c. Šrotování za mokra. Zrno se máčí asi na 30 % vlhkosti, mačká a současně vystírá.

Rozměr: px
Začít zobrazení ze stránky:

Download "c. Šrotování za mokra. Zrno se máčí asi na 30 % vlhkosti, mačká a současně vystírá."

Transkript

1 Šrotování sladu Šrotování sladu je mechanický proces, jehož úkolem je rozdrtit sladová zrna a zpřístupnit endosperm pro štěpné děje ve varně. Protože při většině způsobů scezování slouží pluchy jako přirozená filtrační vrstva, musí být jejich celistvost co nejvíc zachována i při jemném rozdrcení endospermu. Teorie šrotování Šrotování musí být přizpůsobeno zpracovávanému sladu, technologickému postupu a zařízení ve varně. Vlhkost sladu určuje míru poškození pluch při šrotování. Čerstvě odhvozděné slady s vlhkostí kolem 4% ztěžují scezování, a proto se nechávají před zpracováním 4-6 týdnů odležet. Pluchy lze zvláčnit vlhčením sladu před šrotováním nebo šrotováním za mokra. Nedostatečné rozluštění sladu lze zčásti vyrovnat pečlivým šrotováním. Jemnějším šrotováním se však zvyšuje varní výtěžek a obsah zkvasitelných cukrů v mladině jen do určité hranice, při vysokém podílu mouky a rozdrcených pluchách je vrstva mláta při scezování hůře propustná, zadržuje extrakt, vyžaduje více vyslazovací vody a varní výtěžek opět klesá. Způsob scezování je pro šrotování klíčový. Ve scezovací kádi tvoří pluchy filtrační vrstvu. U sladinového filtru přebírá úlohu filtrační vrstvy hrubší textilní plachetka, u vakuového filtru jemné syntetické tkanivo, což umožňuje použití stále jemnějšího šrotu. Jemnější šrot je však příčinou tmavší barvy piva, kterou podminují melanoidiny a třísloviny. Protože jsou třísloviny obsaženy hlavně v pluchách, vyluhují se z jemného šrotu ve větším množství. U sladinového filtru je tento nežádoucí jev částečně kompenzován kratším vyslazováním jemného mláta. Pro zlepšení výsledků šrotování byly navrženy tyto postupy: a. Třídění šrotu pro rmutování. Dobře seřízené šestiválcové šrotovníky umožňují oddělovat vymleté pluchy do samostatného koše. Lze je pak přidávat až po povaření prvního nebo druhého rmutu, takže se méně vyluhují. Piva jsou jemnější, světlejší, je však třeba pečlivě kontrolovat zcukření v průběhu celého scezování. b. Zvlhčování pluch. Snaha po dokonalém rozemletí endospermu při zachování pluch vedla ke konstrukci zařízení, v němž je možno pluchy před šrotováním zvlhčit vodou nebo párou, aby byly pružnější. Zvlhčování párou probíhá v 2 až 3 m dlouhém šneku. Pára působí 20 až 40 sekund. Pluchy přijmou 1 až 2 % vody, endosperm přijímá vodu jen nepatrně. Šrotovník musí být proti vstupu páry utěsněn. Při zvlhčování vodou se dosáhne stejného efektu za delší dobu 10 až 15 minut. Zvlhčování pluch má tyto výhody: zkracuje se scezování, lze zpracovávat čerstvé slady, zvyšují se výtěžky u špatně rozluštěných sladů je možno zvýšit zatížení scezovací kádě zvýšením sypání, předek je čiřejší a pivo má světlejší barvu. K nevýhodám patří větší technická a sanitační náročnost práce, menší výkon šrotovníku a skutečnost, že není možno šrotovat do zásoby. c. Šrotování za mokra. Zrno se máčí asi na 30 % vlhkosti, mačká a současně vystírá. d. Velmi jemné šrotování. Celé sladové zrno rozemeleme co nejjemněji na mouku, mletí se uskutečňuje v kladivových mlýnech se sítovým pláštěm. Jemným mletím se podstatně urychlují enzymové reakce a zkracuje čas potřebný k jednotlivým operacím. Oddělování mláta a sladiny - vakuový bubnový filtr, odstředivku, vířivou káď. Rmutování trvá 50 minut, scezování trvá 60 minut. Tento postup má dosud jen experimentální význam. Strojní zařízení šrotovny - Zařízení šrotovny tvoří skladovací prostor pro slad, dopravní cesty, čistička sladu, automatické váhy, vlastní šrotovníky a zásobníky na šrot. Slad se skladuje v ocelových nebo betonových silech. Sila mají mít větší počet

2 buněk, aby bylo možno slady různých typů a jakostí skladovat, zpracovávat a míchat odděleně. Systém pro dopravu sladu je buď pneumatický nebo mechanický. Čistička sladu slouží zejména k odstranění prachu, hrubých a kovových přimíšenin, které by mohly poškodit šrotovníky. Funkčními články čističky jsou účinný odsávací ventilátor, soustava šikmých vibračních sít a magnet. Automatická váha je nezbytně předřazena šrotovníku. Poskytuje základní údaje pro bilanci pivovarské výroby. Šrotovníky pro šrotování za sucha. Stavějí se šrotovníky o dvou, čtyřech, pěti a šesti válcích. U strojů s větším počtem válců lze nastavit složení šrotu přesněji. Válce jsou podle funkce a konstrukce hladké nebo rýhované, mají různý průměr a různý počet otáček. Pracují v párech, kde jeden válec má ložiska uložena pevně a druhý pohyblivě, aby bylo možno seřídit šířku štěrbiny. Výkon se počítá v kilogramech zrna na 1 cm délky válce za 1 hodinu. Dvouválcové šrotovníky. Průměr válců je 250 mm, počet otáček 180 až 240 min-1 a výkon až 20 kg cm-1 h-1. Tyto šrotovníky lze použít jen pro velmi dobře rozluštěné nebo barvené slady, dnes se již nevyrábí. Čtyřválcové šrotovníky. První pár válců, který se otáčí rychlostí asi 200 min-1, zrno namačká. Sítové vysévadlo pak oddělí jemnou krupici a mouku. Hrubý podíl předchází do druhého páru válců, kde se vymílá; válce se zde otáčejí rychleji a mají užší štěrbinu. Výkon čtyřválcového šrotovníku bývá 20 a 25 kg cm-1 h-1. V šestiválcových šrotovnících prochází zrno válci třikrát. Prvý pár válců zrno mačká, druhý vymílá pluchy a třetí drtí krupici. Výkon šestiválcových šrotovníků bývá 25 až 45 kg cm-1 h-1. Pětiválcové šrotovníky fungují jako šestiválcové, přičemž jeden válec z prvního páru hladkých mačkacích válců slouží současně jako válec pluchový. Šrotovníky pro mokré šrotování umožňují lepší uchování elastických pluch změkčených vodou a rovnoměrné a jemné rozemletí endospermu. V zásobníku umístěném na válci se zrno nejprve máčí cirkulující vodou ze systému trysek. Pak se mačká ve dvouválcovém až čtyřválcovém šrotovníku s mělce rýhovanými válci, pod nimiž je zařízení usnadňující oddělení pluch od vymačkaného endospermu. Součásti stroje je horkovodní směšovač. Šrotovaný slad se ihned vystírá. Kontrola šrotování Pro dosažení optimálního nastavení šrotovníku je třeba vycházet z rozboru sladu, přihlížet k mechanickému složení šrotu, varnímu výtěžku a rozboru mláta. U šrotu se posuzuje jeho celkový objem, objemová hmotnost a třídění na pfungstadtském prosévadle. Objem šrotu vzrůstá s hrubším šrotováním a případným zvlhčováním pluch/100 kg suchého šrotu má objem 2,7 hl, 100 kg zvlhčeného šrotu má objem 3,3 hl. Hektolitrová hmotnost šrotu pro scezovací káď bývá 38 kg, z toho hmotnost pluch 20 kg, hektolitrová hmotnost krupice a mouky je obvykle 53 kg. Nejzávažnější analýzou je třídění šrotu na přesně definované sadě jemných sít tzv. pfungstadtského prosévadla. Předpokladem správného výsledku třídění je pečlivý odběr vzorku, a to pouze vzorkovadly. Ve vzorku výskyt celých zrn. Potom se třídění na třídiči, který má 5 sít. Na základě komplexního posouzení je možno jemně upravit vzdálenosti jednotlivých párů válců, je nutné kontrolovat rozběžnost jednotlivých párů válců, je nutné kontrolovat rozběžnost os. Přitahují se k sobě při větší vlhkosti, špatném rozluštění, zkráceném rmutování, při zvýšení varního výtěžku a nesmí se prodlužovat scezování. U šrotovníků je třeba kontrolovat otáčky válců. Při šrotování za mokra je třeba sledovat vzrůst vlhkosti zrna při namáčení: 20% vlhkosti je málo, 35% vlhkosti je příliš mnoho. Pravidelně je třeba prohlížet mláto a sledovat, zda neobsahuje celá zrna a zda jsou pluchy dostatečně vymačkány.

