15. KubickÈ rovnice a rovnice vyööìho stupnï

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "15. KubickÈ rovnice a rovnice vyööìho stupnï"

Transkript

1 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných povětrnostních jevech, natolik významných, že obdržely vlastní jméno. V matematice je tomu podobně. Rovnice lineární, kvadratické a kubické (tj. třetího stupně) mají své vlastní názvy, protože je na jedné straně často řešíme, na druhé straně tyto rovnice popisují různé geometrické útvary, jako např. přímky, roviny a jiné rovinné či prostorové křivky či plochy. Bikvadratické rovnice (tj. speciální rovnice 4. stupně) získaly svůj název podle metody výpočtu, která připomíná řešení kvadratických rovnic. Všechny rovnice popsané v této kapitole jsou tzv. algebraické rovnice, tj. rovnice, kde se neznámá vyskytuje pouze jako základ nějaké mocniny s přirozeným exponentem, tj. jako x, x 2, x 3, x 4 atd. I. Aritmetika a algebra StupeÚ rovnice Jednotlivé algebraické rovnice jsou pojmenovány podle následujícího pravidla: Nejvyšší mocnina x určuje název rovnice. okud x vystupuje pouze jako první mocnina, jedná se o rovnici prvního stupně. Je-li nejvyšší mocninou x 2, jedná se o rovnici druhého stupně, atd. Exponent u nejvyšší mocniny neznámé x odpovídá tzv. stupni rovnice, a tím určuje její název. Lineární rovnice jsou tudíž rovnicemi prvního stupně, rovnice kvadratické rovnicemi stupně druhého, rovnice kubické rovnicemi stupně třetího. 167

2 I. Aritmetika a algebra KubickÈ rovnice Rovnice třetího stupně neboli kubické rovnice obsahují neznámou x jako třetí mocninu x 3, případně i jako nižší mocniny x 2 a x. Kubická rovnice má obecný tvar a 3 x 3 + a 2 x 2 + a 1 x+ a 0 = 0, kde a 3 0 Tato rovnice má nejvýše tři reálné kořeny. Na následujícím příkladu ukážeme, jak se tyto kořeny dají v některých jednodušších případech stanovit. Uvažujeme kubickou rovnici: x 3 3x 2 4x+ 12 = 0 V prvním kroku výpočtu stanovíme jeden kořen na základě dosazování. V následující podkapitole ukážeme, jak se to dělá. Hled nì ko ene kubickè rovnice dosazov nìm Jedná se o jednoduchou metodu řešení rovnice spočívající v tom, že jednotlivá čísla zvolená v závislosti na koeficientech rovnice dosazujeme do dané rovnice. okud dosazené číslo rovnici vyhovuje, kořen rovnice je nalezen. Je třeba zdůraznit, že uvedeným způsobem lze obvykle dojít k řešení rovnic, jejichž kořeny jsou malá celá čísla. Dosazováním takových čísel do dané rovnice se obvykle začíná. Výše uvedenou kubickou rovnici budeme řešit dosazováním. Vyjdeme z absolutního členu (členu neobsahujícího neznámou) rovnajícího se 12. Celočíselné dělitele čísla 12 jsou 1, 1, 2, 2, 3, 3, 4, 4, 6, 6. Dá se ukázat, že všechny celočíselné kořeny dané rovnice jsou mezi těmito děliteli. Tato čísla postupně dosazujeme do dané rovnice počínaje čísly nejmenšími v absolutní hodnotě (str. 151). 168

