Struktura a funkce biomakromolekul
|
|
- Pavlína Marešová
- před 6 lety
- Počet zobrazení:
Transkript
1 Struktura a funkce biomakromolekul KBC/BPOL 3. Enzymy a proteinové motory Ivo Frébort
2 Enzymová katalýza
3 Mechanismy enzymové katalýzy o Ztráta entropie při tvorbě komplexu ES odestabilizace komplexu ES o Kovalentní katalýza o Obecná acidobazická katalýza o Katalýza kovovým iontem o Přiblížení a orientace reaktivních skupin
4 Ztráta entropie komplexu ES
5 Destabilizace komplexu ES
6 Příklady kovalentní katalýzy
7 Příklady kovalentní katalýzy: NAD(P) + dehydrogenasy
8 Acidobazická katalýza o Katalýza při které je v přechodovém stavu přenášen proton o Specifická acidobazická katalýza spočívá v difúzi H + nebo OH - do aktivního místa o Obecná acidobazická katalýza probíhá za účasti bazí jiných než H + a OH -, které zprostředkovávají přenos H + v komplexu ES
9 Serinové proteasy Trypsin, chymotrypsin, elastasa, thrombin, subtilisin, plasmin Kombinace kovalentní a obecné acidobazické katalýzy o Ser je součástí katalytické triády His-57, Asp-102, Ser-195 o Asp-102 udržuje His-57 ve správné orientaci o His-57 působí jako obecná kyselina a zásada o Ser-195 vytváří kovalentní vazbu se štěpeným peptidem o Tvorba kovalentní vazby mění koformaci uhlíku z trigonální na tetrahedrální o Tetrahedrální oxyaniontový intermediát je stabilizován H- vazbami s N Gly-193 and Ser-195
10 Aktivní místo Ser proteas
11 Aspartátové proteasy Pepsin, chymosin, cathepsin, renin, HIV-1 protease o Všechny obsahují dvě Asp residua v aktivním místě o Tyto dva Asp pracují společně jako silný acidobazický katalyzátor o Jeden Asp má relativně nízké pk a, druhý relativně vysoké pk a o Deprotonovaný Asp se chová jako báze, je schopne přijmout proton z HOH, a tvoří OH - v přechodovém komplexu o Druhý Asp se chová jako kyselina, odštěpuje proton a podporuje tak vytváření tetrahedrálního intermediátu o V pepsinu, jeden Asp má pk a 1.4, druhý 4.3
12 Reakce Asp proteas
13 Lysozym o Lysozym hydrolyzuje polysacharidy a štěpí tak buněčnou stěnu některých baktérií o Lysozym ze slepičího vaječného bílku -129 residuí, 4 disulfové můstky o První enzym jehož struktura byla určena X-ray krystalografií (David Phillips, 1965)
14 Reakce lysozymu
15 Mechanismus reakce lysozymu
16 Molekulární motory?
17 Adenylát kinasa
18 Motorové proteiny dyneiny a kinesiny zprostředkovávají pohyb prostřednictvím mikrotubulí head domain that interacts with microtubule stalk C-terminal tail domains stalk domain N-terminal heavy chain motor domains (heads) Dynein (approximate structure) motor domain Kinesin I light chains hinge
19 Tubulin a mikrotubuly Základní komponenty cytoskeletonu o Microtubuly jsou duté, válcové polymery tvořené tubulinovými dimery o 13 tubulinových monomerů na otočku o Dimery asociují na "plus" konec a disociují z "minus" konce o Mikrotubuly jsou základní složky cytoskeletonu, cilií a bičíku
20 Tubulin a mikrotubuly
21 Mikrotubuly v ciliích a bičíku o MT jsou základní struktury cilií a bičíku o Cilie se vlní; bičíky rotují vše řízeno ATP! o Dynein kráčí nebo klouzá podél MTs a způsobuje ohyb jedné MT vzhledem k druhé o Pohyb dyneinu je řízen hydrolýzou ATP
22 Mikrotubuly v ciliích
23 Mechanismus pohybu cilií
24 Pohyb bičíku
25 Mikrotubuly a pohyb organel v buňce o Dráhy pro"molekulární motory" o MT také umožňují pohyb organel a částic v buňce o V axonech, dyneiny transportují organely od + k - konci, např. směrem k jádru o Kinesiny transportují organely od - k + konci, např. směrem od jádra
26 Pohyb organel
27 Struktura kinesinu microtubule kinesin scaffolding protein receptor inactive kinesin cargo vesicle
28 Pohyb kinesinu po mikrotubulích
29 Proteinové motory ve svalech