3 Rmutování Rmutovacím procesem se převede podstatná část extraktu sypání do roztoku. Po odrmutování je třeba oddělit roztok extraktu, tj. sladinu, od pevného podílu zcukřeného rmutu, tj. mláta. Sladina slouží jako polotovar pro další postup výroby piva, mláta se využívá jako zkrmitelného odpadu. Mláto obsahuje pluchy a jejich úlomky, střelky, vysráženého bílkovinného kalu a další suspendované látky. Oddělením toho nerozpuštěného podílu filtrací se získá první část roztoku extraktu, jíž se říká předek. Objem předku je určen objemem nálevu při vystírání. Zbytek rozpuštěného extraktu se musí z mláta vyloučit horkou vodou. Zředěná sladina získaná vyslazováním se nazývá výstřelek. Spojuje se z předkem v mladinové pánvi nebo ve sběrači sladiny. Ve chvíli, kdy koncentrace výstřelků poklesne asi na 1% extraktu a další vyslazování mláta by bylo už na úkor jakosti, je úkolem vařiče zajistit, aby předek spolu s výstřelky poskytoval požadovanou koncentraci sladiny. Při vyslazování musí být dosaženo požadované výtěžnosti, nadměrné vyslazování však rozpouští třísloviny a trpké látky z pluch. Scezování Z fyzikálního hlediska je scezování jednoduchým procesem, v praxi však vyžaduje dostatek času a je technicky i pracovně náročné. Na průtok sladiny mají vliv vlastnosti sladiny a zejména odpor filtračního materiálu. Z vlastností sladiny je z tohoto hlediska nejdůležitější teplota a hustota. Čím je sladina teplejší a méně koncentrovaná, tím je scezování rychlejší. Také chemické složení sladiny má vliv na rychlost scezování, neboť amylany, bílkoviny a dextriny zvyšují její viskozitu. Velikost filtračního materiálu je při použití sladinového nebo vakuového filtru především dána vlastnostmi filtrační plachetky. Daleko rozšířenější jsou však scezovací systémy, které využívají vrstvy usazeného mláta jako filtračního materiálu. Zde jsou poměry složitější, odpor se v průběhu scezování postupně zvyšuje a závisí na jakosti sladu, jemnosti šrotu, intenzitě rmutování, výšce mláta a jejím stejnoměrném rozložení a na správné technice scezování. Jakost sladu. Dobře rozluštěné slady se lépe vymílají, křehký endosperm se rozdrtí a pluchy zůstávají celistvější. Malá porušenost pluch je základním předpokladem příznivé porozity filtrační vrstvy mláta. Nedostatečně rozluštěné slady jsou tvrdé, pluchy se při obtížném šrotování drtí a ulpívají na nich částečky endospermu. Větší podíl krupice zvyšuje kompaktnost. Neodleželé a přesušené slady se při šrotování příliš rozdrtí, tak že pluchy jsou málo nakypřeny a moučka zalepuje mláto. Nedostatečné rozštěpení jak gumovitých látek, tak i bílkovin a dextrinu zvyšuje viskozitu mladiny. Mechanické složení šrotu musí odpovídat používanému technologickému zařízení. Scezovací káď vyžaduje hrubší, prostupnější šrot než sladinový filtr. Intenzita rmutování podmiňuje hloubku rozštěpení látek, které mohou brzdit stékání. Výška vrstvy mlát ve scezovací kádi bývá při suchém šrotování asi 35 cm. Vlhčí-li se slad před šrotováním, je mláto kypřejší a při témže sypání stoupne jeho výška na 45 cm, při mokrém šrotování dokonce na 60 cm. Zatížení kádě se vyžaduje v kg sypání na jeden m2 scezovacího dna. Mláto musí být stejnoměrně rozloženo, tj. musí mít všude stejnou výšku a povrchové těstíčko musí být rovnoměrně rozděleno. Správná technika scezování je důležitá zejména při použití scezovací kádě. Je třeba volit vhodnou rychlost stékání a správně manipulovat s kypřidlem. Základním pravidlem je, že rychlost průtoku scezovacími kohouty nesmí být vyšší než přirozená průtočnost vrstvy mláta. Při příliš rychlém odtahu sladiny vzniká sání, mláto se ztuhuje a přiléhá ke scezovacímu dnu, čímž se scezování zpomaluje.

4 ZAŘÍZENÍ POUŽÍVANÁ KE SCEZOVÁNÍ SLADINY Scezovací káď Scezovací káď je ocelová válcová nádoba, krytá a tepelně izolovaná. V plochém vodorovném dně jsou otvory spojené trubkami s kohouty scezovací baterie. Ve výšce 8 až 15 mm nade dnem je uloženo jalové dno, vyrobené z fosforového bronzu. V 1 m2 tohoto dna je vyfrézováno asi 2500 otvorů, širokých nahoře 0,7 mm, dole 3 až 4 mm a dlouhých 20 až 30 mm. Průtočná plocha dna odpovídá 6 až 8 % jeho celkové plochy. U moderních konstrukcí z chromniklové oceli tvoří až 30 % celkové plochy dna. Velikost kádě je asi 8 hl na 100 kg sypání, staví se až na 12 tun. Plocha scezovacího dna je limitujícím údajem pro výkon varny na 1 m2 scezovací plochy se počítá 150 až 200 kg sypání při vrstvě mláta vysoké 30 až 40 cm. Americké kádě mívají žlábkové dno rozdělené paprsčitě na trojúhelníkové úseky: každý úsek je samostatným spalovacím korýtkem. Zabudované trysky vyčistí prostor pod jalovým dnem bez zvedání segmentů. Odtok sladiny scezovacími trubkami je regulován scezovacími kohouty. Sběrná plocha dna pro jeden kohout činí při běžné konstrukci 1 až 1,25 m2. Kohoutem proteče 0,6 až 6,01 s-1 a to v závislosti na rychlosti toku /1,4 až 4,4 m s-1/ a výšce kapaliny v kádi /0,1 až 1,5/. U moderních konstrukcí kádi stéká sladina do jedné až dvou sběrných trubek, nebo do sběrné nádržky a odtud se přes jeden scezovací kohout čerpá do pánve. Kypřící zařízení se skládá z pevných ramen se svislými noži. Do 3 tun sypání mívá 2 ramena, do 6 tun 3 a přes 6 tun 4 ramena. Zařízení se pomalu otáčí, jedna otáčka při kypření trvá 3 až 7 minut, podle velikosti kádě. Nad kypřidlem je instalováno otáčivé kropidlo. PRAXE SCEZOVÁNÍ VE SCEZOVACÍ KÁDI Do kádě se nejprve spodem napustí horká voda o teplotě 78 C, tak aby pokryla jalové dno. Tím se vytlačí vzduchové bubliny a káď se předehřeje. Čerpání odrmutovaného díla z vystírací kádě. Odrmutované dílo má být rychle přečerpáno do scezovací kádě. Pod čerpací potrubí se postaví kypřidlo, které rozbíjí proud; dopadová rychlost rmutu na dno se tím sníží na desetinu a zabrání se lokálnímu upěchování. Mláto musí být rovnoměrně rozloženo na ploše scezovacího dna, jinak je vyluhování nestejnoměrné a snižuje se varní výtěžek. Jakmile je čerpání ukončeno, obsah kádě se projede kypřidlem. Odpočinek. Po přečerpání se nechá 20 až 30 minut zvolna usazovat mláto, jež pod tmavnoucí hladinou sladiny vytvoří vrstvu o tloušťce 30 až 40 cm. Tato vrstva není stejnorodá; pod scezovací dno se dostane menší množství těstovitého kalu, na dně se usadí tenká vrstva hrubých a těžších částic. Střední vrstva je nejsilnější a zcela nahoře je tenká vrstva kalů, složená z lehkých částic mláta tj. převážně z bílkovin, aleuronových blan a úlomků pluch. Spodní, hrubší část vrstvy kalů obsahuje hodně lepku, je špatně propustná a ztěžuje scezování. Svrchní jemná vrstvička, říká se jí těstíčko. Horní vrstva musí být po povrchu mláta rozložena stejnoměrně, aby rychlost průtoku vyslazovací vody byla všude stejná. Čím vyšší je odrmutovací teplota, tím je mláto kypřejší a zcezování rychlejší. Teplotu je třeba udržovat dobrou izolací kádě, zavřením dvířek a klapky parníku. Ke konci odpočinku nemá být hladina sladiny v kádi rezavá, ale co nejtmavší. PODRÁŽENÍ Při čerpání do scezovací kádě pronikne scezovacími štěrbinami jalového dna jemný kal do prostorů mezi jalové a vlastní dno kádě. Odstraní se podrážením tj. rychlím zavíráním a otvíráním scezovacích kohoutů. Ve spádovém prostoru příslušné scezovací trubky vzniká podtlakový ráz, který strhne těstovitý kal. Vracení kalové sladiny do scezovací kádě. První podíly stékající sladiny jsou kalné. Obsahují kaly stržené podrážením z prostoru pod jalovým dnem i ze spodních vrstev mláta. Kalová sladina se vrací podrážecím čerpadlem opatrně zpět do scezovací kádě, aby se nerozvířilo mláto. Vracení trvá tak dlouho, dokud neodtéká z kohoutů do korýtka čirá sladina. Stahování předku. Předek se má stahovat co nejrychleji. Kdybychom však scezovací kohouty otevřely naplno, porušili bychom rovnováhu mezi