3 Nejmenší dělitele v absolutní hodnotě jsou 1 a 1, pokračujeme s čísly 2 a 2 atd. Číslo 1 dosadíme do dané rovnice x 3 3x 2 4 x+ 12 = 0 a dostáváme = 0 a odtud 6 = 0 Číslo 1 není kořenem dané rovnice, neboť 6 = 0 je nepravdivým výrokem. Číslo 1 dosadíme do dané rovnice x 3 3x 2 4 x+ 12 = 0 a dostáváme ( 1) 3 3 ( 1) 2 4 ( 1)+ 12 = 0 a odtud 12 = 0 Číslo 1 není kořenem dané rovnice, neboť 12 = 0 je nepravdivým výrokem. I. Aritmetika a algebra Číslo 2 dosadíme do dané rovnice x 3 3x 2 4 x + 12 = 0 a dostáváme = 0 a odtud 0 = 0 Číslo 2 je kořenem dané rovnice, neboť 0 = 0 je pravdivým výrokem. Další kořeny stanovíme pomocí dalšího kroku výpočtu uvedeného v následující podkapitole. DÏlenÌ mnohoëlen Celou rovnici dělíme výrazem (x x 1 ), kde x 1 je první nalezený kořen. V našem příkladu budeme dělit výrazem (x 2), neboť 2 byl první nalezený kořen. Uvedená metoda se nazývá dělení mnohočlenu, neboť dělencem je výraz x 3 3x 2 4 x + 12, což je tzv. mnohočlen (polynom) třetího stupně. odobně výraz ax 2 + bx + c, a 0 je polynom druhého stupně, ax + b, a 0 je polynom prvního stupně (viz též str. 173). ři dělení (x 3 3x 2 4x+ 12) : (x 2) dělíme mnohočlen x 3 3x 2 4x+ 12 mnohočlenem (x 2). 169

4 I. Aritmetika a algebra Řádek Dělenec Dělitel Výsledek Výpočty 1a (x 3 3x 2 4x + 12) : (x 2) = x 2 x 6 x 3 : x = x 2 b (x 3 2x 2 ) x 2 (x 2) = x 3 2x 2 c x 2 4x + 12 (x 3 3x 2 4x + 12) (x 3 2x 2 ) = x 2 4x a x 2 4x + 12 x 2 : x = x b ( x 2 + 2x) x (x 2) = x 2 + 2x c 6x + 12 ( x 2 4x + 12) ( x 2 + 2x) = = 6x a 6x x : x = 6 b ( 6x + 12) 6 (x 2) = 6x + 12 c 0 6x + 12 ( 6x + 12) = 0 Dělení mnohočlenů se v zásadě neliší od dělení čísel. Také zde se každý krok skládá ze tří částí: dělení, násobení a odčítání. Řádek 1a (dělení): Nejvyšší mocnina v dělenci ( x 3 ) se dělí nejvyšší mocninou v děliteli (x) : x 3 : x = x 2 Řádek 1b (násobení): Výsledek násobíme celým dělitelem (x 2): x 2 (x 2) = x 3 2x 2 Řádek 1c (odčítání): Od řádku 1a odečteme výraz x 3 2x 2, proto znak minus před závorkou v řádku 1b. Tyto tři kroky opakujeme ve zbývajících řádcích 2a až 3c. Smysl dělení polynomu vynikne, pokud převedeme levou stranu původní rovnice na součin: x 3 3x 2 4x + 12 = 0 ůvodní rovnice. (x 3 3x 2 4x + 12) : (x 2) = x 2 x 6 Dělení polynomu na levé straně rovnice a jeho výsledek. 170

5 x 3 3x 2 4x + 12 = x 2 x 6 (x 2) odíl vyjádřený jako zlomek. x 2 x 3 3x 2 4x + 12 = (x 2 x 6) (x 2) Dělenec vyjádřený jako součin podílu a dělitele. (x 2 x 6) (x 2) = 0 Nový tvar původní rovnice, kde je levá strana vyjádřena jako součin. Nová rovnice je ekvivalentní rovnici původní (obě rovnice mají stejnou množinu řešení), ale postup řešení nové rovnice je snazší. řipomínáme: Součin je rovný nule, právě když alespoň jeden jeho činitel je roven nule. Druhý činitel x 2 je roven nule pro x = 2. Toto řešení jsme stanovili již v kroku 1. Další krok výpočtu (stanovení dalších kořenů) vychází z nulovosti prvního činitele (x 2 x 6). Hodnoty x, pro které je první činitel roven nule, jsou kořeny kvadratické rovnice x 2 x 6 = 0. I. Aritmetika a algebra DokonËenÌ eöenì kubickè rovnice ñ eöenì dìlëì kvadratickè rovnice řipomínáme, že kvadratická rovnice tvaru ax 2 + bx+ c = 0 má následující kořeny: x 1, 2 = b ± p b2 & 4ac 2a 171

