1. ZKOUŠENÍ MATERIÁLŮ



Podobné dokumenty
ZKOUŠENÍ KOVOVÝCH MATERIÁLŮ

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I

Zkoušky vlastností technických materiálů

A U T O R : I N G. J A N N O Ž I Č K A S O Š A S O U Č E S K Á L Í P A V Y _ 3 2 _ I N O V A C E _ _ Z K O U Š K Y M A T E R I Á L U _ P W P

ZKOUŠENÍ MATERIÁLU. Defektoskopie a technologické zkoušky


Ing. Michal Lattner Fakulta výrobních technologií a managementu Věda pro život, život pro vědu CZ.1.07/2.3.00/45.

Požadavky na technické materiály

Vlastnosti a zkoušení materiálů. Přednáška č.3 Pevnost krystalických materiálů

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1

NAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení)

Nauka o materiálu. Přednáška č.3 Pevnost krystalických materiálů

Fyzikální těmito vlastnosti se zabývá fyzika a patří sem např. teplota tání, délková a objemová roztažnost, tepelná vodivost atd.

NAUKA O MATERIÁLU I. Zkoušky tvrdosti, zkoušky technologické a defektoskopické. Přednáška č. 05: Zkoušení materiálových vlastností II

Zkoušky vlastností technických materiálů

Černé označení. Žluté označení H R B % C 0,1 0,2 0,3 0,4 0,5

18MTY 1. Ing. Jaroslav Valach, Ph.D.

DESTRUKTIVNÍ ZKOUŠKY SVARŮ II.

DESTRUKTIVNÍ ZKOUŠKY SVARŮ I.

Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl?

2. přednáška. Petr Konvalinka

Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení:

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

Vlastnosti technických materiálů

Seznam platných norem NDT k

Zkoušky rázem. Vliv deformační rychlosti

Ing. Jan BRANDA PRUŽNOST A PEVNOST

OVMT Mechanické zkoušky

Nedestruktivní zkoušení - platné ČSN normy k

NEDESTRUKTIVNÍ ZKOUŠKY SVARŮ

Namáhání na tah, tlak

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

ČSN EN ISO 472 ČSN EN ISO

1.1.1 ZKOUŠKA TAHEM Provádí se na zkušební tyči (průřez kruhový nebo obdélníkový), upnuté do čelistí

Seznam platných norem z oboru DT k

CZ.1.07/1.5.00/

Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, Plzeň

OVMT Mechanické zkoušky

Vlastnosti, které souvisí se zpracováním materiálu na výrobek. VÝBĚR VHODNÉ TECHNOLOGIE

ROZDĚLENÍ, VLASTNOSTI A POUŽITÍ MATERIÁLŮ

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

Proč zkoušíme základní mechanické vlastnosti

Zkoušení mechanických vlastností zkoušky tvrdosti. Metody charakterizace nanomateriálů 1

Elektrická vodivost - testové otázky:

Stavební hmoty. Přednáška 3

Stavební hmoty. Přednáška 3

Nauka o materiálu. Přednáška č.8 Zbytková napětí a defektoskopie

SEZNAM TÉMAT K ÚSTNÍ PROFILOVÉ ZKOUŠCE Z TECHNOLOGIE

VÍŘIVÉ PROUDY DZM

Charakteristika. Vlastnosti. Použití NÁSTROJE NA TLAKOVÉ LITÍ NÁSTROJE NA PROTLAČOVÁNÍ NÁSTROJE PRO TVÁŘENÍ ZA TEPLA VYŠŠÍ ŽIVOTNOST NÁSTROJŮ

LETECKÉ MATERIÁLY. Úvod do předmětu

Téma 2 Napětí a přetvoření

Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, Plzeň

Díly forem. Vložky forem Jádra Vtokové dílce Trysky Vyhazovače (nitridované) tlakové písty, tlakové komory (normálně nitridované) V 0,4

Podle hodnoty tvrdosti lze odhadnout také další vlastnosti materiálu. V hojné míře se pro tyto účely používají empirické koeficienty.

Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, Jižní Předměstí, Plzeň

OVMT Technologické zkoušky Zkoušky svařitelnosti

1. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

Mechanické zkoušky ZKOUŠKY TVRDOSTI MATERIÁLU

Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.

Zkoušení ztvrdlého betonu Objemová hmotnost ztvrdlého betonu

1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu

12. Struktura a vlastnosti pevných látek

Poruchy krystalové struktury

3.2 Mechanické vlastnosti

DOPORUČENÁ LITERATURA KE KVALIFIKAČNÍM A RECERTIFIKAČNÍM ZKOUŠKÁM:

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.