5 objemem sladiny stékající do korýtka a množstvím jejího průtoku mlátem. Mláto by se přitáhlo na jalové dno a stékání by se zpomalovalo. Proto je třeba pracovat opatrně s přivřenými kohouty. Část čiré sladiny nad mlátem lze stáhnout pomocí násosky /heveru/. Vyslazování. Jakmile začne klesající hladina sladiny odhalovat mláto, otevře se přívod vyslazovací vody do kropidla. Voda vytlačí zbývající předek a vyluhuje z mláta zadržený extrakt. Teplota vyslazovací vody má být v rozmezí od 75 do 78 C. Je výhodné vyslazovat nepřetržitě, tj. napouštět plynule tolik vyslazovací vody, kolik jí odtéká ve výstřelcích. Lze vyslazovat i na dva až tři výstřelky, kdy se napuštěné objemy vody postupně stáhnou při zavřeném kropidle. Vždy je třeba zabránit proniknutí vzduchu do vrstvy mláta. Již při stékání předku se odpor vrstvy mláta ke konci zvyšuje; bývá proto účelné spustit kypřidlo dolů a jednou až dvěma otáčkami mláto při zavřených kohoutech proříznout. Toto skypření lze opakovat před každým napouštěním výstřelkové vody. Kypřidlo se používá při vyslazování podle kvality a jemnosti šrotu. Nejprve se prořízne vrstva horního těstíčka a pak se nože postupně spouštějí až nad jalové dno. Scezování lze usnadnit použitím scezovacího manometru. Jeho hlavní části jsou tři skleněné trubičky, z nichž první je spojena se středem vrstvy mláta nebo s prostorem nad mlátem, druhá s prostorem pod scezovacím dnem a třetí s některou scezovací trubkou. Rozdíl hladin sladiny mezi první a druhou trubkou ukazuje odpor mláta, rozdíl hladin mezi druhou a třetí trubkou je ukazatelem sání odtékající sladiny. Vyslazování se ukončí, když koncentrace výstřelku klesne asi na 1% a další vyslazování mláta by do roztoků již přivádělo nadměrné množství drsně chutnajících látek z pluch. Současně má koncentrace spojeného předku a výstřelků dosáhnout požadované stupňovitosti. Zbytek výstřelkové vody tzv. patoky, se vypouští do kanalizace. Výhoz mláta se provádí kypřidlem s noži nastavenými kolmo ke směru pohybu. Kypřidlo se z horní polohy pomalu spouští a nože hrnou mláto do otevřeného otvoru ve dně kádě. Moderní konstrukce kádí mají pevné prořezávací nože a mláto se vyhrnuje zvláštní lištou. Scezování vyžaduje ze všech prací ve varně nejvíc individuálních zkušeností vařiče a svou zdlouhavostí limituje výkon varny. Přesto moderní scezovací kádě umožňují zpracovat 6-8 várek za den, aniž by se zhoršila jakost. Záleží zejména na zkrácení pomocných časů /čerpání, odpočinek, vracení kalové mladiny, výhoz mláta/ a na účelné zcezovací technice relativně rychlé stahování předků asi 0,25 1 m 2s- 1, pružné podchycení klesajícího průtoku kypřidlem atd. /. Základní podmínkou pro urychlení scezování je odpovídající jakost a složení sladového šrotu, pomáhá také šrotování za mokra. PRAXE SCEZOVÁNÍ SLADINOVÝM FILTREM Za stálého míchání se vystírací kádi čerpá odrmutované dílo rychlostí asi 1,6 m s-1 horním kanálem filtru do komor. Komory musí být zcela naplněny a dílo musí mít homogenní konzistenci, aby později při vyslazování byl prostupující vodě kladen rovnoměrný odpor. Hlavní časová úspora při práci se sladinovým filtrem spočívá v tom, že předek stéká současně s čerpáním. Odpadá odpočinek, podrážení i vracení kalové sladiny, předek bývá stažen za půl hodiny od začátku čerpání. Vyslazování trvá přibližně 90 minut, stejně jako u scezovací kádě. Horká voda se vede spodním kanálem a štěrbinami na žebrovaný povrch každé druhé desky a po jejím ryhovaném povrchu do scezovacího kohoutu. Při vyslazování tedy vytéká výstřelek vždy z každého druhého kohoutu. Po ukončení scezování se filtr hydraulicky otevře, mláto vypadne do žlabu pod filtrem a plachetky se ošetří. Výhodou sladinového filtru je menší závislost na jakosti sladu, větší výkon /až 9 várek denně/ a vyšší výtěžek, proto že se pracuje s jemnějším šrotem. Nevýhodami jsou vyšší pořizovací i provozní náklady a pracnější obsluha i údržba.

6 SLADOVÉ MLÁTO Skládá se z nerozpuštěných zbytků endospermu, pluch a látek, které při rmutování koagulovaly. Nemá však obsahovat celá zrna. Vyloužitelného extraktu bývá 0,5 %, celkový extrakt v mokrém mlátě nesmí přesahovat 1,3 %. Ze 100kg sladu se získá 110 až 120 kg mokrého mláta, které je cenným krmivem. Chmelovar, fyzikální a chemické pochody, technologické postupy Chmelovar má za cíl převedení hořkých látek chmele do mladiny, sterilaci mladiny, inaktivaci enzymů a koagulaci bílkovin s polyfenolovými látkami sladu a chmele. Hlavními reakcemi při chmelovaru jsou izomerační reakce chmelových hořkých kyselin, při nichž vznikají intenzívně hořké produkty zvané iso hořké kyseliny. Dále probíhají Maillgardovy reakce s tvorbou barevných a aromatických látek s oxidoredukčními vlastnostmi a denaturace sladových bílkovin. Chmel či chmelové přípravky se přidávají postupně, nejčastěji na dvakrát až třikrát, podle kvality a typu výrobku. Produktem chmelovaru, který trvá zpravidla 90 až 120 minut, je mladina. Po chmelovaru následuje oddělení zbytků chmele ve chmelovém cízu, pokud nebyl použit chmelový granulát či chmelový extrakt a následuje chlazení mladiny. Při chmelovaru se uplatňují především fyzikální a chemické děje. Faktory, které ovlivňují kvalitu mladiny jsou: doba, intenzita chmelovaru, pohyb vařící mladiny, odpar a změna ph. Protože k dokonalému vyslazení mláta je třeba určitého přebytku vyslazovací vody, musí se při chmelovaru odpařit, aby se získala mladina požadované koncentrace. U klasických varen je žádoucí odpar okolo 8% celkového objemu vyrážené mladiny za hodinu. Hodnota ph se sníží během chmelovaru o 0,15 až 0,25. Zvýšení kyselosti mladiny je způsobeno rozpouštěním hořkých chmelových kalů, působením vápenatých a hořečnatých iontů a vyloučením fosforečnanů z roztoku. Barva mladiny se zvyšuje o 1 až 1,5 jednotky EBC za hodinu v závislosti na podmínkách chmelovaru a složení mladiny. Varna se podílí na celkové spotřebě tepelné energie pivovaru %. Měrná spotřeba tepla ve varně kolísá podle energetické úrovně a velikosti pivovaru v širokém rozmezí MJ na hl piva k výstavu. Příprava mladiny, tj. ohřev sladiny do varu a vlastní var, je zastoupena na uvedené spotřebě více než 70 %. Jak vysoká je spotřeba energie to závisí na konstrukci mladinové pánve a způsobu jejího ohřevu. Vyhřívání může být přímé a nepřímé, realizované rovněž vnitřním nebo vnějším vařákem. Vložené teplo, ale lze využít. Odpadní teplo lze z chladiče mladiny získat při chlazení várky. Je-li chladič dobře dimenzován, lze využít téměř veškerou tepelnou energii chlazené mladiny pro ohřev varní vody. Druhým největším zpětně využitelným zdrojem tepla ve varně je kondenzační teplo brýdových par odcházejících zmladinové pánve při chmelovaru. Při výběru vhodného systému tepelné rekuperace je nutno vycházet z konkrétních podmínek pivovaru. To platí zejména v případech, kdy se zařízení instaluje dodatečně. Používají se dva systémy: mechanická komprese brýdových par a termická komprese brýdových par s předehřevem sladiny. Při mechanické kompresi brýdových par se dosahuje čisté energetické úspory, tj. po odečtení zvýšené spotřeby elektrické energie, cca 56 %. Čistá energetická úspora při termické kompresi může přesáhnout 60 %. Termická komprese má oproti mechanické kompresi brýdových par následující výhody: nízké investiční a provozní náklady, nenáročná údržba a dlouhá životnost kompresoru, nízký hluk a vibrace a rentabilita i pro malé a střední pivovary. Naopak, jako nevýhody oproti mechanické kompresi je možno uvést: větší objem přebytečné horké vody, musí být dostupná pára s požadovaným přetlakem, menší návratnost parního kondenzátu.

7 Chlazení mladiny, flotace mladiny, oxidace ve varně, varní výtěžek Chlazení mladiny se dříve provádělo v otevřených nádobách, kde mladina samovolně chladla a sytila se kyslíkem ze vzduchu. To však bylo často zdrojem mikrobiální kontaminace mladiny. Dnes se používají téměř výhradně uzavřené vířivé kádě (obr.4), kde při teplotách nad 60 C dochází k usazení hrubých kalů, s následujícím dochlazením mladiny v deskových protiproudých výměnících tepla na zákvasnou teplotu 5 až 7 C (obr.5). Před zakvašením se mladina ještě sytí za sterilních podmínek kyslíkem, který je nezbytný pro činnost kvasinek. Pro odloučení kalů a zároveň proprovzdušnění, lze použít i flotaci mladiny vzduchem. Vyrobená mladina musí svou koncentrací extraktových látek odpovídat vyráběnému pivu, tzn. že při výrobě 10 % piva musí obsahovat 10 % hm. extraktových látek. Velice často se také uplatňuje tzv.hgb technologie, kdy se vaří silnější mladiny, které projdou kvasným cyklem a na žádanou hodnotu původní koncentrace mladiny se upravují ředěním odplyněnou a odsolenou vodou. Pro výrobu světlých piv se připravují mladiny ze světlých sladů, pro výrobu tmavých piv ze směsi světlých, tmavých a barevných sladů. Kvašení, sudování a dokvašování mladého piva - teorie a praxe Pro kvašení mladiny se používá buď svrchních pivovarských kvasinek (Saccharomyces cerevisiae) při teplotách kvašení až 24 C v minipivovarech nejcasteji u oblíbeného piva Weisebeer, nebo spodních pivovarských kvasinek (Saccharomyces cerevisiae (uvarum)) při teplotách kvašení 6 až 12 C. Kvašení mladiny je při klasické technologii rozděleno do dvou fází: na hlavní kvašení a dokvašování. Hlavní kvašení se u nás provádí obvykle v otevřených kvasných kádích spodními pivovarskými kvasinkami. Nejdůležitějšími reakcemi hlavního kvašení jsou přeměny zkvasitelných sacharidů glukosy, maltosy a maltotriosy na etanol a oxid uhličitý anaerobním kvašením: Současně se v malé míře tvoří i vedlejší kvasné produkty, alifatické alkoholy, aldehydy, diketony, mastné kyseliny a estery. Všechny tyto látky a jejich vzájemný poměr spoluvytváří chuť a aróma piva. V průběhu hlavního kvašení v kádích umístěných v chlazených místnostech zvaných spilka, se rozlišuje několik stadií. Brzo po zakvašení dochází k zaprašování, kdy se objevuje první bílá pěna na povrchu kvasící mladiny. Následuje odrážení při němž pěna houstne a je vytlačována do středu kvasné kádě. Nízké bílé kroužky představují hustou smetanovou pěnu s kučeravým povrchem a jsou stádiem nejintenzivnějšího kvašení. Vysoké hnědé kroužky jsou způsobeny poklesem ph a vyflotováním vyloučených chmelových a tříslo-bílkovinných sloučenin. Následuje propadání za tvorby husté deky z vyloučených látek na povrchu prokvašené mladiny, tj. mladého piva. Na konci hlavního kvašení sedimentují spodní kvasinky na dno kvasné kádě a po stáhnutí piva se sbírají, propírají se studenou vodou a znovu se nasazují do provozu. Deky se s hladiny mladého piva sbírají, aby do něho nepropadly a nezpůsobily zhoršení chuti piva. Hlavní kvašení trvá zpravidla 6 až 8 dní podle druhu vyráběného piva. Kromě klasického postupu kvašení se v současnosti uplatňují i různé způsoby polokontinuálního kvašení (semispilka) i kontinuálního kvašení. V zahraničí, často v návaznosti na infúzní způsob rmutování, se vyrábějí i svrchně kvašení piva při vyšších teplotách, která se však chuťově odlišují od spodně kvašených piv. Dokvašování a zrání mladého piva se provádí v ležáckém sklepě, kde pivo při teplotách 1 až 3 C velmi pozvolna dokváší, čiří se, zraje a sytí se vznikajícím oxidem uhličitým pod tlakem v uzavřených ležáckých tancích. Doba ležení je závislá na typu piva. U běžných piv do koncentrace mladiny 10 % bývá 3 týdny, pro speciální exportní piva se zvyšuje až na několik měsíců.

