíku. Elektronová teorie. Oktetové pravidlo (Kossel, Lewis, 1916) Pevnost vazby vazebná energie.

Orbitaly ve víceelektronových atomech

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =

Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 15. června Název zpracovaného celku: CHEMICKÁ VAZBA

Born-Oppenheimerova aproximace

Periodický systém víceelektronové systémy elektronová konfigurace periodický systém periodicita fyzikálních a chemických vlastností

Skupenské stavy látek. Mezimolekulární síly

ATOMOVÉ JÁDRO. Nucleus Složení: Proton. Neutron 1 0 n částice bez náboje Proton + neutron = NUKLEON PROTONOVÉ číslo: celkový počet nukleonů v jádře

Bc. Miroslava Wilczková

Periodická soustava prvků

Symetrie Platonovská tělesa

Vzorce a tvary víceatomových molekul nekovů Lewisova teorie kyselin a bází

02 Nevazebné interakce

Symetrie Platonovská tělesa

2. Polarita vazeb, rezonance, indukční a mezomerní

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Gymnázium Jiřího Ortena, Kutná Hora

Periodická soustava prvků Prvky známé od nepaměti: Au, Ag, Fe, S, C, Zn, Cu, Sn, Pb, Hg, Bi P první objevený prvek, Hennig Brand (1669) Lavoisier

ANODA KATODA elektrolyt:

Periodická tabulka prvků

Periodický systém víceelektronové systémy elektronová konfigurace periodický systém periodicita fyzikálních a chemických vlastností

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í CHEMICKÁ VAZBA

Chemická vazba. Menší energie atomů ve vázaném stavu než energie jednotlivých oddělených atomů

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony

Úvod do studia organické chemie

Anorganická chemie Odpovědi k úlohám na konci kapitol (1-9)

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Koordinační sloučeniny. Koordinační sloučeniny, dativní vazba, ligandy, názvosloví, tvary komplexů, teorie ligandového pole

Komplexní částice (koordinační)

Struktura Molekul a Chemická Vazba

Nekovalentní interakce

anorganických sloučenin Iontové rovnice MUDr.Jan Pláteník, PhD Stavba hmoty: Atom Molekula Ion Sloučenina

Nekovalentní interakce

Masarykova střední škola zemědělská a Vyšší odborná škola, Opava, příspěvková organizace

Geochemie endogenních procesů 1. část

Od kvantové mechaniky k chemii

Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4.

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: Číslo DUMu: VY_32_INOVACE_09_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné

Struktura atomů a molekul

Elektronový obal atomu

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

VI. skupina PS, ns 2 np4 Kyslík, síra, selen, tellur, polonium

Molekulární krystal vazebné poměry. Bohumil Kratochvíl

Izomerie Reakce organických sloučenin Názvosloví organické chemie. Tomáš Hauer 2.LF UK

ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE PRO PŘÍPAD POTENCIÁLNÍ ENERGIE.

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony

Lasery RTG záření Fyzika pevných látek

Alkyny. C n H 2n-2 (obsahuje jednu trojnou vazbu) uhlíky v sp hybridizaci

Látkové množství. 6, atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Organická chemie - úvod

Vlastnosti. Pozor! H 3 C CH 3 H CH 3

Emise vyvolaná působením fotonů nebo částic

Mezimolekulové interakce

Chemické repetitorium. Václav Pelouch

Přednáška IX: Elektronová spektroskopie II.

Otázka: Periodická soustava prvků. Předmět: Chemie. Přidal(a): Claire Rye

DOUČOVÁNÍ KVINTA CHEMIE

Transkript:

Chemická vazba Důvody pro vazbu = menší energie atomů ve vázaném stavu než energie jednotlivých oddělených atomů Mechanismus tvorby vazby = sdílení, předávání nebo redistribuce valenčních elektronů Model lokalizovaných elektronových párů (Lewis, VB, VSEPR, hybridizace) Model delokalizovaných elektronů (MO) 1

Typy chemických vazeb Kovalentní = sdílení elektronů (e páru, 1e H 2+ ) několika atomy (2, 3, 4...) Kovová = sdílení elektronů mezi mnoha atomy, pásová teorie Iontová = předání elektronů, tvorba iontů, Coulombovské přitažlivé síly mezi opačně nabitými ionty Van der Waalsova = Coulombovské přitažlivé síly mezi dočasnými náboji (dipóly) Topologická = mechanické spojení molekul (rotaxeny, katenany, karcerandy) 2