Elektrostruskové svařování

1 ZÁKLADNÍ VLASTNOSTI TECHNICKÝCH MATERIÁLŮ Vlastnosti kovů a jejich slitin jsou dány především jejich chemickým složením a strukturou.

Přetváření a porušování materiálů

Použití. Části formy V 0,9. Části nástroje. Matrice Podpěrné nástroje, držáky matric, pouzdra, lisovací podložky,

Stroje - nástroje. nástroje - ohýbadla. stroje - lisy. (hydraulický lis pro automobilový průmysl)

2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí.

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Experimentální zjišťování charakteristik kompozitových materiálů a dílů

TVÁŘENÍ KOVŮ Cíl tváření: dát polotovaru požadovaný tvar a rozměry

ZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.

Technologické procesy (Tváření)

Požadavky na nástroj při stříhání. Charakteristika. Použití STRUKTURA CHIPPER / VIKING

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VLIV TEPELNÉHO ZPRACOVÁNÍ NA STRUKTURU A MECHANICKÉ VLASTNOSTI NÁSTROJOVÝCH OCELÍ

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu

LŠVT Mechanické vlastnosti: jak a co lze měřm. ěřit na tenkých vrstvách. Jiří Vyskočil, Andrea Mašková HVM Plasma, Praha

Vlastnosti. Charakteristika. Použití FYZIKÁLNÍ HODNOTY VYŠŠÍ ŽIVOTNOST NÁSTROJŮ MECHANICKÉ VLASTNOSTI HOTVAR

Zkoušení fyzikálně-mechanických vlastností materiálů a výrobků pro automobilový průmysl

Svarové spoje. Svařování tavné tlakové. Tlakové svařování. elektrickým obloukem plamenem termitem slévárenské plazmové

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

Podniková norma Desky z PP-B osmiúhelníky

TEORIE TVÁŘENÍ. Lisování

Nauka o materiálu. Přednáška č.5 Základy lomové mechaniky

Metody diagnostiky v laboratoři fyzikální vlastnosti. Ing. Ondřej Anton, Ph.D. Ing. Petr Cikrle, Ph.D.

Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne:

Výpočet skořepiny tlakové nádoby.

Kontrola povrchových vad

Použití. Charakteristika FORMY PRO TLAKOVÉ LITÍ A PŘÍSLUŠENSTVÍ NÁSTROJE NA PROTLAČOVÁNÍ VYŠŠÍ ŽIVOTNOST NÁSTROJŮ QRO 90 SUPREME

Transkript:

1. ZKOUŠENÍ MATERIÁLŮ 1.1 Vlastnosti materiálů Materiály mají nejrozmanitější vlastnosti, které jsou dány především jejich chemickým složením a strukturou. Pro použitelnost v technické praxi se dělí na vlastnosti: fyzikální (souvisí hlavně s krystalickou stavbou - hustota, elektrická a tepelná vodivost, magnet. vlastnosti ap.) chemické (elektrochemické, korozní ap.) mechanické (pružnost, pevnost, houževnatost, tvrdost, tečení, únava ap.) technologické ( tvárnost, slévatelnost, obrobitelnost, svařitelnost ap.) Dle vlivu struktury: vlastnosti strukturně citlivé (závislé na dokonalosti krystalové mřížky, způsobu tepelného a mechanického zpracování - většina mechanických vlastností, elektrické ap.) vlastnosti strukturně necitlivé (hmotnost, měrné teplo, teplota tání ap.) 1.2 Mechanické zkoušky Mechanické vlastnosti umožňují kvantitativně hodnotit chování materiálů za působení vnějších sil, př. i dalších vlivů. Některé hodnoty mají fyzikální význam - lze je tedy přepočítávat pro jiný tvar a rozměr, jiné vystihují chování za určitých podmínek (nelze převádět) pro posouzení vlastností a zpracování materiálů (vrubová houževnatost). Celkové zkoušení je nezbytné pro kontrolu jakosti výrobků, jako důležitý poznatek výzkumných prací i k hodnocení úrovně technologie výroby. Mechanické zkoušky můžeme dělit dle: charakteru zatěžování (statické, dynamické) zjišťovaných vlastností (pevnostní, tvrdostní, únavy ap.) druhu namáhání (tah, tlak, ohyb, krut ap.) teploty a prostředí Pro zabezpečení reprodukovatelnosti a porovnatelnosti je nutnost jejich normování. Způsob odebírání vzorků může podstatně ovlivnit obdržené výsledky (materiál není homogenní a izotropní) - zkušební kus - zkušební vzorek místo odebírání - volba průměrných vlastností - nejvíce exponované místo ČN udává počet zkušebních vzorků dle množství a druhu výroby, potřeby bezpečnosti ap. Obecné zásady pro odběr jsou: reprezentace určité dávky, výroby, tavby ap. vyhnout se místům s předpokládanými vadami vzorek musí prodělat celý výrobní proces odběrem se nesmí ovlivnit vlastnosti brát ohled na anizotropii značení (nepoškozovat zkušební část, zůstat zachováno) tatické zkoušky Zkouška tahem. 1