8 Filtrace, druhy filtrů a filtračních materiálů, moderní postupy filtrace Filtrační proces má za cíl odstranit z piva kalící látky a docílit požadovanou čirost 0,2 až 0,4j.EBC. (Jednotky zákalu EBC jsou arbitrážní jednotky kalibrované na formazinovou suspenzi). Nejčastěji se používá filtrace s přídavkem křemeliny do kalného piva. Křemelina vytváří na pevných přepážkách filtrační vrstvu, ve které se zachycuje jemný kal. Filtrace se provádí na křemelinových svíčkových a deskových filtrech různé konstrukce. Pro dosažení vysoké biologické stability se používají i tzv. EKfiltry, kde je pivo filtrováno přes celulosové desky. Výjimečně se používají i odstředivky. Nejmodernějším, ale dosud velmi nákladným způsobem, je membránová filtrace. Všechny filtry pracují na stejném principu, tj. filtrační vrstva se vytváří z křemeliny naplavením na pevné přepážky. Rozdíly jsou pouze v mechanickém uspořádání filtru a způsobu jeho čištění. Univerzálním a nejčastěji používaným filtrem je filtr deskový. Technologický postup filtrace je cyklický a je zhruba následující: 1. naplavování filtru: do vyčištěného a uzavřeného filtru se vhání pivo s přídavkem křemeliny a filtrát se vrací zpátky do dávkovače křemeliny tak dlouho, dokud není čirý 2. vlastní filtrace: do filtru se vhání kalné pivo, do kterého se přidává stále křemelina (buď stále ve stejné koncentraci, nebo se její přídavek v průběhu procesu snižuje), zfiltrované pivo se odvádí do stáčírny; v průběhu filtrace se vlivem tvorby filtračního koláče snižuje filtrační rychlost, což se obvykle kompenzuje postupným zvyšováním tlaku na vstupu do filtru 3. konec filtrace: proces se ukončí, jestliže tlak na vstupu do filtru již nelze zvyšovat 4. čištění filtru: filtr se otevře, filtrační koláč se odstraní (vede se obvykle do stanice pro regeneraci křemeliny), filtr se vymyje, uzavře, vysanituje a připraví pro další cyklus. Časový průběh filtrace lze obecně vyjádřit vztahem mezi rychlostí filtrace a silou, která překonává filtrační odpor a způsobuje průtok filtrátu: Průběh filtrace lze obecně vyjádřit vztahem mezi rychlostí filtrace (vyjádřenou jako objem filtrátu proteklého jednotkovou plochou za jednotku času) a hnací silou (rozdílem tlaků před a za filtrační plochou). Při obvyklém postupu se do piva přidává křemelina, která v průběhu filtrace vytváří spolu s kalem filtrační koláč. Ten v průběhu procesu jednak narůstá, jednak se vlivem tlakového spádu na filtrační vrstvě stlačuje a zhutňuje. Koloidní stabilita piv a stabilizační postupy Doba, kdy k dodržení trvanlivosti stačila samotná filtrace piva je minulostí. Je to způsobeno především náročností spotřebitelů, kteří vyžadují dlouhodobou trvanlivost piva. Filtrace je však stále součástí samotné koloidní stabilizace piva. I proto patří filtrace se stabilizací v pivovarech do jednoho oddělení. Filtrací odstraňované kvasnice na sebe adsorbují určité množství koloidních prekurzorů, čímž zvyšují předpověď koloidní trvanlivosti. Cílem stabilizace je snížit náchylnost piva k tvorbě koloidních zákalů, a tím zvýšit trvanlivost piva. Stabilizace úzce souvisí s filtrací, která však samostatná není dostatečná na dosažení několikaměsíční trvanlivosti piva. Proto jsou spolu s vyššími nároky zákazníků na trvanlivost piva vyvíjeny nové stabilizační materiály. Koloidní stabilitu piva včetně účinnosti dávkovaných stabilizátorů ovlivňuje přirozená koloidní stabilita, která je závislá na kvalitě použitých surovin, dodržování optimálních podmínek technologie

9 a na minimálních oxidačních změnách v závěru výroby piva. Podle účinku se stabilizátory dělí na přípravky, které: - sráží, adsorbují, nebo štěpí vysokomolekulární dusíkaté látky - sráží, adsorbují, nebo štěpí polyfenoly - snižují redukcí vliv kyslíku Již na počátku dvacátého století byly testovány různé typy materiálů pro stabilizaci vína. Postupem času se začali poprvé objevovat tyto materiály v pivovarství a od 70-tých let se začali používat v průmyslovém měřítku. S vývojem moderních technologií se od přírodních materiálů přešlo k silikagelům a polymerům. Adsorpční materiály Adsorbenty dusíkatých a polyfenolových látek patří k nejpoužívanějším stabilizátorům. Požaduje se hygienická nezávadnost, nerozpustnost v pivu, charakteristická velikost částic se specifickým povrchem, objemem i průměrem pórů zaručujícím vysokou sorpční aktivitu pro prekursory zákalu a s minimální vedlejší sorpční aktivitou. I přesto, že již existuje velký počet získaných zkušeností v oboru stabilizace piva, není zatím možné jednotlivým pivovarům při těžkostech s koloidními zákaly, bez předběžných pokusů, dávat závazné rady na nasazení určitého stabilizačního materiálu. Pivovar musí vždy nově vybraný stabilizační materiál otestovat nejen laboratorně, ale i v provozním měřítku. Adsorbenty dusíkatých látek Stabilizace piva použitím křemičitých gelů se začala prosazovat v sedmdesátých letech. Silikagely jsou adsorbenty dusíkatých látek, které se vyrábí reakcí kyseliny sírové a křemičitanu vápenatého. Silikagely adsorbují bílkovinné frakce aniž by významně ovlivnily chuť a pěnivost piva. Průměr póru tohoto materiálu je 3 až 20 mikrometrů a měrný povrch 200 až 500 m2/g. Dalším postupem přípravy vznikají buď xerogely, nebo hydrogely. Xerogely se také nazývají suché, protože obsah vody se pohybuje do 5 %. Mají vyšší účinnost než hydrogely, a proto se používají v pivovarství častěji. Problémem je prašnost materiálu. Používá se dávkování v rozmezí 50 až 200 g/hl do filtrační křemeliny, ojediněle při sudování. Interní povrchovou plochu mají 400 m2/g při obsahu póru od 1 do 1,2 ml/g, přičemž převážná část póru křemičitanového gelu disponuje průměrem větším než 5 nanometrů. Hydrogely obsahují přes 50 % vody a mají o 30 % více hydroxidu křemičitého. Jsou vyráběny stejným způsobem jako xerogely, jen poslední fáze - sušení - se vynechá. Nižší účinnost některých gelů je zde nahrazena možností použít tento druh silikagelu v kombinaci s nerozpustným polyvynilpolypyrrolidonem. Hydratizované silikagely byly speciálně vyvinuty firmou Stabifix Brauerei-Technik z důvodu poptávky po selektivním stabilizačním prostředku, který by se v účinnosti blížil xerogelu, ale jeho použití by bylo bezprašné jako u hydrogelu. Adsorbenty polyfenolových látek Nejmodernější stabilizační materiály jsou založeny na bázi polymerů různých typů, které selektivně vážou fenolické látky piva vodíkovými můstky. Nevýhodou takto ošetřených piv bývá vysoká náchylnost k oxidaci. Polymery se dávkují různými technologickými postupy při filtraci v množství 30

10 až 100 g/hl. Mezi dnes známé a nejpoužívanější polymery patří: - materiály na bázi polyvinylpolypyrrolidonu ( PVPP) nebo polyvinylpyrrolidonu (PVP) - polyamidy na bázi polykaprolaktamu a polyethylenoxidu - materiály na bázi nylonu - materiál získaný z kaprolaktamu pomocí polyethylentereftalátu Na množství a kvalitě odstraněných polyfenolových sloučenin závisí reálná doba trvanlivosti piva, která může být i více než půl roku podle typu piva. Velké pivovary především z ekonomických důvodů využívají možnost recyklace PVPP. Mezi původní prostředky patřily polyamidové deriváty, které jsou strukturně podobné peptidům. Při jejich aplikaci se tvoří vodíkové můstky mezi hydroxylovými skupinami polyfenolů a peptidovými vazbami polyamidů. Sorbenty této skupiny např. Nylon a Perlon nenašly širší uplatnění, neboť měly vedlejší účinky na kvalitu piva a jejich účinnost nebyla vysoká. V dnešní době se používají pouze pro laboratorní účely. Originální látky tohoto druhu vynalezli pracovníci Ústavu polymerů VŠCHT Praha pod názvy Sorsilen a Amidap. Jejich výhodou byla specifická sorpce polyfenolových látek, zaručující vynikající smyslové vlastnosti stabilizovaného piva. Krom toho se jednalo o přípravky polymerů, zatímco v praxi dnes nejvíce používaný nerozpustný polyvinylpolypyrrolidon s obchodním názvem Polyclar AT je zesítěný materiál. PVPP je zesítěný PVP. Polyvinylpyrrolidon je za normálních podmínek rozpustný ve vodě a tedy i v pivu. Je otázkou, zda při regeneraci PVPP, kdy by mohlo teoreticky dojít k odmytí síťovacího činidla nedochází alespoň k minimální rozpustnosti PVPP do piva. Tento předpoklad nebyl zatím nikdy ověřován, neřkuli publikován, protože za PVPP není v současné době adekvátní náhrada. Dá se předpokládat, že polyamid jako pravý polymer tuto negativní vlastnost nemá. Na druhou stranu se dá předpokládat, že jeho sorpční afinita k polyfenolům je menší než u PVPP.