30 Morfologie svalu o o o o o o o Svazek vláken obsahuje stovky myofibril Každá myofibrila je svazek sarkomerů Každý sarkomer je ukončen transversální tubulí (t-tubule) tvořené membránou Povrch sarkomerů je pokryt by sarkoplasmatickým retikulem (SR) Nervové impulsy přicházející do svalu produkují "akční potenciál", který se šíří sarkolemovou membránou a do vláken sítí t-tubulí Signál indukuje uvolnění Ca2+ ze SR Ca2+ ionty se vážou do specifických míst na vláknech a indukují kontrakci, relaxace je doprovázena pumpováním Ca2+ zpět do SR
31 Struktura svalové buňky
32 Struktura tenkého vlákna
33 Struktura silného vlákna o Myosin - 2 těžké a 4 lehké podjednotky o Těžké podjednotky kda o Lehké podjednotky - 2 x 2 různé, 20 kda o "Hlava" těžké podjednotky má ATPasovou aktivitu - hydrolýza ATP zde řídí kontrakci svalu
34 Akce myosinu řízená Ca 2+ v07.tropotropo.mov Ca - myosin Myosin - ATP
35 Kontrakce svalu (sliding filament model)
36 Actinin, Dystrophin, Laminin Asociované svalové proteiny
Struktura a funkce biomakromolekul
Struktura a funkce bimakrmlekul KBC/BPOL 3. Enzymy a prteinvé mtry Iv Frébrt Enzymvá katalýza Mechanismy enzymvé katalýzy Ztráta entrpie při tvrbě kmplexu ES Destabilizace kmplexu ES Kvalentní katalýza
Přeměna chemické energie v mechanickou
Přeměna chemické energie v mechanickou Molekulám schopným této energetické přeměny se říká molekulární motory. Nejklasičtějším příkladem je svalový myosin (posouvá se po aktinu), ale patří sem i ATP-syntáza
Struktura a funkce biomakromolekul KBC/BPOL
Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je
Struktura a funkce biomakromolekul KBC/BPOL
Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je
Kosterní svalstvo tlustých a tenkých filament
Kosterní svalstvo Základní pojmy: Sarkoplazmatické retikulum zásobárna iontů vápníku - depolarizace membrány uvolnění vápníku v blízkosti kontraktilního aparátu vazba na proteiny zajišťující kontrakci
B9, 2015/2016, I. Literák, V. Oravcová CYTOSKELETÁLNÍ PRINCIP BUŇKY
B9, 2015/2016, I. Literák, V. Oravcová CYTOSKELETÁLNÍ PRINCIP BUŇKY CYTOSKELETÁLNÍ PRINCIP BUŇKY mikrotubuly střední filamenta aktinová vlákna CYTOSKELETÁLNÍ PRINCIP BUŇKY funkce cytoskeletu - udržovat
Bp1252 Biochemie. #11 Biochemie svalů
Bp1252 Biochemie #11 Biochemie svalů Úvod Charakteristickou funkční vlastností svalu je schopnost kontrakce a relaxace Kontrakce následuje po excitaci vzrušivé buněčné membrány je přímou přeměnou chemické
BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY
BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY 1 VÝZNAM BUNĚČNÉ MOTILITY A MOLEKULÁRNÍCH MOTORŮ V MEDICÍNĚ Příklad: Molekulární motor: dynein Onemocnění: Kartagenerův syndrom 2 BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY
Univerzita Karlova v Praze, 1. lékařská fakulta
Univerzita Karlova v Praze, 1. lékařská fakulta Tkáň svalová. Obecná charakteristika hladké a příčně pruhované svaloviny (kosterní a srdeční). Funkční morfologie myofibrily. Mechanismus kontrakce. Stavba
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 4. Membránové proteiny Ivo Frébort Lipidová dvojvrstva Biologické membrány Integrální membránové proteiny Transmembránové proteiny Kovalentně ukotvené membránové
NEMEMBRÁNOVÉ ORGANELY. Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly
NEMEMBRÁNOVÉ ORGANELY Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly RIBOSOMY Částice složené z rrna a proteinů, skládají se z velké kulovité
8. Polysacharidy, glykoproteiny a proteoglykany
Struktura a funkce biomakromolekul KBC/BPOL 8. Polysacharidy, glykoproteiny a proteoglykany Ivo Frébort Polysacharidy Funkce: uchovávání energie, struktura, rozpoznání a signalizace Homopolysacharidy a
Fyziologie svalové činnosti. MUDr. Jiří Vrána
Fyziologie svalové činnosti MUDr. Jiří Vrána Syllabus 2) Obecný úvod 4) Kosterní svaly a) funkční stavební jednotky b) akční pot., molek. podklad kontrakce, elektromech. spřažení c) sumace, tetanus, závislost
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Obecný metabolismus.
mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 becný metabolismus. Mechanismy enzymové katalýzy (7). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie Přírodovědecká
VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ
FUNKCE PROTEINŮ 1 VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ Příklad: protein: dystrofin onemocnění: Duchenneova svalová dystrofie 2 3 4 FUNKCE PROTEINŮ: 1. Vztah struktury a funkce proteinů 2. Rodiny proteinů
Pohyb buněk a organismů
Pohyb buněk a organismů Pohybové buněčné procesy: Vnitrobuněčný transpost organel, membránových váčků Pohyb chromozómů při dělení buněk Cytokineze Lokomoce buněk (améboidní a řasinkový pohyb) Svalový pohyb
9. Lipidy a biologické membrány
Struktura a funkce biomakromolekul KBC/BPOL 9. Lipidy a biologické membrány Ivo Frébort Buněčné membrány Jádro buňky Golgiho aparát Funkce buněčných membrán Bariéry vůči toxickým látkám Pomáhají akumulovat
VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost
VAKUOLA membránou ohraničený váček membrána se nazývá tonoplast běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA Funkce: uložiště odpadů a uskladnění chemických látek (fenolické
základem veškerého aktivního pohybu v živočišnéříši je interakce proteinových vláken CYTOSKELETU
POHYB je jeden ze základních životních projevů pro život je nezbytný POHYB na všech úrovních: subcelulární (pohyb v rámci buňky) celulární (pohyb buňky) orgánový pohyb (pohyb orgánu) organizmální pohyb
Pohyb přípravný text kategorie A, B
ÚSTŘEDNÍ KOMISE BIOLOGICKÉ OLYMPIÁDY BIOLOGICKÁ OLYMPIÁDA 2005/2006 40. ROČNÍK Pohyb přípravný text kategorie A, B Ivan ČEPIČKA Petr L. JEDELSKÝ Magdalena KUBEŠOVÁ Jana LIŠKOVÁ Jan MATĚJŮ Vendula STRÁDALOVÁ
Rychlost chemické reakce je dána změnou Gibbsovy energie a aktivační energií: Tudíž zrychlení reakce pomocí katalýzy může být vyjádřeno:
Bruno Sopko Rychlost chemické reakce je dána změnou Gibbsovy energie a aktivační energií: Tudíž zrychlení reakce pomocí katalýzy může být vyjádřeno: Z předchozí rovnice vyplývá: Pokud katalýza při 25
BUŇEČNÝ CYKLUS A JEHO KONTROLA
BUŇEČNÝ CYKLUS A JEHO KONTROLA MITOSA - fáze: Profáze - kondensace chromosomů - 30 nm chromatine fibres vázané na matrix Rozpad Metafáze - párové ( sesterské ) chromatidy - vázané centromerou, seřazené
1. AKTINOVY CYTOSKELET (mikrofilamenta)
CYTOSKELET - pohyb bunek, zmeny tvaru bunek - pohyb organel, bunecné procesy (napr. separace chromosomu) - vyzaduje energii (ATP) - CYTOSKELETON = cytoplasmaticky systém vláken - nutný pro bunecný pohyb,
Rozdělení svalových tkání: kosterní svalovina (příčně pruhované svaly) hladká svalovina srdeční svalovina (myokard)
Fyziologie svalstva Svalstvo patří ke vzrušivým tkáním schopnost kontrakce a relaxace veškerá aktivní tenze a aktivní pohyb (cirkulace krve, transport tráveniny, řeč, mimika, lidská práce) 40% tělesné
základem veškerého aktivního pohybu v živočišné říši je interakce proteinových vláken CYTOSKELETU
Lukáš Hlaváček, Katedra zoologie Přf UP Olomouc, 2010 POHYB je jeden ze základních životních projevů pro život je nezbytný POHYB na všech úrovních: subcelulární (pohyb v rámci buňky) celulární (pohyb buňky)
Svalová tkáň, kontraktilní aparát, mechanismus kontrakce
Svalová tkáň, kontraktilní aparát, mechanismus kontrakce Ústav pro histologii a embryologii Předmět: Histologie a embryologie 1, B01131, obor Zubní lékařství Datum přednášky: 22.10.2013 Svalová tkáň má
Cytoskelet a molekulární motory: Biologie a patologie. Prof. MUDr. Augustin Svoboda, CSc.