Chemická vazba 3

4

M n+ A m- částečný kovalentní charakter Žádná vazba není zcela iontová. Přechod od kovalentní k iontové vazbě je spojitý a většina sloučenin leží mezi oběma extrémy χ = (χ A χ B ) i = 1 exp [ 0.21(χ A χ B ) 2 ] polárně kovalentní vazba i 1 0,5 1 2 3 X A X X B 5

Iontová a kovalentní vazba LiCl > NaCl > KCl > RbCl > CsCl Stoupá kovalence NaI > NaBr > NaCl > NaF Stoupá kovalence AlN > MgO > NaF Stoupá iontovost 6

Iontová a kovalentní vazba Kovalentní Polární kovalentní Iontová Přibližné rozdělení Plynulý přechod Rozdíl elektronegativity χ = (χ A χ B ) 7

Elektronegativita podle Paulinga 8

Různé typy chemické vazby v jedné sloučenině CdI 2 kovalentní Van der Waalsova 9

Různé typy chemické vazby v jedné sloučenině Kovalentní Iontová K + a (C 60 ) 3 10

Různé typy chemické vazby v jedné sloučenině SrTl 2 = Sr 2+ (Tl 2 ) 2 Kovalentní mezi Tl-Tl Iontová mezi Sr 2+ a (Tl 2 ) 2 11

Topologická vazba: rotaxeny, katenany, karcerandy 12

Iontová vazba Na(s) + ½ Cl 2 (g) NaCl(s) H 0 f = 410.9 kj mol 1 13

NaCl - iontová sloučenina Neexistuje molekula NaCl Vzorcová jednotka Nekonečná mřížka uspořádaných kationtů a aniontů 14

Mřížková energie, L Mřížková energie je energie, která se uvolní při vytvoření jednoho molu pevné iontové sloučeniny z iontů v plynném stavu Coulombovská přitažlivá síla mezi dvěma ionty 1 = 4 πε Mřížková energie L [kj mol 1 ] Coulombovské přitažlivé a dopudivé síly mezi 1 molem iontů F 0 Z + Z r 2 e 2 Z = náboje iontů r = vzdálenost iontů L = N A M Z + Z 4πε 0 e r 2 M = Madelungova konstanta udává geometrii krystalové mřížky (NaCl, CsCl, CaF 2, ZnS,...) 15

Mřížkové energie halogenidů alkalických kovů L [kj mol -1 ] F Cl Br I Li 1037 862 785 729 Na 918 788 719 670 K 817 718 656 615 Rb 784 694 634 596 Cs 729 672 603 568 L = N A M Z Z e 2 + 4πε 0 r k Z + r Z 16

Mřížkové energie a fyzikální vlastnosti L [kj mol -1 ] T t [ 0 C] L [kj mol -1 ] T t [ 0 C] NaF 913 996 KF 808 857 NaCl 778 801 KCl 703 770 NaBr 737 747 KBr 674 742 NaI 695 660 KI 636 682 L [kj mol -1 ] T t [ 0 C] Mohs MgCl 2 2326 714 - MgO 3920 2642 6.0 CaO 3513 2570 4.5 SrO 3283 2430 3.5 BaO 3114 1925 3.3 ScN 7547 - - 17

Mechanické vlastnosti iontových sloučenin 18

Born Haberův cyklus Na + (g) + Cl (g) IE(Na) Na (g) + Cl (g) ½ D(Cl-Cl) Na (g) + ½ Cl 2 (g) H subl. Na (s) + ½ Cl 2 (g) Součet energetických efektů dějů uzavřeného cyklu = 0 EA(Cl) Na + (g) + Cl (g) L(NaCl) H sluč NaCl (s) 19

Born Haberův cyklus Na(s) Na(g) H subl. = 107.3 kj mol -1 ½ Cl 2 (g) Cl(g) ½ D(Cl-Cl) = 122 kj mol -1 Na(g) Na + (g) + e - IE(Na) = 496 kj mol -1 Cl(g) + e - Cl - (g) EA(Cl) = 349 kj mol -1 Na + (g) + Cl - (g) NaCl(s) L(NaCl) = 778 kj mol -1 Na (s) + ½ Cl 2 (g) NaCl(s) H sluč = 401.7 kj mol -1 20

Kovalentní vazba 21

22

23

Kovalentní vazba Atomy se sdílením elektronových párů snaží doplnit svou valenční sféru na elektronový oktet Gilbert N. Lewis (1875-1946) F F F F 24