Průmyslová mikrobiologie a genové inženýrství

Průmyslová mikrobiologie a genové inženýrství Průmyslová mikrobiologie a genové inženýrství Nepatogenní! mikroorganismus (virus, bakterie, kvasinka, plíseň) -kapacita produkovat žádaný produkt -relativně stabilní růstové charakteristiky Médium -substrát

Více

Suroviny pro výrobu piva

Suroviny pro výrobu piva Suroviny pro výrobu piva obilný slad (naklíčené a usušené obilné zrno, převážně ječmenné. Výroba sladu se nazývá sladování a děje se ve sladovnách.v Čechách nejčastěji ječný) voda chmel (na území Čech

Více

Výroba piva. Ing. Miroslava Teichmanová

Výroba piva. Ing. Miroslava Teichmanová Výroba piva Ing. Miroslava Teichmanová Tento materiál vznikl v projektu Inovace ve vzdělávání na naší škole v rámci projektu EU peníze středním školám OP 1.5. Vzdělání pro konkurenceschopnost.. Výroba

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0233 Šablona: III/2 č. materiálu: VY_32_INOVACE_130 Jméno autora: Jana Štrossová Třída/ročník:

Více

VÝROBA PIVA. Iveta Hennetmairová. Výukový materiál zpracován v rámci projektu EU peníze školám

VÝROBA PIVA. Iveta Hennetmairová. Výukový materiál zpracován v rámci projektu EU peníze školám VÝROBA PIVA Iveta Hennetmairová Výukový materiál zpracován v rámci projektu EU peníze školám Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Iveta Hennetmairová, DiS. Dostupné z Metodického

Více

PIVOVARSTVÍ Úvod a historie pivovarství v ČR. Trendy vývoje, technologické schéma.

PIVOVARSTVÍ Úvod a historie pivovarství v ČR. Trendy vývoje, technologické schéma. PIVOVARSTVÍ Úvod a historie pivovarství v ČR. Trendy vývoje, technologické schéma. Pivovarství patří v našem státě k významným oborům potravinářského průmyslu s mnohaletou úspěšnou tradicí. Pivovarský

Více

ÚPRAVA VODY V ENERGETICE. Ing. Jiří Tomčala

ÚPRAVA VODY V ENERGETICE. Ing. Jiří Tomčala ÚPRAVA VODY V ENERGETICE Ing. Jiří Tomčala Úvod Voda je v elektrárnách po palivu nejdůležitější surovinou Její množství v provozních systémech elektráren je mnohonásobně větší než množství spotřebovaného

Více

3. FILTRACE. Obecný princip filtrace. Náčrt. vstup. suspenze. filtrační koláč. výstup

3. FILTRACE. Obecný princip filtrace. Náčrt. vstup. suspenze. filtrační koláč. výstup 3. FILTRACE Filtrace je jednou ze základních technologických operací, je to jedna ze základních jednotkových operací. Touto operací se oddělují pevné částice od tekutiny ( směs tekutiny a pevných částic

Více

Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316

Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 VÝROBA PIVA PIVO Pivo je slabě alkoholický nápoj vyráběný z ječného sladu, pitné vody a chmelových produktů

Více

Speciálně připravený křemičitý koloidní roztok pro čiření mladiny (sladiny)

Speciálně připravený křemičitý koloidní roztok pro čiření mladiny (sladiny) SPINDASOL SB1 Speciálně připravený křemičitý koloidní roztok pro čiření mladiny (sladiny) SPINDASOL SB1 je speciálně připravený křemičitý koloidní roztok pro čiření pivovarské sladinky. Přípravek snižuje

Více

Optické měřící technologie SIGRIST pro aplikace v pivovarech

Optické měřící technologie SIGRIST pro aplikace v pivovarech Optické měřící technologie SIGRIST pro aplikace v pivovarech Optické měřící technologie SIGRIST pro aplikace v pivovarech Měření zákalu v pivovarnictví a především sledování filtrace v procesu výroby piva

Více

Společnost EBIA CZ se zabývá výrobou, vývojem a konstrukcí zařízení a doplňků z nerezové oceli, primárně výrobou a realizací minipivovarů.

Společnost EBIA CZ se zabývá výrobou, vývojem a konstrukcí zařízení a doplňků z nerezové oceli, primárně výrobou a realizací minipivovarů. MINIPIVOVARY Společnost EBIA CZ se zabývá výrobou, vývojem a konstrukcí zařízení a doplňků z nerezové oceli, primárně výrobou a realizací minipivovarů. MINIPIVOVARY Jsme součástí skupiny s téměř 20 letou

Více

VÝROBA PIVA TEXT PRO UČITELE

VÝROBA PIVA TEXT PRO UČITELE VÝROBA PIVA TEXT PRO UČITELE Mgr. Jana Prášilová prof. RNDr. Jiří Kameníček, CSc. Olomouc, 2013 Obsah 1. Téma v učebnicích používaných na gymnáziích 2. Teoretické poznatky k problematice 2.1. Základní

Více

HVOZDĚNÍ. Ing. Josef Prokeš

HVOZDĚNÍ. Ing. Josef Prokeš HVOZDĚNÍ Ing. Josef Prokeš Cílem hvozdění je převést zelený slad s vysokým obsahem vody do skladovatelného a stabilního stavu. Zastavit životní projevy a luštící pochody v zrně a během hvozdění vytvořit

Více

CHEMIE. Pracovní list č. 12 žákovská verze Téma: Závislost rychlosti kvašení na teplotě. Mgr. Lenka Horutová

CHEMIE. Pracovní list č. 12 žákovská verze Téma: Závislost rychlosti kvašení na teplotě. Mgr. Lenka Horutová www.projektsako.cz CHEMIE Pracovní list č. 12 žákovská verze Téma: Závislost rychlosti kvašení na teplotě Lektor: Mgr. Lenka Horutová Projekt: Student a konkurenceschopnost Reg. číslo: CZ.1.07/1.1.07/03.0075

Více

www.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics.

www.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics. www.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics.cz OBSAH Úvod... 3 Technická specifikace... 4 Popis filtru... 6 Popis činnosti

Více

CHARAKTERISTIKA A VÝHODY MINIPIVOVARU

CHARAKTERISTIKA A VÝHODY MINIPIVOVARU CHARAKTERISTIKA A VÝHODY MINIPIVOVARU Restaurační minipivovar dokáže spojením části výrobní a části restaurační vytvořit zařízení, které má velmi dobré ekonomické ukazatele a svou atraktivností spolehlivě

Více

Technický list BUBLA 25V. Horizontální provzdušňovač. VODÁRENSKÉ TECHNOLOGIE s.r.o. Chrášťany 140 Rudná u Prahy Rev. 0

Technický list BUBLA 25V. Horizontální provzdušňovač. VODÁRENSKÉ TECHNOLOGIE s.r.o. Chrášťany 140 Rudná u Prahy Rev. 0 VODÁRENSKÉ TECHNOLOGIE s.r.o. Chrášťany 140 Rudná u Prahy 25219 Rev. 0 Horizontální provzdušňovač BUBLA 25V Obsah 1. Použití aerátorů... 3 Pitné vody:... 3 Asanace vody:... 3 Kde použít BUBLU?:... 3 2.

Více

Suspenze dělíme podle velikosti částic tuhé fáze suspendované v kapalině na suspenze

Suspenze dělíme podle velikosti částic tuhé fáze suspendované v kapalině na suspenze 14. FILTRACE dělíme podle velikosti částic tuhé fáze suspendované v kapalině na suspenze hrubé s částicemi o velikosti 100 μm a více, jemné s částicemi mezi 1 a 100 μm, zákaly s částicemi 0.1 až 1 μm,

Více

Manganový zeolit MZ 10

Manganový zeolit MZ 10 Manganový zeolit MZ 10 SPECIFIKACE POPIS PRODUKTU PUROLITE MZ 10 je manganový zeolit, oxidační a filtrační prostředek, který je připraven z glaukonitu, přírodního produktu, lépe známého jako greensand.

Více

Stručný popis technologie a provozních souborů Členění na provozní soubory

Stručný popis technologie a provozních souborů Členění na provozní soubory Stručný popis technologie a provozních souborů Minipivovary jsou určeny pro výrobu piva plzeňského typu. Jejich celkové provedení odpovídá tomuto záměru. Veškeré zařízení pivovaru, které přichází do styku

Více

Brněnská 30, Žďár nad Sázavou, tel./fax: , gsm: ,

Brněnská 30, Žďár nad Sázavou, tel./fax: , gsm: , www.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics.cz OBSAH Úvod... 3 Technická specifikace... 4 Popis filtru... 6 Popis činnosti

Více

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví páry Pro správné pochopení funkce parních systémů musíme znát základní pojmy spojené s párou. Entalpie Celková energie, příslušná danému

Více

Hodnoticí standard. Pracovník varny pivovaru (kód: H) Odborná způsobilost. Platnost standardu

Hodnoticí standard. Pracovník varny pivovaru (kód: H) Odborná způsobilost. Platnost standardu Pracovník varny pivovaru (kód: 29-059-H) Autorizující orgán: Ministerstvo zemědělství Skupina oborů: Potravinářství a potravinářská chemie (kód: 29) Týká se povolání: Pivovarník a sladovník Kvalifikační

Více

DOKUMENTACE K PILOTNÍ JEDNOTCE SONOLÝZY OZONU

DOKUMENTACE K PILOTNÍ JEDNOTCE SONOLÝZY OZONU DOKUMENTACE K PILOTNÍ JEDNOTCE SONOLÝZY OZONU SOUHRN VÝSTUPU B2D1 PROJEKTU LIFE2WATER EXECUTIVE SUMMARY OF DELIVERABLE B2D1 OF LIFE2WATER PROJECT BŘEZEN 2015 www.life2water.cz ÚVOD Sonolýzou ozonu se rozumí