Jedna ze základních statických zkoušek (za stálé síly neb pomalu spojitě se měnící síly) ČN 42 31. Zkušební těleso je jednoduchého tvaru a zatěžuje se do porušení pracovní diagram - registruje se zátěžná síla a deformace (mění se délka zkušební tyče z L o na L u a průřez o na u) íla F se vztahuje na jednotku plochy - napětí normálové smluvní napětí R = F /MPa/ absolutní prodloužení L = L L /mm/ u Obr. 1.1: Pracovní diagram zkoušky tahem měkké uhlíkové oceli - E modul pružnosti) - mez pružnosti R E - fyzikální hodnota - smluvní mez pružnosti trvalé deformace,5% obvykle se vyjadřuje v % jako poměrné L prodloužení ε =. 1 /%/ L Pracovní smluvní diagram /obr. 1.1/ (závislost F-L odpovídá R-ε) - počátek odpovídá Hookeovu zákonu R = E.ε (mez úměrnosti R u - dále deformace pružné a plastické, zpevňování - výrazná mez kluzu R e (definice, náznak teorie - zrna, mřížka, roviny, dislokace) - smluvní mez kluzu (průtažnosti) R p,2 - mez pevnosti F m R m = - zaškrcování - skutečné napětí L L tažnost A u u =. 1 /%/ kontrakce Z =. 1 /%/ L houževnatost - měřítko energie k deformaci a porušení tělesa - plocha pod křivkou Lomy charakterizují vlastnosti materiálu (bodový, smykový, křehký, smíšený (dutinový). Zkušební tyče: dle upnutí dle materiálu dle délky (1 a 5 d o ev. nekruhové 11,3 a 5,65. o) vlivem zaškrcování nerovnoměrné prodloužení po délce Měření deformací - průtahoměry - optické, mechanické, elektrické (odporové, induktivní ap.) Obr. 1.2: Příklady pracovních diagramů zkoušky tlakem /1-šedá litina, 2-měkká ocel, 3-zinek, 4-olovo/ - rozdíl pevností u šedé litiny Zkouška tlakem /obr. 1.2/ Především u křehkých materiálů - obvykle válečky průměru 2 až 3 mm stejné výšky - nenormována - pevnost při porušení tělesa, jinak zkouška technologická. Hodnocení analogické tahu ev. poměrné zkrácení F mt R mt = /MPa/ ε t a rozšíření ψ t /%/ 2

Zkouška ohybem. Pro křehké materiály, svarové a pájené spoje - nosník na dvou podporách - z průhybu se určuje deformační schopnost - napětí normálové nerovnoměrně rozložené po průřezu - posun neutrální osy u litiny /obr. 1.3/ Obr. 1.3: Rozdělení napětí v průřezu tyče na mezí úměrnosti pro materiál nestejných vlastností v tahu a tlaku Zkouška střihem. Litiny ČN - průměr dle tloušťky stěny odlitku - nastojato, neobrobené pevnost v ohybu napětí krajního vlákna M o max R mo = /MPa/ - W o Fmax.L M max = /N.mm/ 4 W o - modul průřezu pro kruhový π d 3 32 (obdélníkový b.h 2 ) 6 Rovnoměrné smykové napětí ležící v průřezu - není běžná - pomocí přípravků, obvykle přídavná napětí v ohybu - R ms bývá,8 až 1, R m Zkouška krutem /obr. 1.4/ Nenormovaná - experimentální náročnost, bez tahového napětí, jednoúčelová - pevnost v krutu R mk, modul pružnosti ve smyku G - analogie tahu, rozložení napětí - kroutící moment M k = F. d /N.mm/ - pevnost v krutu M k max R mk = /MPa/ Wk Obr. 1.4: chéma uspořádání při zkoušce krutem - poměrné zkroucení - poměrné posunutí povrchového vlákna skos ϑ = ϕ L - modul průřezu v krutu - průřez se natočí o úhel ϕ W ϕ.r γ = modul pružnosti ve smyku L k 3 π d = /mm 3 / 16 G = τ γ Zkoušky tvrdosti. Tvrdost bývá definována jako odpor proti vnikání cizího tělesa do zkoušeného povrchu - vlivů více (různé pružné a plastické vlastnosti materiálů i identoru, jeho geometrie, použitá síla, tření, umístění vtisku ap.) - nejednotnost měření - rychlé, jednoduché, většinou bez výrazného poškození Dělení dle: rychlosti zatěžování (statické, dynamické) principu zkoušky Vrypové: (Mohsova stupnice tvrdosti, ocel 5, až 8,5 - Martensova - diamantový kužel 9 o - zatížení nebo šířka vrypu) Vnikací (HB, HV, HR) 3

