2. Maximální úspornost (Maximum Parsimony, MP)

Rozměr: px
Začít zobrazení ze stránky:

Download "2. Maximální úspornost (Maximum Parsimony, MP)"

Transkript

1 2. Maximální úspornost (Maximum Parsimony, MP) Ze všech metod konstrukce fylogenetických stromů byly donedávna nejpoužívanější metody maximální úspornosti (parsimonie). Důvodem pro jejich mimořádnou oblibu bylo kromě relativní jednoduchosti a výpočetní rychlosti především to, že základní princip parsimonie preferování jednodušších hypotéz před složitějšími je většině z nás důvěrně známý. Vychází z myšlenky anglického filozofa přelomu 13. a 14. století Williama z Ockhamu, že entity nemají být zmnožovány víc než je nutné, jinými slovy že nejjednodušší vysvětlení je nejlepší (tento princip je znám jako Ockhamova břitva). Jednoduchostí se v tomto případě rozumí minimální počet evolučních kroků; sdílení společných stavů znaků je vysvětlováno společným původem, naopak jakékoli sdílení společného stavu znaku, které nelze vysvětlit zděděním po společném předkovi, je označováno jako důsledek homoplazie (analogie, homoplasy). Princip úspornosti si můžeme ilustrovat na následujícím triviálním příkladu. Předpokládejme fylogenii pěti taxonů s topologií jako na obr. 2.1, která byla konstruována na základě série binárních znaků, u kterých je stejná pravděpodobnost změn 0 1 i 1 0. Stavy tří z těchto znaků pro jednotlivé taxony jsou následující: Taxon Znaky I II III A B C D E a) b) c) Obr. 2.1 Tři nejúspornější kladogramy pro pět taxonů, z nichž každý je založen na jednom znaku (stavy těchto znaků jsou uvedeny v textu). Strom a) a c) předpokládá dvě změny (1 0), strom b) jednu změnu (0 1); pro všechny tři znaky by tedy fylogenie zahrnovala minimálně pět různých změn. 45

2 2. MAXIMÁLNÍ ÚSPORNOST (MAXIMUM PARSIMONY, MP) Stromy na obr. 2.1a c ukazují nejúspornější rozložení stavů pro znaky I III, ke kterému můžeme dospět od oka inspekcí uvedené tabulky. Vidíme, že pro znak 1 strom vyžaduje minimálně dvě změny, pro znak II pouze jednu změnu a pro znak III opět dvě změny. Pro všechny tři znaky tedy strom vyžaduje nejméně pět změn. Minimální počet je však tři, každá pro jeden znak, takže zde máme dvě změny navíc. Tyto nadbytečné změny, kdy jeden stav znaku vzniká vícekrát, jsou vysvětleny ad hoc homoplazií. Princip parsimonie proto můžeme chápat i jako snahu minimalizovat počet těchto analogických stavů. POSTUP METODY V praxi je ovšem odhad počtu změn podél fylogenetického stromu poměrně složitější a vyžaduje určitý algoritmus. Přestože původně byla metoda maximální úspornosti vyvinuta pro morfologické znaky (Hennig 1966), v následujícím textu vyjdeme ze sekvence DNA. Postup metody maximální úspornosti si můžeme ilustrovat na tzv. Fitchově algoritmu (Fitch 1971), který předpokládá stejnou pravděpodobnost změn v jednom i druhém směru (např. Pr[A T] = Pr[T A]) a přímou změnu stavu v kterýkoli jiný. Předpokládejme strom bez kořene se šesti taxony, znázorněný na obr. 2.2a a rekonstruovaný na základě jednoho znaku (tj. jednoho nukleotidového místa) j s následujícími stavy: 1 = C 2 = T 3 = T 4 = T 5 = A 6 = A Stanovení minimálního počtu kroků Nejprve stanovíme minimální počet substitucí podél dané topologie. Zpravidla je výhodné arbitrárně stanovit kořen stromu: v našem případě je kořenem uzel 6 (obr. 2.2b). Začneme v jednom z vrcholů (např. 1) a postupujeme k vnitřnímu uzlu w, který tento vrchol spojuje s nejbližším vrcholem 2. Jestliže vycházíme z předpokladu minimálního počtu substitucí, uzlu w připíšeme C, nebo T. Obdobně v uzlu x musí být stav T, protože oba terminální uzly, které vnitřní uzel x spojuje, mají na místě j thymin; další vnitřní uzel y má stav A, nebo T. Porovnáme-li uzly w (C, nebo T) a y (A, nebo T), nejúspornějším stavem pro uzel z je T. Jakmile algoritmus dosáhne kořene stromu, pokračuje odsud zpět k vrcholům. Protože uzel z neobsahuje stav charakterizující jeho předka (uzel 6), bude přiřazení jeho stavu arbitrární. Předpokládejme, že tomuto uzlu připíšeme adenin, takže přechod 6 z potom nevyžaduje žádnou substituci (obr. 2.2c). Uzlu y připíšeme A, protože ten je přítomen již v uzlu z. V uzlu x ponecháme T (substituce A T) a uzlu w připíšeme opět arbitrárně stav T (substituce A T). Přechod z uzlu w k terminálnímu uzlu 1 vyžaduje další změnu (substituce T C). Celkový počet substitucí nezbytných k vysvětlení daného stromu je 3. Jestliže uzlu z připíšeme stav T, bude výsledný počet změn opět 3 (obr. 2.2d). Celkem jsou možné čtyři stejně úsporné stromy (zbývající dva stromy jsou ukázány na obr. 2.2e f). 46