Více

www.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics.

www.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics. www.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics.cz OBSAH Úvod... 3 Technická specifikace... 4 Popis filtru... 6 Popis činnosti

Více

Hodnocení kvality odrůd ječmene pro registraci a doporučování

Hodnocení kvality odrůd ječmene pro registraci a doporučování Hodnocení kvality odrůd ječmene pro registraci a doporučování Vratislav PSOTA Výzkumný ústav pivovarský a sladařský, a. s. (psota@brno.beerresearch.cz) 2 Co je to sladování? Sladování je komerční využití

Více

http://budweiser-budvar.cz/o-spolecnosti/produkty/jak-se-vari-budvar.html

http://budweiser-budvar.cz/o-spolecnosti/produkty/jak-se-vari-budvar.html http://budweiser-budvar.cz/o-spolecnosti/produkty/jak-se-vari-budvar.html 1. Slad - základ pro dobré pivo a. příjem, třídění, čištění skladování c. klíčení Přečištění se provádí na aspirátorech a třídí

Více

METODY ČIŠTĚNÍ ORGANICKÝCH LÁTEK

METODY ČIŠTĚNÍ ORGANICKÝCH LÁTEK METODY ČIŠTĚNÍ ORGANICKÝCH LÁTEK Chemické sloučeniny se připravují z jiných chemických sloučenin. Tento děj se nazývá chemická reakce, kdy z výchozích látek (reaktantů) vznikají nové látky (produkty).

Více

2. DOPRAVA KAPALIN. h v. h s. Obr. 2.1 Doprava kapalin čerpadlem h S sací výška čerpadla, h V výtlačná výška čerpadla 2.1 HYDROSTATICKÁ ČERPADLA

2. DOPRAVA KAPALIN. h v. h s. Obr. 2.1 Doprava kapalin čerpadlem h S sací výška čerpadla, h V výtlačná výška čerpadla 2.1 HYDROSTATICKÁ ČERPADLA 2. DOPRAVA KAPALIN Zařízení pro dopravu kapalin dodávají tekutinám energii pro transport kapaliny, pro hrazení ztrát způsobených jejich viskozitou (vnitřním třením), překonání výškových rozdílů, umožnění

Více

Technický list FUKA 5V. Vertikální provzdušňovač / Stripovací věž. VODÁRENSKÉ TECHNOLOGIE s.r.o. K vodojemu 140 Rudná u Prahy Rev.

Technický list FUKA 5V. Vertikální provzdušňovač / Stripovací věž. VODÁRENSKÉ TECHNOLOGIE s.r.o. K vodojemu 140 Rudná u Prahy Rev. VODÁRENSKÉ TECHNOLOGIE s.r.o. K vodojemu 140 Rudná u Prahy 25219 Rev. 0 Vertikální provzdušňovač / Stripovací věž FUKA 5V Obsah 1. Použití aerátorů... 3 Pitné vody:... 3 Asanace vody:... 3 Kde použít FUKU?:...

Více

Palivová soustava Steyr 6195 CVT

Palivová soustava Steyr 6195 CVT Tisková zpráva Pro více informací kontaktujte: AGRI CS a.s. Výhradní dovozce CASE IH pro ČR email: info@agrics.cz Palivová soustava Steyr 6195 CVT Provoz spalovacího motoru lze řešit mimo používání standardního

Více

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ (И) В, G 01 P 17/00. (54) Způeob získávání eoli prvkťl vzácných zemin

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ (И) В, G 01 P 17/00. (54) Způeob získávání eoli prvkťl vzácných zemin ČESKOSLOVENSKA SOCIALISTICKÁ REPUBLIKA ( 19 ) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ (61) (23) Výstavnf priorita (22) Přihlášeno 12 09 86 (2») PV 8176-86.P (И) В, (51) Int. CI.4 G 01 P 17/00 ÚFTAD PRO VYNÁLEZY

Více

Omezování plynných emisí. Ochrana ovzduší ZS 2012/2013

Omezování plynných emisí. Ochrana ovzduší ZS 2012/2013 Omezování plynných emisí Ochrana ovzduší ZS 2012/2013 1 Úvod Různé fyzikální a chemické principy + biotechnologie Principy: absorpce adsorpce oxidace a redukce katalytická oxidace a redukce kondenzační

Více

Praktické zkušenosti s plněním, uvedením do provozu, zpětným promýváním nového a reaktivovaného aktivního uhlí v úpravnách pitných vod ČR

Praktické zkušenosti s plněním, uvedením do provozu, zpětným promýváním nového a reaktivovaného aktivního uhlí v úpravnách pitných vod ČR Praktické zkušenosti s plněním, uvedením do provozu, zpětným promýváním nového a reaktivovaného aktivního uhlí v úpravnách pitných vod ČR Ing. Jaroslav Kopecký, CSc. Jako, s.r.o. Družstevní 72, 250 65

Více

3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice

3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice 3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice I Základní vztahy a definice iltrace je jedna z metod dělení heterogenních směsí pevná fáze tekutina. Směs prochází pórovitým materiálem

Více

Základy chemických technologií

Základy chemických technologií 4. Přednáška Mísení a míchání MÍCHÁNÍ patří mezi nejvíc používané operace v chemickém průmyslu ( resp. příbuzných oborech, potravinářský, výroba kosmetiky, farmaceutických přípravků, ) hlavní cíle: odstranění

Více

Filtrace 18.9.2008 1

Filtrace 18.9.2008 1 Výpočtový ý seminář z Procesního inženýrství podzim 2008 Filtrace 18.9.2008 1 Tématické okruhy principy a instrumentace bilance filtru kalolis filtrace za konstantní rychlosti filtrace za konstantního

Více

Pivovar Budějovický Budvar

Pivovar Budějovický Budvar Pivovar Budějovický Budvar Pivovar Budějovický Budvar byl založen roku 1895, ale co je na něm zajímavé, že jeho statut je stále národní podnik. Roční výstav neboli roční produkce piva činí 1,3 milionu

Více

6.Úprava a čistění vod pro průmyslové a speciální účely

6.Úprava a čistění vod pro průmyslové a speciální účely 6.Úprava a čistění vod pro průmyslové a speciální účely Ivan Holoubek Zdeněk Horsák RECETOX, Masaryk University, Brno, CR holoubek@recetox.muni.cz; http://recetox.muni.cz Inovace tohoto předmětu je spolufinancována

Více

www.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics.

www.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics. www.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics.cz OBSAH Úvod... 3 Technická specifikace... 4 Popis filtru... 6 Popis činnosti

Více

Úprava vzduchu sušení

Úprava vzduchu sušení Úprava vzduchu sušení Zařízení pro vysokou úroveň úpravy stlačeného vzduchu. Úprava vzduchu pro všechny provozy. Naše sušičky spolehlivě odstraní kondenzát a v kombinaci s námi dodávanou filtrací zajistí

Více

Suroviny pro výrobu JP a BP. Ing. Slávka Formánková

Suroviny pro výrobu JP a BP. Ing. Slávka Formánková Ing. Slávka Formánková Tento materiál vznikl v projektu Inovace ve vzdělávání na naší škole v rámci projektu EU peníze středním školám OP 1.5. Vzdělání pro konkurenceschopnost.. Suroviny pro JP a BP Předmět:

Více

DOKUMENTACE K PILOTNÍ JEDNOTCE MIKROSÍTA/UV

DOKUMENTACE K PILOTNÍ JEDNOTCE MIKROSÍTA/UV DOKUMENTACE K PILOTNÍ JEDNOTCE MIKROSÍTA/UV SOUHRN K VÝSTUPU B1D1 PROJEKTU LIFE2WATER EXECUTIVE SUMMARY OF A DELIVERABLE B1D1 OF LIFE2WATER PROJECT BŘEZEN 2015 www.life2water.cz 1. ÚVOD Aplikace UV záření

Více

Kladívkové šrotovníky pro zemědělství

Kladívkové šrotovníky pro zemědělství 2014 TABLE OF CONTENT Kladívkové šrotovníky pro zemědělství EUROmilling a/s OBSAH Obsah...1 Kladívkový šrotovník A-304D...3 Kladívkový šrotovník EU-1D & EU-1P...5 Kladívkový šrotovník EU-2B...7 Kladívkový

Více

Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování

Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování Zplyňování = termochemická přeměna uhlíkatého materiálu v pevném či kapalném skupenství na výhřevný energetický plyn pomocí zplyňovacích médií a tepla. Produktem je plyn obsahující výhřevné složky (H 2,

Více

8. Komponenty napájecí části a příslušenství

8. Komponenty napájecí části a příslušenství Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT HYDRAULICKÉ A PNEUMATICKÉ MECHANISMY 8. Komponenty napájecí části

Více

Dostupné technologie pro výrobu piva pro malé pivovary v ČR Bakalářská práce

Dostupné technologie pro výrobu piva pro malé pivovary v ČR Bakalářská práce Mendelova univerzita v Brně Agronomická fakulta Ústav zemědělské, potravinářské a environmentální techniky Dostupné technologie pro výrobu piva pro malé pivovary v ČR Bakalářská práce Vedoucí práce: Ing.