6 I. Aritmetika a algebra Dokončíme nyní řešení uvedené kubické rovnice řešením dílčí kvadratické rovnice: x 2 x 6 = 0 a = 1, b = 1, c = 6 x 2,3 = 1 ± p ( 1)2 4 1 ( 6) 2 1 x 2,3 = 1 ± p25& 2 Označíme koeficienty. Dosadíme do vzorce s diskriminantem. Vypočteme výraz pod odmocninou. oznámka k označení kořenů: Kořen x 1 již známe. Nyní počítáme kořeny x 2 a x 3. Vypočteme odmocninu. x 2,3 = 1 ± 5 2 x 2 = = 3 Kořen obsahující + 2 x 3 = 1 5 = 2 Kořen obsahující 2 Rozdělíme výraz pro výpočet obou kořenů x 2,3 na dva výrazy pro kořeny x 2 a x 3. K= { 2, 2, 3} Množina řešení dané kubické rovnice. Všechna řešení jsou reálná čísla. Cíle bylo dosaženo. Všechny tři kořeny jsou známy, x 1 = 2, x 2 = 3, x 3 = 2. AlgebraickÈ rovnice n-tèho stupnï Rovnice pátého stupně má obecný tvar ax 5 + b x 4 + c x 3 + d x 2 + e x + f = 0 ředpokládáme, že a 0 (kdyby a = 0, pak by byl stupeň rovnice nejvýše 4), ostatní koeficienty b, c, d, e, f jsou libovolná reálná čísla (mohou to být i nuly). 172

7 Budeme užívat zápisu a 5 x 5 + a 4 x 4 + a 3 x 3 + a 2 x 2 + a 1 x+ a 0 = 0 Toto označení koeficientů lépe určuje polohu koeficientu; index koeficientu (číslo umístěné níže než a) udává, k jaké mocnině neznámé x koeficient přísluší. Například a 3 je koeficient před x 3. okud je a 3 = 0, znamená to, že v dané rovnici se mocnina x 3 nenachází. Rovnice n-tého stupně má obecný tvar: a n x n + a n-1 x n a 3 x 3 + a 2 x 2 + a 1 x+ a 0 = 0, kde a n 0 Výraz na levé straně uvedené rovnice se nazývá mnohočlen (polynom) n-tého stupně. I. Aritmetika a algebra Každá algebraická rovnice, tj. rovnice, kde neznámá x vystupuje pouze jako mocnina s celým kladným exponentem, se dá zapsat uvedeným způsobem. Rovnice x 4 3 = 0 je rovnicí čtvrtého stupně s koeficienty a 4 = 1, a 3 = 0, a 2 = 0, a 1 = 0, a 0 = 3 odrobně se všemi koeficienty a mocninami x můžeme uvedenou rovnici napsat následovně: 1 x x x x + ( 3) = 0 Z tohoto zápisu je zřejmé, že nepřítomnost mocnin x 3, x 2 a x v dané rovnici je způsobena tím, že odpovídající koeficienty jsou rovny nule. V kapitole o kvadratických rovnicích (str. 149) jsme ukázali, že kvadratická rovnice má dvě, jedno nebo žádné reálné řešení. Jinými slovy, kvadratická rovnice, tj. rovnice druhého stupně má nejvýše dvě reálná řešení. odobně lineární rovnice, tj. rovnice prvního stupně má jediné reálné řešení. ro rovnici n-tého řádu obecně platí: Rovnice n-tého řádu má nejvýše n reálných řešení (kořenů). 173