Zkouška dle Brinella. Identor kalená ocelová kulička - D 1 až 2,5 mm - (ocelová do 35 HB, K do 45 HB),12.F F HB = F /N/ resp. A A - A plocha vtisku (kulový vrchlík) /mm 2 / R mhb = k.hb pro ocel k = 3,1 až 4,1 F /kp/ Obr. 1.5: Závislost tvrdosti HB na velikosti zátěžné síly - závislost tvrdosti na velikosti zatěžovací síly /obr. 1.5/ - vtisk,2 až,6 D - zatěžovací stupně v závislosti na D 2 - ocel 3, litina, barevné kovy 1, hliník 5, ložiskové kovy 2,5 - srovnávat možno pouze v zatěžovacím stupni - metodika, vzdálenosti od hrany, od sebe, tloušťka /obr. 1.6/, doba zátěže výhody - jednoduchá, heterogenní struktury, necitlivá, levná nevýhody - odečítání, přesnost, omezenost, poškození výrobku Obr. 1.6: Fotoelasticimetrické zjišťování průběhu smykového namáhání pod vtlačovanou kuličkou Zkouška dle Vickerse. Identor čtyřboký diamantový jehlan o vrcholovém úhlu 136,189.F HV = F/N/ resp. HV = 2 2 u 1,854.F u F/kp/ (F - síla vztažená na plochu vtisku, u - úhlopříčka vtisku /mm 2 /) - libovolné zatížení, vtisky geometricky podobné - vztah mezi Brinellem a Vickersem - výhody přesnější /obr. 1.7/, široké použití, menší vtisk i nižší hloubka a) b) Obr. 1.7: Deformace vtisku podle Vickerse /a-nezpevněný materiál, b-zpevněný materiál nevýhody - delší doba vyhodnocování, příprava povrchu, menší vtisk Mikrotvrdost - Hanemannův mikrotvrdoměr (,5 až 2 p) Obr. 1.8: Postup měření tvrdosti podle Rockwella /nahoře postup zatěžování; dole detail průniku indentoru a jeho měření/ Zkouška dle Rockwella. Dva druhy indentorů - diamantový kužel 12 o - ocelová kulička 1/16" - měří se hloubka vtisku /obr. 1.8/ - postup měření, předtížení, vlastní zatížení, odtížení - celá stupnice,2 mm - stupnice (kužel) C 15 kp, (kulička) B 1 kp, A 6 kp (kužel tenké vrstvy) výhody - rychlá nevýhody - menší přesnost (identor, pružnost), menší rozsah 4