3 Postup metody a) b) c) d) e) f) Obr. 2.2 Postup metody maximální úspornosti pro neseřazená data (Fitchova parsimonie). Na obr. a) je na základě stavů jednoho znaku (bází na jedné nukleotidové pozici) vytvořena jedna z možných topologií bez kořene, která je převedena na strom s kořenem (b) arbitrárním stanovením kořene v jednom z terminálních uzlů (6). Jednotlivým terminálním uzlům jsou přiřazeny příslušné zjištěné báze, zatímco stavy na interních uzlech jsou odhadovány jako nejúspornější průsečík stavů nad nimi. Při cestě od kořene vzhůru dostáváme dva alternativní, stejně úsporné stromy podle toho, jakou bázi předpokládáme ve vnitřním uzlu z. Jestliže je tomuto uzlu přiřazen thymin (d), uzly w a y budou při kritériu úspornosti obsahovat stejnou bázi; naopak pokud si uzel z zachová adenin, dostaneme tři možné stromy. Všechny čtyři stromy jsou stejně úsporné, s délkou čtyři kroky. 47

4 2. MAXIMÁLNÍ ÚSPORNOST (MAXIMUM PARSIMONY, MP) Ve výše uvedeném příkladu jsme uvažovali pouze jednu topologii. Ve skutečnosti musíme uvažovat všech 105 potenciálních topologií a identifikovat tu, která vyžaduje nejmenší počet kroků. Tímto způsobem můžeme vypočítat sumu minimálních počtů substitucí pro všechny potenciální topologie a pro všechna nukleotidová místa. Tato suma se nazývá délka stromu. Maximálně úsporný strom je potom topologie, která má nejmenší délku. Často se stává, že existuje několik odlišných topologií se stejnou délkou. V praxi jsou pro vyhledání optimálního stromu (stromů) používány sofistikované algoritmy. Zde je nutno rozlišovat mezi kritériem optimálnosti a konkrétním algoritmem zatímco algoritmy jsou neustále zdokonalovány, kritéria zůstávají stejná. Informativní a neinformativní znaky a problém analogie Při hledání maximálně úsporných (MP) stromů nejsou všechny znaky stejně důležité. Zůstaneme-li u příkladu sekvence DNA, potom invariabilní místa, tj. pozice, které obsahují stejný nukleotid u všech zkoumaných taxonů, jsou z analýzy vyloučena. Ovšem ani všechna variabilní místa nejsou z hlediska konstrukce MP stromu stejně informativní. Jedním z příkladů neinformativního variabilního znaku je místo, které obsahuje odlišný nukleotid pouze u jedné sekvence, zatímco všechny ostatní sekvence jsou v tomto místě stejné tyto stavy se nazývají výlučně odvozené neboli autapomorfní. Aby bylo nukleotidové místo informativní, musí obsahovat alespoň dva různé nukleotidy, z nichž každý se vyskytuje alespoň u dvou sekvencí. Pro úplnost je nutno dodat, že pro některé jiné metody fylogenetické analýzy (např. maximální věrohodnost, bayesovskou analýzu) jsou důležitá i invaria bilní místa. Rovněž některé MP algoritmy používají pro výpočet délky stromů i variabilní místa, která jsou z hlediska hledání maximálně úsporného stromu neinformativní. Protože maximálně úsporný strom můžeme spolehlivě konstruovat pouze na základě fylogeneticky informativních znaků, musí být MP analýza založena na velkém celkovém počtu míst. Jestliže však data obsahují velký počet homoplazií, nemusí být výsledek spolehlivý ani při velmi velkém množství znaků. Pro odhad rozsahu homoplazie bylo navrženo několik indexů. Nejstarší a nejznámější je index konzistence (consistency index, CI), navržený Klugem a Farrisem (1969). Tento poměrně jednoduchý index je pro jedno nukleotidové místo vyjádřen jako podíl c i = m i /s i, kde m i je minimální počet potenciálně možných evolučních kroků (substitucí) na i-té pozici a s i je minimální počet substitucí nutných k vysvětlení daného stromu. Minimální možný počet substitucí m i je dán počtem různých typů nukleotidů na i-tém místě minus 1. Například pro strom na obr. 2.2c je index konzistence roven 2/3, protože m i je 2 (3 nukleotidy minus 1) a s i je rovno 3 (tj. 3 substituce). Nízký rozsah homoplazie v datech se odráží ve vysokých hodnotách indexu konzistence. Maximální hodnota CI je 1, spodní hranice však není 0 a navíc index kolísá s topologií. Proto Farris (1989) navrhl další dva ukazatele, retenční index a přeškálovaný index konzistence. Retenční index (retention index, RI) lze považovat za míru stupně synapomorfie v datech (Kitching et al. 1998; Klingenberg a Gidaszewski 2010). Pro jedno nukleotidové místo je roven r i = g i s i g i m i, (2.1) 48