Cytoskelet a molekulární motory: Biologie a patologie Prof. MUDr. Augustin Svoboda, CSc. Cytosol: tekutá hmota, vyplňující prostor uvnitř buňky mezi organelami. Ve světelném mikroskopu se jeví jako amorfní
Enzymologie. Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů.
ENZYMOLOGIE 1 Enzymologie Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů. Jak je možné, že buňka dokáže utřídit hrozivou změť chemických procesů, které v ní v každém okamžiku
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 6. Struktura nukleových kyselin Ivo Frébort Struktura nukleových kyselin Primární struktura: sekvence nukleotidů Sekundární struktura: vzájemná poloha nukleotidů
9. Lipidy a biologické membrány
Struktura a funkce biomakromolekul KBC/BPOL 9. Lipidy a biologické membrány Ivo Frébort Buněčné membrány Jádro buňky Golgiho aparát Funkce buněčných membrán Bariéry vůči toxickým látkám Pomáhají akumulovat
Cytologie. Přednáška 2010
Cytologie Přednáška 2010 Buňka 1.Velikost 6 200 µm, průměrná velikost 20um 2. JÁDRO a CYTOPLAZMA 3. ORGANELY (membránové) 4. CYTOPLAZMATICKÉ INKLUZE 5. CYTOSKELET 6. Funkční systémy eukaryotické buňky:
Metabolismus bílkovin. Václav Pelouch
ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Metabolismus bílkovin Václav Pelouch kapitola ve skriptech - 3.2 Výživa Vyvážená strava člověka musí obsahovat: cukry (50 55 %) tuky (30 %) bílkoviny (15 20 %)
Testové úlohy aminokyseliny, proteiny. post test
Testové úlohy aminokyseliny, proteiny post test 1. Které aminokyseliny byste hledali na povrchu proteinů umístěných uvnitř fosfolipidových membrán a které na povrchu proteinů vyskytujících se ve vodném
Genetika člověka GCPSB
Inovace předmětu Genetika člověka GCPSB Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/28.0032 Genetika člověka / GCPSB 7. Genetika
Přednáška 5 Biomechanika svalu
13.11.2013 Přednáška 5 Biomechanika svalu ANATOMIE MUDr. Vyšatová ANATOMIE MUDr. Vyšatová Obecná myologie Svalová vlákna, myofibrily, proteiny, sarcomery, skluzný model svalového stahu, stavba kosterního
Obecná stavba a funkce svalu. Motorická svalová jednotka. Základy svalové nomenklatury. Energetické zdroje svalu. Svalová práce a únava.
Obecná stavba a funkce svalu. Motorická svalová jednotka. Základy svalové nomenklatury. Energetické zdroje svalu. Svalová práce a únava. Somatologie Mgr. Naděžda Procházková Sval - MUSCULUS Složitá struktura,
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce
Typy molekul, látek a jejich vazeb v organismech
Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,
Fyziologie srdce I. (excitace, vedení, kontrakce ) Milan Chovanec Ústav fyziologie 2.LF UK
Fyziologie srdce I. (excitace, vedení, kontrakce ) Milan Chovanec Ústav fyziologie 2.LF UK Fyziologie srdce Akční potenciál v srdci (pracovní myokard) Automacie srdeční aktivity a převodní systém Mechanismus
prokaryotní Znaky prokaryoty
prokaryotní buňka Znaky prokaryoty Základní stavební jednotka bakterií a sinic Mikroskopická velikost viditelné pouze v optickém mikroskopu Buňka neobsahuje organely Obsahuje pouze 1 biomembránu cytoplazmatickou
Eva Benešová. Dýchací řetězec
Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ
Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.
Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec
Bílkoviny - proteiny
Bílkoviny - proteiny Proteiny jsou složeny z 20 kódovaných aminokyselin L-enantiomery Chemická struktura aminokyselin R představuje jeden z 20 různých typů postranních řetězců R Hlavní řetězec je neměnný
Lodish et al, Molecular Cell Biology, 4-6 vydání Alberts et al, Molecular Biology of the Cell, 4 vydání
Lodish et al, Molecular Cell Biology, 4-6 vydání Alberts et al, Molecular Biology of the Cell, 4 vydání http://web.natur.cuni.cz/~zdenap/zdenateachingnf.html CHEMICKÉ SLOŽENÍ BUŇKY BUŇKA: 99 % C, H, N,
HISTORIE ENZYMOLOGIE
ENZYMY HISTORIE ENZYMOLOGIE 1. Berzelius (18.stol.) v rostlinách i živočiších probíhají tisíce katalyzovaných reakcí FERMENTY fermentace (Fabrony) 2. W.Kühne en zýme = v kvasnicích enzymy 3. J. Sumner
(VIII.) Časová a prostorová sumace u kosterního svalu. Fyziologický ústav LF MU, 2016 Jana Svačinová
(VIII.) Časová a prostorová sumace u kosterního svalu Fyziologický ústav LF MU, 2016 Jana Svačinová Kontrakce příčně pruhovaného kosterního svalu Myografie metoda umožňující registraci kontrakce svalů
Biologie I. Buňka II. Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings
Biologie I Buňka II Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings BUŇKA II centrioly, ribosomy, jádro endomembránový systém semiautonomní organely peroxisomy
STRUKTURA A FUNKCE MIKROBIÁLNÍ BUŇKY
Morfologie (tvar) bakterií STRUKTURA A FUNKCE MIKROBIÁLNÍ BUŇKY Tři základní tvary Koky(průměr 0,5-1,0 µm) Tyčinky bacily (šířka 0,5-1,0 µm, délka 1,0-4,0 µm) Spirály (délka 1 µm až100 µm) Tvorba skupin
Redoxní děj v neživých a živých soustavách
Enzymy Enzymy Katalyzují chemické reakce, kdy se mění substrát na produkt Katalytickým působením se snižuje aktivační energie reagujících molekul substrátu, tím se reakce urychlí Za přítomnosti enzymu
5. Lipidy a biomembrány
5. Lipidy a biomembrány Obtížnost A Co je chybného na často slýchaném konstatování: Biologická membrána je tvořena dvojvrstvou fosfolipidů.? Jmenujte alespoň tři skupiny látek, které se podílejí na výstavbě
Svalová tkáň Svalová soustava
Svalová tkáň Svalová soustava Svalová tkáň tvoří svaly Svalová soustava soubor svalů Sval vysoce specializovaný orgán pohyb jako odpověď na vlivy okolí pohyb v prostoru pohyb částí těla vzhledem tělu Fyziologické
Regulace translace REGULACE TRANSLACE LOKALIZACE BÍLKOVIN V BUŇCE. 4. Lokalizace bílkovin v buňce. 1. Translační aparát. 2.
Regulace translace 1. Translační aparát 2. Translace 3. Bílkoviny a jejich posttranslační modifikace a jejich degradace 5. Translace v mitochondriích a chloroplastech REGULACE TRANSLACE LOKALIZACE BÍLKOVIN
Energetický metabolizmus buňky
Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie
Úvod do biologie rostlin Buňka ROSTLINNÁ BUŇKA
Slide 1a ROSTLINNÁ BUŇKA Slide 1b Specifické součásti ROSTLINNÁ BUŇKA Slide 1c Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna Slide 1d Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna plasmodesmy Slide
BÍLKOVINY R 2. sféroproteiny (globulární bílkoviny): - rozpustné ve vodě, globulární struktura - odlišné funkce (zásobní, protilátky, enzymy,...