Více

www.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics.

www.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics. www.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics.cz OBSAH Úvod... 3 Technická specifikace... 4 Popis filtru... 6 Popis činnosti

Více

Využití tepelného čerpadla v malém pivovaru

Využití tepelného čerpadla v malém pivovaru Technická fakulta ČZU Praha Autor: Jan Mikšovský Semestr: letní 2008 Využití tepelného čerpadla v malém pivovaru Použití: Tepelnými čerpadly je možné vytápět budovy, ohřívat teplou vodu (TUV) nebo ohřívat

Více

Problematika filtrace odlitků. Petr Procházka, Keramtech s.r.o. Žacléř

Problematika filtrace odlitků. Petr Procházka, Keramtech s.r.o. Žacléř Problematika filtrace odlitků Petr Procházka, Keramtech s.r.o. Žacléř Historie filtrace Nečistoty vnikající do odlitku spolu s kovovou taveninou byly od počátku velkým problémem při odlévání odlitků a

Více

Název opory DEKONTAMINACE

Název opory DEKONTAMINACE Ochrana obyvatelstva Název opory DEKONTAMINACE doc. Ing. Josef Kellner, CSc. josef.kellner@unob.cz, telefon: 973 44 36 65 O P E R A Č N Í P R O G R A M V Z D Ě L Á V Á N Í P R O K O N K U R E N C E S C

Více

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování Spalování je fyzikálně chemický pochod, při kterém probíhá organizovaná příprava hořlavé směsi paliva s okysličovadlem a jejich slučování (hoření) za intenzivního uvolňování tepla, což způsobuje prudké

Více

Možnosti úspory energie

Možnosti úspory energie Leonardo da Vinci Project Udržitelný rozvoj v průmyslových prádelnách Modul 5 Energie v prádelnách Kapitola 3 Možnosti úspory energie Modul 5 Energie v prádelnách Kapitola 3 Možností úspory energie 1 Obsah

Více

TABLE OF CONTENT Kladívkové šrotovníky /Granulátory

TABLE OF CONTENT Kladívkové šrotovníky /Granulátory 2013 TABLE OF CONTENT Kladívkové šrotovníky /Granulátory Hans Lundqvist EuroMilling OBSAH Technologie šrotování a mísení Obsah Kladívkový šrotovník A-304D...2 A-304D technický nákres...3 Kladívkový šrotovník

Více

Na libovolnou plochu o obsahu S v atmosférickém vzduchu působí kolmo tlaková síla, kterou vypočítáme ze vztahu: F = pa. S

Na libovolnou plochu o obsahu S v atmosférickém vzduchu působí kolmo tlaková síla, kterou vypočítáme ze vztahu: F = pa. S MECHANICKÉ VLASTNOSTI PLYNŮ. Co už víme o plynech? Vlastnosti ply nů: 1) jsou snadno stlačitelné a rozpínavé 2) nemají vlastní tvar ani vlastní objem 3) jsou tekuté 4) jsou složeny z částic, které se neustále

Více

Popis výukového materiálu

Popis výukového materiálu Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_ SZ _ 20. 12. Autor: Ing. Luboš Veselý Datum vypracování: 28. 02. 2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu

Více

Organická chemie 1. ročník studijního oboru - gastronomie.

Organická chemie 1. ročník studijního oboru - gastronomie. Organická chemie 1. ročník studijního oboru - gastronomie. T-4 Metody oddělování složek směsí. Zpracováno v rámci projektu Zlepšení podmínek ke vzdělávání Registrační číslo projektu: CZ.1.07/1.5.00/34.0639

Více

Plastové septiky SEV

Plastové septiky SEV SEV POUŽITÍ Biologický septik slouží pro předčištění splaškových vod ve smyslu zákona NV č190/2002 Sb. Je vyroben v souladu s EN 12566-1/A1:2003 a použitou normou ČSN 756081 (specifická spotřeba vody).

Více

Tento dokument vznikl v rámci projektu Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.38/01.0021.

Tento dokument vznikl v rámci projektu Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.38/01.0021. Tento dokument vznikl v rámci projektu Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.38/01.0021. Stroje na dopravu kapalin Čerpadla jsou stroje, které dopravují kapaliny a kašovité

Více

ZÁKLADNÍ MODELY TOKU PORÉZNÍ MEMBRÁNOU

ZÁKLADNÍ MODELY TOKU PORÉZNÍ MEMBRÁNOU ZÁKLADNÍ MODELY TOKU PORÉZNÍ MEMBRÁNOU Znázornění odporů způsobujících snižování průtoku permeátu nástřik porézní membrána Druhy odporů R p blokování pórů R p R a R m R a R m R g R cp adsorbce membrána

Více

ROZTOK. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý. Vzdělávací oblast: Člověk a příroda / Chemie / Směsi

ROZTOK. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý. Vzdělávací oblast: Člověk a příroda / Chemie / Směsi Autor: Mgr. Stanislava Bubíková ROZTOK Datum (období) tvorby: 12. 4. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Směsi 1 Anotace: Žáci se seznámí s pojmy roztok, stejnorodá směs. V

Více

SPECIFIKACE KATEGORIÍ PIV 2017

SPECIFIKACE KATEGORIÍ PIV 2017 SPECIFIKACE KATEGORIÍ PIV 2017 1. Světlé pivo výčepní Světlé pivo výčepní má nižší až střední plnost, světlou až mírně jantarovou barvu. je nižší až střední, vůně může být mírně esterová, chmelová a sladová.

Více

Udržitelný rozvoj v průmyslových prádelnách. Modul 2 Technologická zařízení. Kapitola 2. Klasické pračky

Udržitelný rozvoj v průmyslových prádelnách. Modul 2 Technologická zařízení. Kapitola 2. Klasické pračky Project Leonardo da Vinci Udržitelný rozvoj v průmyslových prádelnách Modul 2 Technologická zařízení Kapitola 2 Klasické pračky Modul 1 Technologická zařízení Kapitola 1 Klasické pračky 1 Obsah Konstrukce

Více

Technický list. Bubla 15V. Horizontální provzdušňovač. VODÁRENSKÉ TECHNOLOGIE s.r.o. Chrášťany 140 Rudná u Prahy Rev. 0

Technický list. Bubla 15V. Horizontální provzdušňovač. VODÁRENSKÉ TECHNOLOGIE s.r.o. Chrášťany 140 Rudná u Prahy Rev. 0 VODÁRENSKÉ TECHNOLOGIE s.r.o. Chrášťany 140 Rudná u Prahy 252 19 Rev. 0 Horizontální provzdušňovač Bubla 15V Obsah 1. Použití aerátorů... 3 Pitné vody:... 3 Asanace vody:... 3 2. Technické řešení... 3

Více

SPECIFIKACE KATEGORIÍ PIV

SPECIFIKACE KATEGORIÍ PIV SPECIFIKACE KATEGORIÍ PIV 1. Světlé pivo výčepní Světlé pivo výčepní má nižší až střední plnost, světlou až mírně jantarovou barvu. je nižší až střední, vůně může být mírně esterová, chmelová a sladová.

Více

NÁVOD K OBSLUZE A INSTALACI

NÁVOD K OBSLUZE A INSTALACI NÁVOD K OBSLUZE A INSTALACI AKUMULAČNÍ NÁDRŽE NADO 800/35v9 NADO 1000/35v9 Družstevní závody Dražice - strojírna s.r.o. Dražice 69, 294 71 Benátky nad Jizerou tel: +420 / 326 370 990 fax: +420 / 326 370

Více

SPECIFIKACE KATEGORIÍ PIV 2014

SPECIFIKACE KATEGORIÍ PIV 2014 SPECIFIKACE KATEGORIÍ PIV 2014 1. Světlé pivo výčepní Světlé pivo výčepní má nižší až střední plnost, světlou až mírně jantarovou barvu. je nižší až střední, vůně může být mírně esterová, chmelová a sladová.

Více

Vliv chemické aktivace na sorpční charakteristiky uhlíkatých materiálů

Vliv chemické aktivace na sorpční charakteristiky uhlíkatých materiálů VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA HORNICKO GEOLOGICKÁ FAKULTA Institut čistých technologií těžby a užití energetických surovin Vliv chemické aktivace na sorpční charakteristiky uhlíkatých

Více

STLAČENÝ VZDUCH OD ROKU Prodloužená záruka 6 let se servisním plánem MyCare BLADE BUDOUCNOST NASTÁVÁ JIŽ DNES. BLADE i 8 12 S přímým převodem

STLAČENÝ VZDUCH OD ROKU Prodloužená záruka 6 let se servisním plánem MyCare BLADE BUDOUCNOST NASTÁVÁ JIŽ DNES. BLADE i 8 12 S přímým převodem STLAČENÝ VZDUCH OD ROKU 1919 Prodloužená záruka 6 let se servisním plánem MyCare BLADE BUDOUCNOST NASTÁVÁ JIŽ DNES BLADE i 8 12 S přímým převodem Mattei: více než 90 let výzkumu a spolehlivosti Firma Ing.

Více

Používání energie v prádelnách

Používání energie v prádelnách Leonardo da Vinci Projekt Udržitelný rozvoj v průmyslových prádelnách Modul 5 Energie v prádelnách Kapitola 2 Používání energie v prádelnách Modul 5 Energie v prádelnách Kapitola 2 Používání energie 1

Více

14. Biotechnologie. 14.4 Výroba kvasné kyseliny octové. 14.6 Výroba kyseliny citronové. 14.2 Výroba kvasného etanolu. 14.1 Výroba sladu a piva

14. Biotechnologie. 14.4 Výroba kvasné kyseliny octové. 14.6 Výroba kyseliny citronové. 14.2 Výroba kvasného etanolu. 14.1 Výroba sladu a piva 14. Biotechnologie 14.1 Výroba sladu a piva 14.2 Výroba kvasného etanolu 14.3 Výroba droždí 14.4 Výroba kvasné kyseliny octové 14.5 Výroba kyseliny mléčné 14.6 Výroba kyseliny citronové 14.7 Výroba antibiotik

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Ošetření vína. Ošetření moštu Kvašení Ošetření mladého vína Úprava tříslovin a chuti Stabilizace Další produkty

Ošetření vína. Ošetření moštu Kvašení Ošetření mladého vína Úprava tříslovin a chuti Stabilizace Další produkty Ošetření vína Ošetření moštu Kvašení Úprava tříslovin a chuti Stabilizace Další produkty Vulcagel L Jedlá želatina je dnes asi nejvíce rozšířeným prostředkem používaným při přípravě nápojů, jelikož velmi

Více

Vstupní šneková čerpací stanice

Vstupní šneková čerpací stanice 1 Vstupní šneková čerpací stanice Odpadní vody z města natékají na čistírnu dvoupatrovou stokou s horním a dolním pásmem a Boleveckým sběračem. Čerpací stanice, osazená tzv. šnekovými čerpadly, zajišťuje

Více

Netkané textilie. Materiály 2

Netkané textilie. Materiály 2 Materiály 2 1 Pojiva pro výrobu netkaných textilií Pojivo je jednou ze dvou základních složek pojených textilií. Forma pojiva a jeho vlastnosti předurčují technologii a podmínky procesu pojení způsob rozmístění