5 Postup metody kde g i je maximální možný počet substitucí na i-tém místě pro jakýkoli myslitelný strom. Ten je roven počtu substitucí nezbytných pro hvězdicovou topologii, ve které je nejfrekventovanější nukleotid umístěn doprostřed. Veličina g i vyjadřuje, kolik kroků by bylo nutno k vysvětlení evoluce analyzovaných dat za nejhorších možných podmínek. Retenční index nabývá nulové hodnoty, když g i = s i, a maximálně dosahuje 1. V případě obr. 2.2 by ve středu hvězdicového stromu bylo T; g i by pak bylo rovno 3 (3 substituce: 2 T A, 1 T C), s i = 3, m i = 2 a r i = (3 3)(3 2) = 0. Přeškálovaný index konzistence (rescaled consistency index, RC) je dán součinem CI a RI, pro i-té nukleotidové místo tedy platí rc i = g i s i g i m i m i s i. (2.2) Všechny výše jmenované indexy lze vypočítat také pro všechna informativní místa. Hovoříme potom o složeném neboli celkovém indexu konzistence (CI), celkovém retenčním indexu (RI) a celkovém přeškálovaném indexu konzistence (RC). Tyto indexy se vypočítají sumací jednotlivých proměnných přes všechna informativní nukleotidová místa: CI= i m i i s i, RI= i g i i s i i g i i m i, RC=CI RI. ( ) Tyto indexy můžeme počítat pouze pro informativní místa, protože pro neinformativní místa nelze r i a rc i definovat. CI, RI a RC jsou často používány systematiky jako míra přesnosti získané topologie MP stromu. V systematice se někdy index konzistence nahrazuje indexem homoplazie (homoplasy index, HI), který je dán jako HI = 1 CI, tj. při nulové homoplazii CI = 1 a HI = 0. Některé programy poskytují i další indexy, které informují o charakteru dat a rozložení homoplazie mezi znaky a částmi MP stromu. Jedním z nich je průměrná jednotková konzistence znaku (average unit character consistency, AUCC): AUCC= N i=1c i N, (2.6) kde c i je jednotková konzistence znaku (Kluge a Farris 1969). AUCC je maximální tehdy, když je homoplazie rozložena krajně asymetricky, tj. když se všechny analogické stavy vyskytují u jediného znaku. Minimální hodnota AUCC je rovna CI, maximální je rovna 1. Poměr rozložení homoplazie (homoplasy distribution ratio, HDR) je vyjádřen jako index rozložení homoplazie (HDI) vydělený indexem homoplazie (HI), kde HDI = = AUCC CI (Sang 1995). Protože při výskytu jakékoli homoplazie je AUCC menší než 1, AUCC CI musí být menší než HI (1 CI, viz výše) a HDR spadá do intervalu (0,1). Kromě měření rozsahu homoplazie a její distribuce může podle Sanga (1995) být tento index poměrně přesným ukazatelem spolehlivosti MP stromu. To znamená, že i když je index konzistence nízký, kladogram může stále být spolehlivý, protože homoplazie je omezena jen na několik kladisticky nespolehlivých znaků. 49