BÍLKVIY - látky peptidické povahy tvořené více než 100 aminokyselinami - aminokyseliny jsou poutány...: R 1 2 + R 2 R 1 R 2 2 2. Dělení bílkovin - vznikají proteosyntézou Struktura bílkovin primární sekundární
Mgr. Šárka Vopěnková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_3_08_BI1 SVALOVÁ SOUSTAVA
Mgr. Šárka Vopěnková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_3_08_BI1 SVALOVÁ SOUSTAVA POHYBOVÁ SOUSTAVA člověk cca 600 svalů svalovina tvoří 40 až 45% hmotnosti těla hladká 3% Svalová
Aminokyseliny, proteiny, enzymy Základy lékařské chemie a biochemie 2014/2015 Ing. Jarmila Krotká Metabolismus základní projev života látková přeměna souhrn veškerých dějů, které probíhají uvnitř organismu
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Přírodní polymery proteiny
Přírodní polymery proteiny Funkční úloha bílkovin 1. Funkce dynamická transport kontrola metabolismu interakce (komunikace, kontrakce) katalýza chemických přeměn 2. Funkce strukturální architektura orgánů
Komplementový systém a nespecifická imunita. Jana Novotná Ústav lékařské chemie a biochemie 2 LF UK
Komplementový systém a nespecifická imunita Jana Novotná Ústav lékařské chemie a biochemie 2 LF UK IMUNITA = OBRANA 1. Rozpoznání vlastní a cizí 2. Specifičnost imunitní odpovědi 3. Paměť zachování specifických
II. SVALOVÁ TKÁŇ PŘÍČNĚ PRUHOVANÁ (ŽÍHANÁ) = svalovina kosterní
II. SVALOVÁ TKÁŇ PŘÍČNĚ PRUHOVANÁ (ŽÍHANÁ) = svalovina kosterní základní stavební jednotkou svalové vlákno, představující mnohojaderný útvar (soubuní) syncytiálního charakteru; vykazuje příčné pruhování;
Enzymologie. Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol Matej Kohutiar. akad. rok 2017/2018
Enzymologie Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol Matej Kohutiar akad. rok 2017/2018 Osnova I. Základní principy enzymových reakcí II. Termodynamické a kinetické aspekty enzymové
ENERGIE BUNĚČNÁ RESPIRACE FOTOSYNTÉZA. 2013 Doc. MVDr. Eva Bártová, Ph.D.
ENERGIE BUNĚČNÁ RESPIRACE FOTOSYNTÉZA 2013 Doc. MVDr. Eva Bártová, Ph.D. ZÍSKÁVÁNÍ a PŘENOS ENERGIE BUŇKOU 1. termodynamická věta - různé formy energie se mohou navzájem přeměňovat 2. termodynamická věta
Svalová tkáň Svalová soustava
Svalová tkáň Svalová soustava Svalová tkáň tvoří svaly Svalová soustava soubor svalů (sval = orgán) Sval vysoce specializovaný orgán pohyb jako odpověď na vlivy okolí pohyb v prostoru pohyb částí těla
Patofyziologie srdce. 1. Funkce kardiomyocytu. Kontraktilní systém
Patofyziologie srdce Funkce kardiomyocytu Systolická funkce srdce Diastolická funkce srdce Etiopatogeneze systolické a diastolické dysfunkce levé komory a srdečního selhání 1. Funkce kardiomyocytu Kardiomyocyty
- 1 - Vlastní kontraktilní aparát - myofibrily- jsou uspořádány v tzv. sarkomérách.
- 1 - Svalové vlákno je buňka s mnoha jádry, na kterou se připíná nervové vlákno v motorické ploténce. Různý počet svalových vláken tvoří svalovou jednotku innervovanou pro společnou funkci. Povrch svalového
Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii
Univerzita Karlova v Praze - 1. lékařská fakulta Buňka. Stavba a funkce buněčné membrány. Transmembránový transport. Membránové organely, buněčné kompartmenty. Ústav pro histologii a embryologii Doc. MUDr.
MITÓZA V BUŇKÁCH KOŘÍNKU CIBULE
Cvičení 6: BUNĚČNÝ CYKLUS, MITÓZA Jméno: Skupina: MITÓZA V BUŇKÁCH KOŘÍNKU CIBULE Trvalý preparát: kořínek cibule obarvený v acetorceinu V buňkách kořínku cibule jsou viditelné různé mitotické figury.