Oktetové pravidlo He 1s 2 Ne [He] 2s 2 2p 6 Ar [Ne] 3s 2 3p 6 Kr [Ar] 3d 10 4s 2 4p 6 Xe [Kr] 4d 10 5s 2 5p 6 1902 Rn [Xe] 4f 14 5d 10 6s 2 6p 6 25

Lewisovy struktury 26

Lewisovy struktury Tvorba stabilní sloučeniny (n atomů) = atomy dosáhnou konfigurace vzácného plynu. Sečti valenční elektrony všech atomů, ± náboj = E. Pro oktety potřebujeme 8n elektronů. 8n E musí být sdíleno. Použij dvojice elektronů k vytvoření jednoduchých vazeb mezi atomy (= S). Zbývající sdílené elektrony (P = 8n E S) umísti tak, aby byl vytvořen duet pro H atomy a oktet pro C, N, O, F. Nesdílené elektrony rozmísti jako volné elektronové páry. Sloučeniny prvků skupiny Be a B mohou být elektronově deficitní. Prvky 3. a vyšších period mohou překročit oktet. Elektrony převyšující oktet umísti na centrální atom. 27

Lewisovy struktury Cl Cl C Cl O Cl H C H H C C H H H C H O H H H C H H C H C H H C N 28

Rezonanční struktury Poloha jader se nemění, umístění elektronů je odlišné. Popis skutečné situace není ani jedna z možných struktur, není to ani rychlý přechod mezi jednotlivými strukturami, ale superpozice všech. 1O O O 3 O 3 O 1O 29

Rezonanční struktury řád vazby = 1,5 náboj na O = -0,5 30

Formální náboj Oxidační číslo = všechny e k elektronegativnějšímu prvku Formální oxidační stav pro výpočet výměny e v redoxních reakcích. Není to skutečný náboj na daném atomu. Formální náboj = rozdíl mezi počtem valenčních elektronů na volném atomu a valenčními elektrony přiřazenými atomu v molekule: volné páry patří celé danému atomu, vazebné páry jsou rozděleny mezi partnery. Atomy se snaží dosáhnout minimálního formálního náboje, nejlépe 0. Negativní formální náboj je umístěn na nejelektronegativnějším atomu. Součet formálních nábojů v molekule (iontu) musí být roven celkovému náboji na dané částici. 31

Formální náboj v H 3 O +, CH 3 O -, CH 3+, CO, N 3 - H H O H O: 6-5 = +1 H H C H O C: 4-4 = 0 O: 6-7 = -1 H H C H C: 4-3 = +1 C O 1 2 3 N N N 1 2 3 N N N C: 4-5 = -1 O: 6-5 = +1 N 1 : 5-5 = 0 N 2 : 5-4 = +1 N 3 : 5-7 = -2 N 1 : 5-6 = -1 N 2 : 5-4 = +1 N 3 : 5-6 = -1 32

Formální náboj velké hodnoty formálního náboje záporný náboj na méně elektronegativním prvku nejlepší vzorec 33

Molekuly s nepárovými elektrony. : N.. O.... : O... N.. O.. Dimerizace NO 2. 2 NO 2 (g) N 2 O 4 (g) K c = 210 O 2 paramagnetická molekula = má nepárové elektrony = Lewisovy struktury nevystihují realitu zcela dokonale 34

VSEPR VSEPR = valence shell electron repulsion Odpuzování elektronových párů ve valenční vrstvě Empirický soubor pravidel, podle kterého lze snadno určit tvar koordinační sféry atomů a tedy tvar molekul, iontů a molekulových fragmentů prvků hlavních skupin nebo přechodných kovů s elektronovou konfigurací d 0 nebo d 10. 35

VSEPR Molekula = centrální atom + ligandy + volné elektronové páry ligandy = jiné atomy nebo skupiny Ligandy mají obvykle vyšší elektronegativitu než centrální atom (ne H nebo kovy) Valenční elektrony uspořádány do dvojic: Vazebné elektronové páry Volné (nevazebné) elektronové páry 36

Centrální atom - ligand CH 3 COO H O H H C C O 37

VSEPR Pro určení základního tvaru koordinační sféry atomu je důležitý počet obsazených směrů = počet volných elektronových párů a počet vazeb (bez ohledu na násobnost!!) 38