6 2. MAXIMÁLNÍ ÚSPORNOST (MAXIMUM PARSIMONY, MP) Index kompatibilních stavů znaku (compatible character state index, CCSI) je vypočten jako poměr počtu kompatibilních stavů znaku, tj. stavů, které jsou v souladu s MP stromem, a celkového počtu stavů (včetně neinformativních stavů i autapomorfií, které jsou vždy konzistentní a proto inflatují CCSI). Stejně jako v předchozím případě se hodnoty CCSI pohybují v rozmezí 0 (hvězdicový strom) až 1 (všechny stavy konzistentní). Odhad délek větví a optimalizace stromu Jakožto metody typické pro kladistickou analýzu jsou MP stromy zpravidla konstruovány bez stanovení délek větví. Za určitých podmínek však můžeme délky odhadnout. Odhad délek větví MP stromu se provádí tak, že uvažujeme všechny evoluční dráhy na každém variabilním místě a vypočteme průměrný počet substitucí pro jednotlivé vnitřní i vnější větve. Vraťme se k topologii na obr Na základě nukleotidů zjištěných u šesti zkoumaných taxonů byly odvozeny čtyři stejně úsporné stromy dlouhé tři kroky (obr. 2.2c f). Například evoluční dráha stromu na obr. 2.2c vyžaduje jednu substituci podél větve 1 w, jednu podél w z a jednu podél větve x y. Podobně bychom mohli přiřadit substituce jednotlivým větvím i pro ostatní topologie a vypočítat jejich průměrnou délku. Tyto délky jsou pro jednotlivé větve: 1 w = 3/4, 2 w = 2/4, 3 x = 0, 4 x = 0, 5 y = 1/4, x y = 3/4, w z = 2/4, y z = 0 a 6 z = 1/4. Podobně můžeme získat celkové délky sečtením substitucí podél každé z větví. Tato metoda se označuje jako metoda průměrné dráhy. Délky větví můžeme odhadnout i pomocí dvou algoritmů. První z nich, ACCTRAN (ACCelerated TRANsformation), předpokládá, že k evolučním změnám dochází co nejdříve od společného kořene, kdežto druhý, DELTRAN (DELayed TRANsformation) naopak upřednostňuje změny pozdější (Swofford a Maddison 1987). Například jestliže u stromu na obr. 2.2 budeme taxon 6 považovat za společný kořen a nukleotid A tedy za ancestrální, ACCTRAN bude považovat za pravděpodobnější změnu A T mezi uzly 6 a z a potom uvažovat minimální počet substitucí, tzn. uzlům w, x, y přiřadí také T (obr. 2.2d). Naproti tomu v algoritmu DELTRAN jsou všechny změny maximálně zpožděny, proto přiřadí uzlům w, x, y a z nukleotidy A, T, A a A (obr. 2.2f). To znamená, že přiřazení nukleotidů jednotlivým ancestrálním uzlům se mezi oběma metodami liší a odhady délek větví budou tím pádem také rozdílné. Jsou-li však zkoumané sekvence podobné, není rozdíl mezi oběma metodami tak markantní, jak by se mohlo z uvedeného příkladu zdát. Obecně platí, že délky větví získané metodami maximální úspornosti mají tendenci být nižší než skutečné délky, zejména pokud je divergence mezi sekvencemi vysoká. 50

STATISTICKÉ ODHADY Odhady populačních charakteristik

STATISTICKÉ ODHADY Odhady populačních charakteristik STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s

Více

Systém a evoluce obratlovců I.Úvod

Systém a evoluce obratlovců I.Úvod MODULARIZACE VÝUKY EVOLUČNÍ A EKOLOGICKÉ BIOLOGIE CZ.1.07/2.2.00/15.0204 Systém a evoluce obratlovců I.Úvod literatura taxonomie a systematika znaky a klasifikace Carl Linné Willy Hennig Literatura 2007

Více

Fylogeneze a diverzita obratlovců I.Úvod

Fylogeneze a diverzita obratlovců I.Úvod MODULARIZACE VÝUKY EVOLUČNÍ A EKOLOGICKÉ BIOLOGIE CZ.1.07/2.2.00/15.0204 Fylogeneze a diverzita obratlovců I.Úvod literatura taxonomie a systematika znaky a klasifikace Carl Linné Willy Hennig Charles

Více

Malcomber S.T. (2000): Phylogeny of Gaertnera Lam. (Rubiaceae) based on multiple DNA markers: evidence of a rapid radiation in a widespread,

Malcomber S.T. (2000): Phylogeny of Gaertnera Lam. (Rubiaceae) based on multiple DNA markers: evidence of a rapid radiation in a widespread, Malcomber S.T. (2000): Phylogeny of Gaertnera Lam. (Rubiaceae) based on multiple DNA markers: evidence of a rapid radiation in a widespread, morphologically diverse genus. Evolution 56(1):42-57 Proč to

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Typy fylogenetických analýz

Typy fylogenetických analýz Typy fylogenetických analýz Distanční metody: Neighbor-Joining Minimum Evolultion UPGMA,... Maximum Likelihood Bayesian Inference Maximum Parsimony Genetické distance, substituční modely pro výpočet fylogenetických