PŘEHLED OBECNÉ HISTOLOGIE
PŘEDMLUVA 8 1. ZÁKLADY HISTOLOGICKÉ TECHNIKY 9 1.1 Světelný mikroskop a příprava vzorků pro vyšetření (D. Horký) 9 1.1.1 Světelný mikroskop 9 1.1.2 Zásady správného mikroskopování 10 1.1.3 Nejčastější
Fyziologie svalů. Typy svalů: - svaly kosterní (příčně pruhované), - srdeční (modifikovaný kosterní), - hladké svaly.
Fyziologie svalů Svalová tkáň - je složena z buněk, které jsou schopny reagovat na podráždění změnou své délky nebo napětí, - slouží k pohybu a udržování polohy organizmu v prostoru, - tvoří stěny dutých
Epitely a jejich variace
Epitely a jejich variace 141 Definice Avaskulární tkáň Buňky jsou k sobě těsně připojeny pomocí mezibuněčných spojení Jsou funkčně a morfologicky polarizovány Jsou připojeny k bazální lamině Rozdělení
Svalová tkáň. Petr Vaňhara, PhD. Ústav histologie a embryologie LF MU.
Svalová tkáň Petr Vaňhara, PhD Ústav histologie a embryologie LF MU pvanhara@med.muni.cz Současná klasifikace základních typů tkání Na základě morfologických a funkčních znaků Epitelová Svalová Kontinuální,
Mendělejevova tabulka prvků
Mendělejevova tabulka prvků V sušině rostlin je obsaženo přibližně 45% uhlíku, 42% kyslíku, 6,5% vodíku, 1,5% dusíku a 5% minerálních prvků. Tzv. organogenní prvky (C, O, H, N) představují tedy 95% veškerých
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
Biosyntéza a metabolismus bílkovin
Bílkoviny Biosyntéza a metabolismus bílkovin lavní stavební materiál buněk a tkání Prakticky jediný zdroj dusíku pro heterotrofní organismy eexistují zásobní bílkoviny nutný dostatečný přísun v potravě
PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY
PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY 1 VÝZNAM MEMBRÁNOVÝCH RECEPTORŮ V MEDICÍNĚ Příklad: Membránové receptory: adrenergní receptory (receptory pro adrenalin a noradrenalin) Funkce: zprostředkování
PROTEINY. Biochemický ústav LF MU (H.P.)
PROTEINY Biochemický ústav LF MU 2013 - (H.P.) 1 proteiny peptidy aminokyseliny 2 Aminokyseliny 3 Charakteristika základní stavební jednotky proteinů geneticky kódované 20 základních aminokyselin 4 a-aminokyselina
Toxikologie PřF UK, ZS 2016/ Toxikodynamika I.
Toxikodynamika toxikodynamika (řec. δίνευω = pohánět, točit) interakce xenobiotika s cílovým místem (buňkou, receptorem) biologická odpověď jak xenobiotikum působí na organismus toxický účinek nespecifický
Svaly. MUDr. Tomáš Boráň. Ústav histologie a embryologie 3.LF
Svaly MUDr. Tomáš Boráň Ústav histologie a embryologie 3.LF tomas.boran@lf3.cuni.cz Svalová tkáň aktivní součást pohybového aparátu vysoce diferencovaná tkáň příčně pruhovaná svalovina kosterní svalovina
strukturní (součástmi buněčných struktur) metabolická (realizují b. metabolizmus) informační (jako signály či receptory signálů)
1 Bílkoviny - představují cca. ½ suché hmotnosti buňky - molekuly bílkovin se podílí na všech základních životních procesech - součástmi buněčných struktur (stavební f-ce) Funkce bílkovin: strukturní (součástmi
Svaly. Svaly. Svalovina. Rozdělení svalů. Kosterní svalovina
Svaly Svaly Aktivní tenze a pohyb Komunikace, práce Krevní cirkulace Trávení Vylučování Reprodukční systém Michaela Popková Dráždivá tkáň Elasticita Schopnost kontrakce a relaxace Kosterní (příčně pruhovaná)
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti URČOVÁNÍ PRIMÁRNÍ STRUKTURY BÍLKOVIN
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti URČOVÁNÍ PRIMÁRNÍ STRUKTURY BÍLKOVIN Primární struktura primární struktura bílkoviny je dána pořadím AK jejích polypeptidových řetězců
V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.