VSEPR Každý elektronový pár zaujímá určitý prostor kolem centrálního atomu a zabraňuje přístupu ostatním elektronům (odpuzuje je) = Pauliho princip výlučnosti. Elektronové páry se uspořádají v prostoru kolem centrálního atomu co nejdále od sebe, aby se co nejméně odpuzovaly. Volné elektronové páry zaujímají větší část prostoru kolem centrálního atomu a jsou mu blíže než vazebné elektronové páry. 39

Tetraedrická molekula methanu CH 4 Umístit 4 body na povrchu koule tak, aby měly mezi sebou maximální vzdálenost tetraedr 40

VSEPR Volné elektronové páry a jednotlivé vazby zaujmou v prostoru kolem centrálního atomu uspořádání s nejnižší energií, tj. s nejmenším odpuzováním mezi elektronovými páry: centrální atom + 2 ligandy centrální atom + 3 ligandy centrální atom + 4 ligandy centrální atom + 5 ligandů centrální atom + 6 ligandů centrální atom + 7 ligandů lineární rovnostranný trojúhelník tetraedr trigonální bipyramida nebo čtvercová pyramida oktaedr pentagonální bipyramida 41

AX 6 AEX 5 AE 2 X 4 AX 5 AEX 4 AE 2 X 3 AE 3 X 2 AX 4 AEX 3 AE 2 X 2 AX 3 AEX 2 AX 2 42

VSEPR Pro pojmenování výsledného tvaru molekuly uvažujeme jen polohy jader, NE volné elektronové páry Objem obsazený vazebnými el.páry klesá v řadě : trojná vazba > dvojná vazba > jednoduchá vazba. Odpuzování mezi el.páry klesá v řadě: volný-volný > volný-vazebný > vazebný-vazebný 43

Změny vazebných úhlů 44

AX 2 Vazebný úhel =180 45

AX 3 : Vazebný úhel =120 AEX 2 : Vazebný úhel < 120 46

Tetraedrický vazebný úhel AX 4 Tetraedrický vazebný úhel =109.5 47

Deformace vazebných úhlů Tetraedr Trojboká pyramida Lomená 48

Trigonální bipyramida TBP má dva různé typy vrcholů = dva chemicky odlišné typy substituentů, pozic Dvě axiální Tři ekvatoriální Volné elektronové páry a násobné vazby obsazují vždy ekvatoriální polohy 49

O F S F F F Volné elektronové páry a násobné vazby obsazují vždy ekvatoriální polohy 50

Trigonální bipyramida PF 5 SF 4 Výsledný název tvaru molekuly určuje poloha jader, neuvažujeme volné elektronové páry ClF 3 ClF 3 I 3 Tvar T Lineární 51

Trigonální bipyramida (TBP) a čtvercová pyramida (SP) 52

Oktaedr 53

Oktaedr Čtvercová pyramida Čtverec 54

Překryv orbitalů Vznik vazby překryvem orbitalů na dvou různých atomech A, B Obsazeno dvojicí elektronů Ψ = Ψ A Ψ Β Podmínky překryvu: Vhodná symetrie, znaménko vlnové funkce Vhodná energie, srovnatelná, ne velmi rozdílná 55

Typy překryvu orbitalů Sigma vazba, σ Elektronová hustota lokalizována na spojnici jader Spojnici jader obvykle značíme jako osu z s s s p p p Pi vazba, π Elektronová hustota lokalizována mimo spojnici jader Jedna uzlová rovina p p p d 56

Typy překryvu orbitalů Delta vazba, δ Elektronová hustota lokalizována mimo spojnici jader Dvě uzlové roviny d xy d xy 57

Typy překryvu orbitalů Překryv klesá slabší vazba 58

Sigma vazba, σ ss σ ss Elektronová hustota lokalizována na spojnici jader 59

Sigma vazba, σ sp z σ sp 60

Sigma vazba, σ pp z σ pp 61

Pi vazba, π Elektronová hustota lokalizována mimo spojnici jader Jedna uzlová rovina Stejně pro px a p y x z 2 x π pp y 62

Účinnost překryvu orbitalů Kratší vzdálenost = lepší překryv Při stejné vzdálenosti jader: σ > π > δ Pro σ: p z -p z > p z -s > s-s 63

Vazebné parametry Anion ClO ClO 2 ClO 3 ClO 4 ClO + 2 Řád vazby 1.0 1.50 1.67 1.75 2.0 Vazebná délka, Å 1.67 1.58 1.49 1.43 1.39 64