Více

NÁVOD K OBSLUZE A INSTALACI

NÁVOD K OBSLUZE A INSTALACI NÁVOD K OBSLUZE A INSTALACI Akumulační nádrže NADO 800/35v9 NADO 00/35v9 Družstevní závody Dražice - strojírna s.r.o. Dražice 69, 294 71 Benátky nad Jizerou tel.: +420 / 326 370 990 fax: +420 / 326 370

Více

Vstřikovací systém Common Rail

Vstřikovací systém Common Rail Vstřikovací systém Common Rail Pojem Common Rail (společná lišta) znamená, že pro vstřikování paliva se využívá vysokotlaký zásobník paliva, tzv. Rail, společný pro vstřikovací ventily všech válců. Vytváření

Více

NÁVOD K OBSLUZE A INSTALACI

NÁVOD K OBSLUZE A INSTALACI NÁVOD K OBSLUZE A INSTALACI Akumulační nádrže NADO 800/35v9 NADO 1000/35v9 Družstevní závody Dražice - strojírna s.r.o. Dražice 69, 294 71 Benátky nad Jizerou tel.: +420 / 326 370 990 fax: +420 / 326 370

Více

Metody gravimetrické

Metody gravimetrické Klíčový požadavek - kvantitativní vyloučení stanovované složky z roztoku - málorozpustná sloučenina - SRÁŽECÍ ROVNOVÁHY VYLUČOVACÍ FORMA se převede na (sušení, žíhání) CHEMICKY DEFINOVANÝ PRODUKT - vážitelný

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0185. Název projektu: Moderní škola 21. století. Zařazení materiálu: Ověření materiálu ve výuce:

Registrační číslo projektu: CZ.1.07/1.5.00/34.0185. Název projektu: Moderní škola 21. století. Zařazení materiálu: Ověření materiálu ve výuce: STŘEDNÍ ODBORNÁ ŠKOLA A STŘEDNÍ ODBORNÉ UČILIŠTĚ NERATOVICE Školní 664, 277 11 Neratovice, tel.: 315 682 314, IČO: 683 834 95, IZO: 110 450 639 Ředitelství školy: Spojovací 632, 277 11 Neratovice tel.:

Více

Ad 1: Jednotky hořkosti piva (EBU)

Ad 1: Jednotky hořkosti piva (EBU) 4 6 Berliner Weisse (berlínské bílé) 6 12 Biere blanche (witbier) 6 18 Weissbier Ad 1: Jednotky hořkosti piva (EBU) Weissbier 8 16 American lager 12 24 Trapistická piva 16 24 Ležák 16 35 Kölsch 18 24 Tmavé

Více

Zvlhčovací systém Merlin Technology je

Zvlhčovací systém Merlin Technology je Zvlhčování vzduchu pro každého TEXT/FOTO: Ing. Vladimír Harazím Člověk v průměru stráví více než 80 % svého života v uzavřených místnostech. Naše zdraví a duševní pohoda jsou proto do značné míry závislé

Více

Složení a vlastnosti přírodních vod

Složení a vlastnosti přírodních vod Vodní zdroje Složení a vlastnosti přírodních vod Podzemní vody obsahují především železo, mangan, sulfan, oxid uhličitý, radon a amonné ionty. Povrchové vody obsahují především suspendované a koloidní

Více

Technologie sušení velmi vlhkých materiálů se zpětným využitím tepla vloženého do procesu sušení

Technologie sušení velmi vlhkých materiálů se zpětným využitím tepla vloženého do procesu sušení Technologie sušení velmi vlhkých materiálů se zpětným využitím tepla vloženého do procesu sušení Ing. Stanislav Kraml, TENZA, a.s., Svatopetrská 7, Brno Ing. Zdeněk Frömel, TENZA, a.s., Svatopetrská 7,

Více

NÁVOD K OBSLUZE A INSTALACI

NÁVOD K OBSLUZE A INSTALACI NÁVOD K OBSLUZE A INSTALACI AKUMULAČNÍ NÁDRŽE NADO 500/200v7 NADO 750/200v7 NADO 1000/200v7 Družstevní závody Dražice - strojírna s.r.o. Dražice 69, 294 71 Benátky nad Jizerou tel: +420 / 326 370 990 fax:

Více

Biologické čištění odpadních vod - anaerobní procesy

Biologické čištění odpadních vod - anaerobní procesy Biologické čištění odpadních vod - anaerobní procesy Martin Pivokonský 7. přednáška, kurz Znečišťování a ochrana vod Ústav pro životní prostředí PřF UK Ústav pro hydrodynamiku AV ČR, v. v. i. Tel.: 221

Více

NÁVOD K OBSLUZE A INSTALACI

NÁVOD K OBSLUZE A INSTALACI NÁVOD K OBSLUZE A INSTALACI AKUMULAČNÍ NÁDRŽE NADO 300/20v6 NADO 500/25v6 NADO 750/35v6 NADO 1000/45v6 Družstevní závody Dražice - strojírna s.r.o. Dražice 69, 294 71 Benátky nad Jizerou tel: +420 / 326

Více

Volba vhodného typu mísiče může být ovlivněna následujícími podmínkami

Volba vhodného typu mísiče může být ovlivněna následujícími podmínkami MÍSENÍ ZRNITÝCH LÁTEK Mísení zrnitých látek je zvláštním případem míchání. Zrnité látky mohou být konglomerátem několika chemických látek. Z tohoto důvodu obvykle bývá za složku směsí považován soubor

Více

Palivová soustava zážehového motoru Tvorba směsi v karburátoru

Palivová soustava zážehového motoru Tvorba směsi v karburátoru Předmět: Ročník: Vytvořil: Datum: Silniční vozidla třetí NĚMEC V. 28.11.2013 Název zpracovaného celku: Palivová soustava zážehového motoru Tvorba směsi v karburátoru Úkolem palivové soustavy je dopravit

Více

12. SUŠENÍ. Obr. 12.1 Kapilární elevace

12. SUŠENÍ. Obr. 12.1 Kapilární elevace 12. SUŠENÍ Při sušení odstraňujeme z tuhého u zadrženou kapalinu, většinou vodu. Odstranění kapaliny z tuhé fáze může být realizováno mechanicky (filtrací, lisováním, odstředěním), fyzikálně-chemicky (adsorpcí

Více

Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/ B.Mieslerová (KB PřF UP v Olomouci)

Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/ B.Mieslerová (KB PřF UP v Olomouci) Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 2011 B.Mieslerová (KB PřF UP v Olomouci) VÝROBA PIVA PIVO Pivo je slabě alkoholický nápoj vyráběný

Více

Detekce rozhraní kapalných médií v

Detekce rozhraní kapalných médií v Products Solutions Services Detekce rozhraní kapalných médií v průtočných systémech Ing. Eva Pavlová Industry Sales Manager/ Food and Beverages Slide 1 Detekce rozhraní médií Komplikací detekce rozhraní

Více

Akumulační nádrže typ NADO

Akumulační nádrže typ NADO Návod k obsluze a instalaci Akumulační nádrže typ NADO Družstevní závody Dražice strojírna Dražice 69 29471 Benátky nad Jizerou Tel.: 326 370911,370965, fax: 326 370980 www.dzd.cz dzd@dzd.cz CZ - Provozně

Více

VZTAH MEZI HYDRAULICKÝM ŘEŠENÍM, KONSTRUKCÍ

VZTAH MEZI HYDRAULICKÝM ŘEŠENÍM, KONSTRUKCÍ VZTAH MEZI HYDRAULICKÝM ŘEŠENÍM, KONSTRUKCÍ A FUNKCÍ VODÁRENSKÝCH FILTRŮ, PRANÝCH VODOU A VZDUCHEM Ing. Vladimír Novák, CSc. AQUAFILTER v.o.s. Praha Filtry jsou velmi důležitým technologickým zařízením

Více

NÁVOD K OBSLUZE A INSTALACI

NÁVOD K OBSLUZE A INSTALACI NÁVOD K OBSLUZE A INSTALACI AKUMULAČNÍ NÁDRŽE NADO 300/20v11 NADO 400/20v11 NADO 750/25v11 NADO 1000/25v11 Družstevní závody Dražice - strojírna s.r.o. Dražice 69, 294 71 Benátky nad Jizerou tel: +420

Více

POPIS: Metoda PUSH PULL PRO - efektivní cesta k čistému vzduchu ve výrobní hale

POPIS: Metoda PUSH PULL PRO - efektivní cesta k čistému vzduchu ve výrobní hale SVĚT ODSÁVACÍ TECHNIKY ESTA CZ KLIMAUT spol. s r. o. Vrbová 1477 CZ 250 01 BRANDÝS NAD LABEM DIE GANZE WELT DER ABSAUTECHNIK THE WORLD OF EXTRACTION PROJEKT: PROSTOROVÉ ODSÁVÁNÍ DÝMŮ VZNIKAJÍCÍCH PŘI SVAŘOVÁNÍ.

Více

Ing. Milan Vodehnal, AITEC s.r.o., Ledeč nad Sázavou

Ing. Milan Vodehnal, AITEC s.r.o., Ledeč nad Sázavou Technologie zneškodňování odpadních vod z galvanického vylučování povlaků ZnNi Ing. Milan Vodehnal, AITEC s.r.o., Ledeč nad Sázavou Používání galvanických lázní pro vylučování slitinových povlaků vzhledem

Více

Omezování plynných emisí. Ochrana ovzduší ZS 2010/2011

Omezování plynných emisí. Ochrana ovzduší ZS 2010/2011 Omezování plynných emisí Ochrana ovzduší ZS 2010/2011 1 Úvod Různé fyzikální a chemické principy + biotechnologie Principy: absorpce adsorpce oxidace a redukce katalytická oxidace a redukce kondenzační

Více

Technické údaje LA 60TUR+

Technické údaje LA 60TUR+ Technické údaje LA TUR+ Informace o zařízení LA TUR+ Provedení - Zdroj tepla Venkovní vzduch - Provedení Univerzální konstrukce reverzibilní - Regulace - Výpočet teplotního množství integrovaný - Místo

Více