BÍLKOVINY Bílkoviny jsou biomakromolekulární látky, které se skládají z velkého počtu aminokyselinových zbytků. Vytvářejí látkový základ života všech organismů. V tkáních vyšších organismů a člověka je
Současná formulace: Buňka je minimální jednotka, která vykazuje všechny znaky živých soustav
Buněčná teorie: Počátky formování: 1840 a dále, Jan E. Purkyně myšlenka o analogie rostlinného a živočišného těla (buňky zrníčka) Schwann T. Virchow R. nové buňky vznikají pouze dělením buněk již existujících
Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová
Struktura proteinů - testík na procvičení Vladimíra Kvasnicová Mezi proteinogenní aminokyseliny patří a) kyselina asparagová b) kyselina glutarová c) kyselina acetoctová d) kyselina glutamová Mezi proteinogenní
Aminokyseliny, struktura a vlastnosti bílkovin. doc. Jana Novotná 2 LF UK Ústav lékařské chemie a klinické biochemie
Aminokyseliny, struktura a vlastnosti bílkovin doc. Jana Novotná 2 LF UK Ústav lékařské chemie a klinické biochemie 1. 20 aminokyselin, kódovány standardním genetickým kódem, proteinogenní, stavebními
BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ
BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za
Buňky, tkáně, orgány, soustavy
Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma
Tomáš Kuˇ. cera. Ústav lékaˇrské chemie a klinické biochemie 2. lékaˇrská fakulta, Univerzita Karlova v Praze.
BIOCHEMIE SVALU Tomáš Kuˇ cera tomas.kucera@lfmotol.cuni.cz Ústav lékaˇrské chemie a klinické biochemie 2. lékaˇrská fakulta, Univerzita Karlova v Praze 2014 STRUKTURA KOSTERNÍHO SVALU svazky svalových
- pro učitele - na procvičení a upevnění probírané látky - prezentace
Číslo projektu Název školy Autor Tematická oblast CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 10 obecná biologie Organely eukaryotní buňky Ročník 1. Datum tvorby
Milada Roštejnská. Helena Klímová. Buňka. Pankreas. Ledviny. Mozek. Kost. Srdce. Sval. Krev. Vajíčko. Spermie. Obr. 1.
Milada Roštejnská Buňka Helena Klímová Ledviny Pankreas Mozek Kost Srdce Sval Krev Spermie Vajíčko Obr. 1. Různé typy buněk (1. část) Typy buněk Prokaryotní buňka Eukaryotní buňka Jádro, jadérko a jaderná
MBR ) Architektura buňky. e) Plastidy f) Mitochondrie a peroxizómy g) Cytoskelet
MBR 2015 1) Architektura buňky 1 e) Plastidy f) Mitochondrie a peroxizómy g) Cytoskelet e) Plastidy 2 Vyskytují se v autotrofních eukaryotech. U rostlin se vyskytují téměř ve všech buňkách. Plastidy produkují:
Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy)
Neuron Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy) Základní stavební jednotky Neuron přenos a zpracování informací Gliové buňky péče o neurony, metabolická,
Translace (druhý krok genové exprese)
Translace (druhý krok genové exprese) Od RN k proteinu Milada Roštejnská Helena Klímová 1 enetický kód trn minoacyl-trn-synthetasa Translace probíhá na ribosomech Iniciace translace Elongace translace
pátek, 24. července 15 BUŇKA
BUŇKA ŽIVOČIŠNÁ BUŇKA mitochondrie ribozom hrubé endoplazmatické retikulum cytoplazma plazmatická membrána mikrotubule lyzozom hladké endoplazmatické retikulum Golgiho aparát jádro jadérko chromatin volné
>>> E A1 + E A2. . aktivační energie potřebná k reakci bez přítomnosti katalyzátoru E A E A1. energie potřebná ke vzniku enzym-substrátového komplexu
Enzymy Charakteristika enzymů- fermentů katalyzátory biochem. reakcí biokatalyzátory umožňují a urychlují průběh rcí v organismu nachází se ve všech živých systémech z chemického hlediska jednoduché nebo