Dynamické zkoušky tvrdosti. Obdoba statických : volný pád, stlačená pružina (Baumannovo kladivo), porovnávací (Poldi kladívko) Odrazové - horeho skleroskop - odraz závaží s kulovým diamantovým hrotem (max. 14 dílků, kalená ocel 1) Hh bez poškození povrchu, malá přesnost - Duroskop - princip kyvadla Kyvadlové - princip útlumu Dynamické zkoušky. Zjišťují odolnost proti křehkému porušení, používají se zkoušky analogické statickým - význam zkouška rázem v ohybu. Týž materiál se může porušit houževnatě nebo křehce dle podmínek. Vznik náhlých křehkých lomů bez předchozí varující deformace za nižších napětí může být příčinou havárií. Vznik křehkého lomu podporují: Obr. 1.9: Poměry při rázové zkoušce v ohybu na kyvadlovém kladivu /a) schéma Charpyho kladiva: 1-rám, 2-zkušební tyč, 3-kladivo, 3a-tvar břitu, 4-vlečná ručička, 5-stupnice, b) výpočet nárazové práce: G-kývající hmota, r-poloměr dráhy břitu/ Obr. 1.1: Rozměry zkušební tyče k vrubové zkoušce rázem předepsané normou ČN 42 381 hranicích, radiační poškození, stárnutí, tepelné zpracování ap.) podmínky nízká teplota složitý stav napjatosti rychlost deformace Zkouška vrubové houževnatosti spočívá v přeražení zkušební tyče na kladivu a určení nárazové práce spotřebované na toto přeražení - houževnatost je spotřebovaná práce vztažená na plochu pod vrubem K KC = / J.cm -2 / - uspořádání dle Izoda (vetknutý nosník) nebo Charpy /obr. 1.9/ (nosník na dvou podporách) ČN - tyče U vrub (5, 3, 2 mm) /obr. 1.1/ nebo V vrub (2 mm), bez vrubu - kladivo ztráty, nárazová práce, vlivy na hodnotu vrubové houževnatosti: tvar vrubu hloubka vrubu šířka zkušební tyče orientace vláken - hodnota vrubové houževnatosti velice strukturně citlivá (velikost zrna, čistota ocelí, segregace na - významný vliv teplota /obr. 1.11/ - s hodnotou souvisí vzhled lomových ploch - závislost se někdy nazývá Vidalova křivka -- houževnatý stav 1-2 J.cm -2, křehký stav 1 J.cm -2 - přechodová teplota - charakteristika materiálu (provozní teploty) - způsoby určování - význam zkoušky - ukazatel plastických vlastností - ne hodnota k výpočtu 5

Obr. 1.11: Teplotní závislost vrubové houževnatosti /a) schéma průběhu a oblast lomů: I-houževnatých, II-smíšených, III-křehkých; b) způsoby stanovení přechodové teploty t p, a-jako inflexního bodu, b-z rovnosti ploch 1 a 2, c-podle zadané KC min/ 1.3 Technologické zkoušky Obr. 1.12: Curyho zkouška zabíhavosti pro šedou litinu - zkoušky: odolnost proti vzniku trhlin odolnost proti zkřehnutí Technologické vlastnosti umožňují za definovatelných podmínek určitý způsob zpracování materiálu - nelze vyjádřit ve fyzikálních veličinách - jedná se o posouzení vlastností pro určité zpracování - nutno ovšem definovat podmínky pro reprodukovatelnost a srovnatelnost výsledků - lévatelnost posouzení vhodností materiálu k výrobě odlitků, tedy schopnost kovů vytvořit odlitky odpovídající rozměry a tvarem bez makro a mikro vad - především závisí na : zabíhavost - schopnost zaplnit formu, obvykle dráha až kam zaběhne tekutý kov, Curyho zkouška, závisí především na složení (eutektické, likvidus-solidus), plyny, vměstky, teplotě lití, stavu formy apod. smrštění - zmenšení objemu vůči tavenině v % (ocel až 2,5 %, litina 1 %) vařitelnost charakteristika materiálu určující vhodnost vytvoření spoje předepsané jakosti - zaručená, podmíněně zaručená, dobrá, obtížná krystalizační a likvační trhliny - ohybová zkouška při teplotách u solidu - natavování povrchu v ochranné atmosféře imitace teplotních cyklů Thermorestor studené trhliny - zkouška Tekken žíhací a lamelární trhliny častá návarová zkouška - tuhost brání tepelné dilataci zkoušky zkřehnutí /obr. 1.13/ - vrubová houževnatost nebo ohyb 6