Více

4. Aplikace matematiky v ekonomii

4. Aplikace matematiky v ekonomii 4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =

Více

Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010

Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu

Více

Kombinatorická minimalizace

Kombinatorická minimalizace Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny

Více

8 Coxův model proporcionálních rizik I

8 Coxův model proporcionálních rizik I 8 Coxův model proporcionálních rizik I Předpokládané výstupy z výuky: 1. Student umí formulovat Coxův model proporcionálních rizik 2. Student rozumí významu regresních koeficientů modelu 3. Student zná

Více

Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,

Více

4. Úvod do kladistiky. kladogram podobnost a příbuznost homologie (sym)plesiomorfie, (syn)apomorfie polarizace znaků kritérium parsimonie

4. Úvod do kladistiky. kladogram podobnost a příbuznost homologie (sym)plesiomorfie, (syn)apomorfie polarizace znaků kritérium parsimonie 4. Úvod do kladistiky kladogram podobnost a příbuznost homologie (sym)plesiomorfie, (syn)apomorfie polarizace znaků kritérium parsimonie Willi Hennig (1913-1976) německý entomolog 1950: Grundzüge einer

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním

Více

Diferenciální rovnice 3

Diferenciální rovnice 3 Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty

Více

Binární vyhledávací stromy pokročilé partie

Binární vyhledávací stromy pokročilé partie Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald

Více

Vyvažování zátěže na topologii přepínačů s redundandními linkami

Vyvažování zátěže na topologii přepínačů s redundandními linkami Vyvažování zátěže na topologii přepínačů s redundandními linkami Petr Grygárek, FEI, VŠB-TU Ostrava Transparentní mosty (dnes většinou přepínače) se propojují do stromové struktury. Jestliže požadujeme

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

Základy algoritmizace. Pattern matching

Základy algoritmizace. Pattern matching Základy algoritmizace Pattern matching 1 Pattern matching Úloha nalézt v nějakém textu výskyty zadaných textových vzorků patří v počítačové praxi k nejfrekventovanějším. Algoritmy, které ji řeší se používají

Více

zpravidla předpokládá, že hodnoty intenzity poruch a oprav jsou konstantní.

zpravidla předpokládá, že hodnoty intenzity poruch a oprav jsou konstantní. Pohotovost a vliv jednotlivých složek na číselné hodnoty pohotovosti Systém se může nacházet v mnoha různých stavech. V praxi se nejčastěji vyskytují případy, kdy systém (nebo prvek) je charakterizován

Více

Náhodné chyby přímých měření

Náhodné chyby přímých měření Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.

Více

Bankovní efektivnost Uvedení Metodologie Malmquistův index Přístupy k volbě proměnných pro výpočet efektivnosti

Bankovní efektivnost Uvedení Metodologie Malmquistův index Přístupy k volbě proměnných pro výpočet efektivnosti Bankovní efektivnost Uvedení Studium efektivní hranice začal Farrell (1957), který definoval jednoduchou míru firemní efektivnosti. Navrhl, že efektivnost každé firmy se skládá ze dvou částí, tedy technické

Více

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR Ve většině případů pracujeme s výběrovým souborem a výběrové výsledky zobecňujeme na základní soubor. Smysluplné

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Tabulka 1. Výběr z datové tabulky

Tabulka 1. Výběr z datové tabulky 1. Zadání domácího úkolu Vyberte si datový soubor obsahující alespoň jednu kvalitativní a jednu kvantitativní proměnnou s alespoň 30 statistickými jednotkami (alespoň 30 jednotlivých údajů). Zdroje dat

Více

Umělá inteligence II

Umělá inteligence II Umělá inteligence II 11 http://ktiml.mff.cuni.cz/~bartak Roman Barták, KTIML roman.bartak@mff.cuni.cz Dnešní program! V reálném prostředí převládá neurčitost.! Neurčitost umíme zpracovávat pravděpodobnostními

Více

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme,

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme, Úloha 1: V naší studii se zabýváme poptávkovou funkcí životního pojištění, vycházíme z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové

Více

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c ) 3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =

Více

Návrh Designu: Radek Mařík

Návrh Designu: Radek Mařík 1. 7. Najděte nejdelší rostoucí podposloupnost dané posloupnosti. Použijte metodu dynamického programování, napište tabulku průběžných délek částečných výsledků a tabulku předchůdců. a) 5 8 11 13 9 4 1