Vazebné parametry vazba C C C=C C C C O C=O C O N N N=N N N délka [Å] 1.54 1.34 1.20 1.43 1.23 1.13 1.47 1.24 1.10 energie [kj mol 1 ] 348 612 837 360 743 1074 163 409 944 65

Vazba E, kj mol 1 Polarita vazby H-H 431 Nepolární F-F 155 Nepolární H-F 565 Polární C-I 240 C-Br 276 C-Cl 339 Polarita vazby roste C-F 485 Ge-Ge 188 937 t. tání, o C Si-Si 226 1412 C-C 347 3827 66

Vazebná energie kj mol 1 67

Vazebné parametry Vazba E, kj mol 1 délka, Å C-I 240 2.16 C-Br 276 1.91 C-Cl 339 1.79 C-F 485 1.40 Pauling E D (AB) = {E D (AA) E D (BB)} ½ + = 96.48 (χ A χ B ) 2 Schomaker-Stevenson r AB = r A + r B 0.09 χ A χ B 68

Hybridizace Vazebné úhly 90 jsou vzácné (u prvků hlavních skupin), obvyklé úhly jsou 109, 120, 180 Energetické smíšení a směrové vyrovnání atomových orbitalů na stejném atomu 69

Hybridizace sp Základní stav Excitovaný stav Hybridizovaný stav 70

Hybridizace sp 71

Hybridizace sp 72

Hybridizace sp sp 73

Acetylen 2 σ vazby překryvem C(sp) H(s) 1 σ vazba překryvem C(sp) C(sp) 2 navzájem kolmé π-vazby (x, y) překryvem C(p) C(p) 74

Hybridizace sp 2 75

Hybridizace sp 2 76

Hybridizace sp 2 sp 2 77

Ethylen p x p x 4 σ vazby překryvem C(sp 2 ) H(s) 1 σ vazba překryvem C(sp 2 ) C(sp 2 ) 1 π-vazba překryvem C(p x ) C(p x ) 78

Benzen Každý C použije 3 sp 2 orbitaly pro 3 σ-vazby 2 C C vazby a 1 C H vazba 1 2p x orbital na každém C zůstane nepoužitý (pro σ-vazby) 79

Benzen + + + 6 C 2p x orbitalů použito pro 3 π-vazby + 80

Benzen 81

Hybridizace sp 3 82

Hybridizace sp 3 83

Hybridizace sp 3 s + p x +p y + p z 84

sp 3 85

Hybridizace sp 3 d sp 3 d 2 86

PES = Fotoelektronová spektroskopie hν hν = IE + E kin E kin X-ray Fotoelektronová Spektroskopie (XPS) -měkké rtg. záření (200-2000 ev) vyráží vnitřní e UV Fotoelektronová Spektroskopie (UPS) - vakuové UV záření (10-45 ev) vyráží valenční e. měříme 87

E = 0 E = 0 E kin hν = IE + E kin IE 88

PES methanu nesouhlasí s modelem 4 sp 3 Plocha = 3 Plocha = 1 89

Vazba v CO 3 2 a NO 3 + + 90

Vazba v C 2 H 6, CH 3 NH 2 a CH 3 OH C N O sp 3 H H H C C C N H H H H H H C H H O H H H H σ(sp 3 C + sp 3 C) σ(sp 3 C + sp 3 N) σ(sp 3 C + sp 3 O) 91

Vazba v HC N N sp H C N σ(sp C + sp N )+2π 92

Elektronegativita a vazebné úhly Vazebný úhel Hybridizace NH 3 107.3 sp 3 PH 3 93.8 AsH 3 91.8 SbH 3 91.3 s + 3p NF 3 102.5 Rostoucí χ snižuje vazebné úhly OH 2 104.5 OF 2 103.2 93

Bentovo pravidlo Elektronegativnější substituenty preferují hybridní orbitaly s menším s podílem a naopak elektropozitivní substituenty (lepší donory) preferují hybridní orbitaly s větším s podílem. F F F O S F F H 3 C P F F H 3 C P F CH 3 F F F Lepší donory obsazují ekvatoriální rovinu v TBP a bazální rovinu v SP. Volný elektronový pár je nejlepší donor = substituent s nulovou elektronegativitou 94

Hybridizace a elektronegativita Hybridizace sp sp 2 sp 3 % s 50 33 25 % p 50 66 75 95