8 I. Aritmetika a algebra odobně jako kubické rovnice i rovnice čtvrtého a vyššího stupně řešíme dosazovací metodou v kombinaci s metodou dělení mnohočlenů. Metoda byla popsána v předchozí podkapitole. Zde jen zdůrazníme, že dosazovací metodou nemusíme dospět k cíli, pokud žádný kořen nebude celočíselný. Dá se ukázat, že jiné celočíselné kořeny než dělitele absolutního členu rovnice nemá. o každém stanovení kořene (např. x 1 ) dosazovací metodou dělíme rovnici výrazem (x x 1 ); vzniklá rovnice je stupně o 1 nižšího a opětovné použití dosazovací metody je snazší. V následující podkapitole uvedeme postup hledání kořenů pro speciální případ rovnice čtvrtého stupně. Rovnice ËtvrtÈho stupnï Rovnice čtvrtého stupně má obecný tvar a 4 x 4 + a 3 x 3 + a 2 x 2 + a 1 x+ a 0 = 0 Rovnice má nejvýše čtyři reálné kořeny, které lze stanovit (pokud jsou celočíselné) za pomoci dosazování a dělení mnohočlenu stejně jako v případě rovnice kubické (viz podkapitolu Kubická rovnice, str. 168 a Dělení mnohočlenů, str. 169). Jednodušší postup řešení se nabízí v případě, že se jedná o speciální případ rovnice čtvrtého stupně, tzv. rovnici bikvadratickou. Kořeny této rovnice se dají najít pomocí vzorce s diskriminantem pro rovnice kvadratické. Způsob řešení je založen na zajímavé myšlence a není příliš pracný. Rovnice bikvadratickè Rovnice x 4 13x = 0 je rovnicí čtvrtého stupně vyznačující se tím, že obsahuje pouze sudé mocniny neznámé x. To se ukáže jako rozhodující v následujícím postupu výpočtu, který nevyžaduje dělení mnohočlenů. Bikvadratickými rovnicemi rozumíme rovnice typu a 4 x 4 + a 2 x 2 + a 0 = 0, kde a

9 Ve srovnání s obvyklou kvadratickou rovnicí ax 2 + bx+ c = 0 má bikvadratická rovnice a 4 x 4 + a 2 x 2 + a 0 = 0 dvojnásobné exponenty u neznámé x. roto se jí také říká bikvadratická neboli dvoukvadratická. V následujícím příkladu bude ilustrován postup využívající uvedenou souvislost s kvadratickou rovnicí. Řešme rovnici x 4 13x = 0. V uvedené rovnici nahradíme výraz x 2 novou neznámou u (a tudíž výraz x 4 = (x 2 ) 2 nahradíme výrazem u 2 ) a dostáváme kvadratickou rovnici u 2 13u + 36 = 0. Nyní již můžeme použít vzorec pro kořeny kvadratické rovnice (str. 154): u 2 13u + 36 = 0 Stanovíme koeficienty a, b, c. a = 1, b = 13, c = 36 Dosadíme je do vzorce pro kořeny kvadratické rovnice. u 1,2 = 13 ± p ( 13) u 1,2 = 13 ± p25& 2 Vzorec s diskriminantem. Řešení označíme u 1, u 2, protože neznámou v kvadratické rovnici je u. Vypočteme výraz pod odmocninou. Ve výrazu odmocníme a výraz rozdělíme na dva kořeny. u 1 = 18 2 = 9 Kořen s + I. Aritmetika a algebra u 2 = 8 2 = 4 Kořen s Stanovili jsme dvě řešení kvadratické rovnice: u 1 = 9, u 2 = 4. Úloha není ještě zcela rozřešena, protože naším cílem je stanovit kořeny bikvadratické rovnice x 4 13x = 0. Je třeba se vrátit k původní neznámé x: Uvažujme tedy opět kvadratickou rovnici u 2 13u + 36 = 0: 1. řešení 2. řešení u= 9 výsledek výpočtu u= 4 u= x 2 dosazení u= x 2 x 2 = 9 návrat k původní neznámé x 2 = 4 175

10 I. Aritmetika a algebra o návratu k původní neznámé provedeme další výpočty: x 2 = 9 odmocníme x 2 = 4 ozor: pro každou rovnici dostaneme dvě řešení! x 1,2 = ± 3 Rozdělíme na kladná x 3,4 = ± 2 a záporná řešení: x 1 = 3 kladná řešení x 3 = 2 x 2 = 3 záporná řešení x 4 = 2 Cíle bylo dosaženo: stanovili jsme čtyři kořeny dané bikvadratické rovnice. Všechna řešení jsou reálná čísla, množinou řešení je K = { 3, 2, 2, 3}. Uvedeným způsobem lze řešit všechny bikvadratické rovnice. Metoda nahrazování neznámých se nazývá substituce. Tuto metodu lze použít uvedeným způsobem jen tehdy, jsou-li všechny exponenty u neznámé sudé. 176