Více

4.3. GONIOMETRICKÉ ROVNICE A NEROVNICE

4.3. GONIOMETRICKÉ ROVNICE A NEROVNICE 4.3. GONIOMETRICKÉ ROVNICE A NEROVNICE V této kapitole se dozvíte: jak jsou definovány goniometrické rovnice a nerovnice; jak se řeší základní typy goniometrických rovnic a nerovnic. Klíčová slova této

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Domény. Petr Štěpánek. S využitím materialu Krysztofa R. Apta

Domény. Petr Štěpánek. S využitím materialu Krysztofa R. Apta Domény Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 10 1 Typy programů v čistém Prologu je možné uspořádat podle různých pohledů. Zajímavá je charakteristika podle domén,

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními

Více

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D. Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

Interpolace, aproximace

Interpolace, aproximace 11 Interpolace, aproximace Metoda nejmenších čtverců 11.1 Interpolace Mějme body [x i,y i ], i =0, 1,...,n 1. Cílem interpolace je najít funkci f(x), jejíž graf prochází všemi těmito body, tj. f(x i )=y

Více

4EK213 LINEÁRNÍ MODELY

4EK213 LINEÁRNÍ MODELY 4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 Mgr. Sekničková Jana, Ph.D. 2. PŘEDNÁŠKA MATEMATICKÝ MODEL ÚLOHY LP Mgr. Sekničková Jana, Ph.D. 2 OSNOVA PŘEDNÁŠKY Obecná formulace MM Množina

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

Pseudospektrální metody

Pseudospektrální metody Pseudospektrální metody Obecně: založeny na rozvoji do bázových funkcí s globálním nosičem řešení diferenciální rovnice aproximuje sumou kde jsou např. Čebyševovy polynomy nebo trigonometrické funkce tyto

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

4EK213 LINEÁRNÍ MODELY

4EK213 LINEÁRNÍ MODELY 4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 3. přednáška SIMPLEXOVÁ METODA I. OSNOVA PŘEDNÁŠKY Standardní tvar MM Základní věta LP Princip simplexové metody Výchozí řešení SM Zlepšení řešení

Více

Extrémy funkce dvou proměnných

Extrémy funkce dvou proměnných Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže

Více

Generování pseudonáhodných. Ing. Michal Dorda, Ph.D.

Generování pseudonáhodných. Ing. Michal Dorda, Ph.D. Generování pseudonáhodných čísel při simulaci Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky V simulačních modelech se velice často vyskytují náhodné proměnné. Proto se budeme zabývat otázkou, jak při simulaci

Více

Statistická teorie učení

Statistická teorie učení Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

Seznámíte se s principem integrace metodou per partes a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace metodou per partes a se základními typy integrálů, které lze touto metodou vypočítat. .. Integrace metodou per partes.. Integrace metodou per partes Průvodce studiem V předcházející kapitole jsme poznali, že integrování součtu funkcí lze provést jednoduše, známe-li integrály jednotlivých

Více

PSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady

PSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady PSY117/454 Statistická analýza dat v psychologii přednáška 8 Statistické usuzování, odhady Výběr od deskripce k indukci Deskripce dat, odhad parametrů Usuzování = inference = indukce Počítá se s náhodným

Více

7 Regresní modely v analýze přežití

7 Regresní modely v analýze přežití 7 Regresní modely v analýze přežití Předpokládané výstupy z výuky: 1. Student rozumí významu regresního modelování dat o přežití 2. Student dokáže definovat pojmy poměr rizik a základní riziková funkce

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Optimalizace trasy při revizích elektrospotřebičů

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Optimalizace trasy při revizích elektrospotřebičů VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Hlavní specializace: Ekonometrie a operační výzkum Název diplomové práce Optimalizace trasy při revizích elektrospotřebičů Diplomant: Vedoucí

Více

3 Bodové odhady a jejich vlastnosti

3 Bodové odhady a jejich vlastnosti 3 Bodové odhady a jejich vlastnosti 3.1 Statistika (Skripta str. 77) Výběr pořizujeme proto, abychom se (více) dověděli o souboru, ze kterého jsme výběr pořídili. Zde se soustředíme na situaci, kdy známe

Více

Úvod do logiky (VL): 5. Odvození výrokových spojek z jiných

Úvod do logiky (VL): 5. Odvození výrokových spojek z jiných Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 5. Odvození z jiných doc. PhDr. Jiří Raclavský,

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

Příklady k T 2 (platí pro seminární skupiny 1,4,10,11)!!!