Obr. 1.13: Zkouška zkřehnutí svarového spoje Obr. 1.14: Zkouška plechů hloubením podle Erichsena /1-zkušební plech, 2-razník, 3-raznice, 4-přidržovač/ Tváření za studena. Obr. 1.15: Technologické zkoušky trubek /a-rozháněním, b- rozšiřováním, c-lemováním, d-smáčknutím/ opotřebení atd. Plechy - hlubokotažnost Erichsen, kulový vrchlík /obr. 1.14/ - Engelhart, válcový razník kalíšek - střídavý ohyb, dvojitý přehyb Dráty - střídavý ohyb, kroucení, navíjení Trubky - vnitřní přetlak, rozhánění (kužel 1:5), rozšiřování (vnitřní průměr o 1 %), lemování (přítlačná deska), smáčknutí /obr. 1.15/ Zkouška lámavosti (nosník na dvou podporách, za studena i za tepla) Tváření za tepla. Zkoušky pěchovací, krutem, kovací Zkoušky obrobitelnosti, závislost mimo materiálu na nástrojích a podmínkách Další povrchové úpravy, koroze, 1.4 Zkoušky nedestruktivní. Defektoskopie Vnitřní a povrchové vady (necelistvosti) vlivem výroby, technologie a provozu - ohrožení bezpečnosti, životnosti zařízení (zeslabení, vrubové účinky) - vady skryté - třídění ev. opravy Zkoušky prozařováním. Vnitřní vady, jejich orientace, použití - elektromagnetické vlnění: dlouhovlnné (měkké) 5-5 kev (rtg) krátkovlnné 5-4 kev (rtg) velmi krátkovlnné (tvrdé),5-3 MeV (betatron) 7

zdroje umělé (rtg lampy, lineární urychlovače a betatrony), radioizotopy (Co 6 - záření gama) - zeslabení I I. µ x = e Obr. 1.16: Prozařovací metody registrace a-fotografická, b-fluorescenční, c- ionizační /1-zářič, 2-clona, 3-prozařovaný materiál, 4-film v kazetě, 5- fluorescenční deska, 6-stínící deska, 7-ionizační komora, 8-registrační přístroj/ velikost, poloha několik snímků µ - součinitel zeslabení (atomové číslo, vlnová délka), x - tloušťka registrace (zviditelnění) /obr. 1.16/ : fotoregistrace (film - radiogram) - měrky, zesilovací fólie fluorescenční (stínítka) ionizační (detektory - ionizace plynu) - ocel rtg. do 8 mm, betatron 5 mm - hodnocení - tvar, Zvukem a ultrazvukem. Obr. 1.17: Princip odrazové ultrazvukové metody a,b s jednou sondou, c,d s dvěma sondami /1-vysílací i přijímací sonda, 2-počáteční echo, 3-koncové echo, 4-poruchové echo, V-vysílací sonda, P-přijímací sonda/ metody: průchodová - měření ultrazvukové energie - vysilač a přijímač (velikost ne poloha) Zvukem - běžná kontrola necelistvosti - Ultrazvuk - frekvence 1-1 MHz - odraz na rozhraní dvou prostředí - podélné (všechny látky - vzduch 33 m.s -1, ocel 58 m.s -1 ) - příčné (tuhé, cca poloviční rychlost c vlnová délka λ = ) - f vstup, blízké pole (oblast interferencí) vnitřní vady (kolmé na průchod) odrazem - (dvě sondy neb jedna) /obr. 1.17/ - krátké ultrazvukové impulzy - odražení, el. signál přes časovou základnu na obrazovce - vada, poruchové echo (poloha určuje hloubku vady, výška a tvar její velikost) - desítky metrů, zajištění vstupu, vliv struktury Obr. 1.18: Princip magneto-elektrické metody a) podélná magnetizace, b) příčná magnetizace /P-předmět, V-vada/ Magnetické a indukční metody. Feromagnetické materiály (Inkar) - vada změna magnetického toku (povrch ev. těsně pod) - indikace feromagnetický prášek (za sucha nebo suspenze) - vada orientovaná kolmo ke směru magnetického toku 8

/obr. 1.18/ - magnetizace permanentním magnetem, průchodem proudu (nejčastější - vysoké proudy), pomocným vodičem indukční metoda - zjišťování rozptylového pole ve zmagnetovaném předmětu elektromagnetickým snímačem (obdoba Inkaru) vířivými proudy - pro nemagnetické i magnetické - vady místně zhoršují vodivost (indukce střídavým magnetickým polem do výrobku) Kapilární zkoušky. Využití vzlínavosti kapalin /obr. 1.19/ - vady souvisící s povrchem, od feromagnetických po nevodivé - postup (plnění, odstranění zbytku, nanesení detekční látky, vzlínání indikační kapaliny) - zvýšení kontrastu - rozložení vad, velikost? - Obr. 1.19: Princip kapilární metody: a) povrch před nanesením kapaliny, b) po nanesení kapaliny, c) po natření, d) po nanesení detekční látky /1-trhlina, 2-indikační kapalina, 3-detekční látka/ Použití metod. žádná univerzální - výběr dle zkoušeného materiálu, tvaru, rozměrech a složitosti výrobku, přístupu kontrolovaného místa, hospodárnosti i předpokládaného druhu a velikosti vady - příklady 9