Příklady k T 2 (platí pro seminární skupiny 1,4,10,11)!!! Příklady k T 2 (platí pro seminární skupiny 1,4,10,11)!!! Příklad 1.: Obchodník prodává pouze jeden druh zboží a ten také výhradně nakupuje. Činí tak v malém rozsahu, a proto koupil 500 výrobků po 10 Kč

Více

Základy genetiky populací

Základy genetiky populací Základy genetiky populací Jedním z významných odvětví genetiky je genetika populací, která se zabývá studiem dědičnosti a proměnlivosti u velkých skupin jedinců v celých populacích. Populace je v genetickém

Více

Matematika I 2a Konečná pravděpodobnost

Matematika I 2a Konečná pravděpodobnost Matematika I 2a Konečná pravděpodobnost Jan Slovák Masarykova univerzita Fakulta informatiky 24. 9. 2012 Obsah přednášky 1 Pravděpodobnost 2 Nezávislé jevy 3 Geometrická pravděpodobnost Viděli jsme už

Více

Logické programy Deklarativní interpretace

Logické programy Deklarativní interpretace Logické programy Deklarativní interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 7 1 Algebry. (Interpretace termů) Algebra J pro jazyk termů L obsahuje Neprázdnou

Více

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi

Více

Úvod do teorie informace

Úvod do teorie informace PEF MZLU v Brně 24. září 2007 Úvod Výměna informací s okolím nám umožňuje udržovat vlastní existenci. Proces zpracování informací je trvalý, nepřetržitý, ale ovlivnitelný. Zabezpečení informací je spojeno

Více

Matematika (a fyzika) schovaná za GPS. Global Positioning system. Michal Bulant. Brno, 2011

Matematika (a fyzika) schovaná za GPS. Global Positioning system. Michal Bulant. Brno, 2011 Matematika (a fyzika) schovaná za GPS Michal Bulant Masarykova univerzita Přírodovědecká fakulta Ústav matematiky a statistiky Brno, 2011 Michal Bulant (PřF MU) Matematika (a fyzika) schovaná za GPS Brno,

Více

Čas potřebný k prostudování učiva kapitoly: 1,25 hodiny

Čas potřebný k prostudování učiva kapitoly: 1,25 hodiny Fyzikální praktikum III 15 3. PROTOKOL O MĚŘENÍ V této kapitole se dozvíte: jak má vypadat a jaké náležitosti má splňovat protokol o měření; jak stanovit chybu měřené veličiny; jak vyhodnotit úspěšnost

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,

Více

12. Lineární programování

12. Lineární programování . Lineární programování. Lineární programování Úloha lineárního programování (lineární optimalizace) je jedním ze základních problémů teorie optimalizace. Našim cílem je nalézt maximum (resp. minimum)

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 23 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 23 biologové často potřebují najít často se opakující sekvence DNA tyto sekvence bývají relativně krátké,

Více

Modely Herbrandovské interpretace

Modely Herbrandovské interpretace Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší

Více

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13. Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy

Více

Stanovení měrného tepla pevných látek

Stanovení měrného tepla pevných látek 61 Kapitola 10 Stanovení měrného tepla pevných látek 10.1 Úvod O teple se dá říci, že souvisí s energií neuspořádaného pohybu molekul. Úhrnná pohybová energie neuspořádaného pohybu molekul, pohybu postupného,

Více

Informační a znalostní systémy

Informační a znalostní systémy Informační a znalostní systémy Teorie pravděpodobnosti není v podstatě nic jiného než vyjádření obecného povědomí počítáním. P. S. de Laplace Pravděpodobnost a relativní četnost Pokusy, výsledky nejsou

Více

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1 Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

11. Trhy výrobních faktorů Průvodce studiem: 11.1 Základní charakteristika trhu výrobních faktorů Poptávka po VF Nabídka výrobního faktoru

11. Trhy výrobních faktorů Průvodce studiem: 11.1 Základní charakteristika trhu výrobních faktorů Poptávka po VF Nabídka výrobního faktoru 11. Trhy výrobních faktorů V předchozích kapitolách jsme zkoumali způsob rozhodování firmy o výstupu a ceně v rámci různých tržních struktur (dokonalá a nedokonalá konkurence). Ačkoli se fungování firem

Více

Křivky a plochy technické praxe

Křivky a plochy technické praxe Kapitola 7 Křivky a plochy technické praxe V technické praxi se setkáváme s tím, že potřebujeme křivky a plochy, které se dají libovolně upravovat a zároveň je jejich matematické vyjádření jednoduché.

Více

3. Úloha o společném rozhraní

3. Úloha o společném rozhraní 34 3. Úloha o společném rozhraní Cíle Po prostudování této kapitoly budete schopni: Zjistit neregularity v systému Navrhnout řešení pro odstranění neregulárních vazeb Doba potřebná ke studiukapitoly:60minut

Více

Dynamicky vázané metody. Pozdní vazba, virtuální metody

Dynamicky vázané metody. Pozdní vazba, virtuální metody Dynamicky vázané metody Pozdní vazba, virtuální metody Motivace... class TBod protected: float x,y; public: int vrat_pocet_bodu() return 1; ; od třídy TBod odvodíme: class TUsecka: public TBod protected:

Více

cv3.tex. Vzorec pro úplnou pravděpodobnost

cv3.tex. Vzorec pro úplnou pravděpodobnost 3 cvičení - pravděpodobnost 2102018 18cv3tex n i=1 Vzorec pro úplnou pravděpodobnost Systém náhodných jevů nazýváme úplným, jestliže pro něj platí: B i = 1 a pro i k je B i B k = 0 Jestliže je (Ω, A, P

Více

KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE

KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE Slovo kvadrát vzniklo z latinského slova quadratus které znamená: čtyřhranný, čtvercový. Obsah čtverce se vypočítá, jako druhá mocnina délky

Více

EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek

EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření Jan Krystek 9. května 2019 CHYBY A NEJISTOTY MĚŘENÍ Každé měření je zatíženo určitou nepřesností způsobenou nejrůznějšími negativními vlivy,

Více

Univerzita Pardubice. Fakulta chemicko-technologická Katedra analytické chemie. Licenční studium Statistické zpracování dat

Univerzita Pardubice. Fakulta chemicko-technologická Katedra analytické chemie. Licenční studium Statistické zpracování dat Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Licenční studium Statistické zpracování dat Semestrální práce Interpolace, aproximace a spline 2007 Jindřich Freisleben Obsah

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Vytěžování znalostí z dat

Vytěžování znalostí z dat Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 7 1/27 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology

Více

Přednáška 3: Limita a spojitost

Přednáška 3: Limita a spojitost 3 / 1 / 17, 1:38 Přednáška 3: Limita a spojitost Limita funkce Nejdříve je potřeba upřesnit pojmy, které přesněji popisují (topologickou) strukturu množiny reálných čísel, a to zejména pojem okolí 31 Definice

Více

Parametrické rovnice křivky

Parametrické rovnice křivky Křivkový integrál Robert Mařík jaro 2014 Tento text je tištěnou verzí prezentací dostupných z http://user.mendelu.cz/marik/am. Křivkový integrál Jedná se o rozšíření Riemannova integrálu, kdy množinou

Více

2.6. Koncentrace elektronů a děr

2.6. Koncentrace elektronů a děr Obr. 2-11 Rozložení nosičů při poloze Fermiho hladiny: a) v horní polovině zakázaného pásu (p. typu N), b) uprostřed zakázaného pásu (vlastní p.), c) v dolní polovině zakázaného pásu (p. typu P) 2.6. Koncentrace

Více

Jana Vránová, 3. lékařská fakulta UK

Jana Vránová, 3. lékařská fakulta UK Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

Ing. Alena Šafrová Drášilová, Ph.D.

Ing. Alena Šafrová Drášilová, Ph.D. Rozhodování Ing. Alena Šafrová Drášilová, Ph.D. Rozhodování??? video Obsah typy rozhodování principy rozhodování rozhodovací fáze základní pojmy hodnotícího procesu rozhodovací podmínky rozhodování v podmínkách

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

AVDAT Klasický lineární model, metoda nejmenších

AVDAT Klasický lineární model, metoda nejmenších AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, TESTY DOBRÉ SHODY (angl. goodness-of-fit tests)

Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, TESTY DOBRÉ SHODY (angl. goodness-of-fit tests) Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, např. hmotnost a pohlaví narozených dětí. Běžný statistický postup pro ověření závislosti dvou veličin je zamítnutí jejich

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

M - Příprava na pololetní písemku č. 1

M - Příprava na pololetní písemku č. 1 M - Příprava na pololetní písemku č. 1 Určeno pro třídy 3SA, 3SB. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

Úvod do logiky (VL): 4. Zjištění průběhu pravdivostních hodnot formule tabulkovou metodou

Úvod do logiky (VL): 4. Zjištění průběhu pravdivostních hodnot formule tabulkovou metodou Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 4. Zjištění průběhu pravdivostních hodnot

Více

1.1 Využití ukazatele EVA jako moderního konceptu pro hodnocení výkonnosti podniku PLAST, s.r.o.

1.1 Využití ukazatele EVA jako moderního konceptu pro hodnocení výkonnosti podniku PLAST, s.r.o. 1.1 Využití ukazatele EVA jako moderního konceptu pro hodnocení výkonnosti podniku PLAST, s.r.o. Pro případovou studii byl vybrán koncept EVA, který je výhodný především díky možnosti identifikovat a účinně

Více

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

3 Lineární kombinace vektorů. Lineární závislost a nezávislost 3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární

Více