11 lohy 1. Stanovte množinu řešení pro následující rovnice řešené v oboru reálných čísel: a) x 3 2x 2 x + 2 = 0 b) x 3 + 5x 2 2x 24 = 0 c) 2x 3 10x x = 0 2. Stanovte množinu řešení pro následující rovnice. Navrhujeme následující způsob řešení: 1. Dosazením rozhodněte, které z uvedených hodnot jsou kořeny dané rovnice. 2. Dělte mnohočlen odpovídajícím kořenovým činitelem: (x kořen). 3. oužijte vzorec pro řešení kvadratické rovnice. 4. Rozhodněte, zda nalezené řešení patří do definičního oboru dané rovnice a) D =, x 2 4x 3 x x 12 = 0 možná řešení: 3, 2, 1, 0, 1, 2, 3 b) D = +, x 2 + 2x 2 6x 16 = 0 možná řešení: 0, 1, 2, 3 I. Aritmetika a algebra 3. Ke stanovení množiny řešení daných bikvadratických rovnic navrhujeme následující způsob řešení: 1. Nahraďte určitou mocninu o základu x novou neznámou u tak, aby vznikla kvadratická rovnice tvaru au 2 + bu+ c = odle vzorce s diskriminantem stanovte řešení uvedené kvadratické rovnice o neznámé u. 3. Nahraďte zpětně neznámou u odpovídající mocninou x. 4. Stanovte původní neznámé x. a) x 4 13x = 0 b) 2x 4 + 4x 2 16 = 0 D = D = c) x 6 + 7x 3 8 = 0 (Tato rovnice je trojkvadratická.) D = 177

12 I. Aritmetika a algebra ÿeöenì 1. a) K = { 1, 1, 2} b) K = { 4, 3, 2} c) K = {0, 2, 3} Z výrazu na levé straně vytkneme x. rvní řešení je x= a) x 1 = 2, x 2 = 1 Kořeny jsou 2 a 1. x 3 = 2, x 4 = 3 Kořenové činitele jsou (x + 2) a (x 1). x 2 5x + 6 = 0 K = { 2, 1, 2, 3} (Dílčí) kvadratická rovnice. b) x 1 = 2, x 2 = 2 Kořeny jsou 2 a 2. x 2 2x + 4 = 0 Kořenové činitele jsou (x + 2) a (x 2). (Dílčí) kvadratická rovnice. K = {2} Jiná řešení nejsou, 2 nepatří do definičního oboru! 3. a) Dosazení u= x 2. x 1 = 3, x 2 = 3 Kvadratická rovnice u 2 13u + 36 = 0. x 3 = 2, x 4 = 2 Řešení v neznámé u : u 1 = 9, u 2 = 4 K = { 3, 2, 2, 3} Návrat k neznámé x: x 2 = 9, x 2 = 4 b) Dosazení u= x 2. Kvadratická rovnice: 2u 2 +4u 16 = 0 x 1 = %2&, x 2 = %2& Řešení v neznámé u : u 1 = 2, u 2 = 4 K = { %2&, %2&} Návrat k neznámé x: x 2 = 2, x 2 = 4 (tato rovnice nemá reálné řešení) c) Dosazení u= x 2. Kvadratická rovnice u 2 +7u 8 = 0. x 1 = 2, x 2 = 1 Řešení v neznámé u : u 1 = 8, u 2 = 1 K = { 2, 1} Návrat k neznámé x: x 3 = 8, x 3 = 1 178

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

MAT 1 Mnohočleny a racionální lomená funkce

MAT 1 Mnohočleny a racionální lomená funkce MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2 Obsah Definiční obory výrazů s proměnnou... Zápisy výrazů...3 Sčítání a odčítání mnohočlenů...4 Násobení mnohočlenů...5 Dělení mnohočlenů...7 Rozklad mnohočlenů na součin vytýkání...9 Rozklad mnohočlenů

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24.

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Neurčité rovnice 4. Nejjednodušší rovnice neurčité 2. stupně In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Persistent URL: http://dml.cz/dmlcz/402869

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) =

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) = ZJIŠŤOVÁNÍ DEFINIČNÍHO OBORU FUNKCÍ Definiční obor funkce f(x) zjišťujeme tímto postupem: I. Vypíšeme si všechny výrazy pro které by mohlo být něco zakázáno a napíšeme podmínky pro to, aby se ty zakázané

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

Informace k jednotlivým zkouškám na jednotlivých oborech:

Informace k jednotlivým zkouškám na jednotlivých oborech: Informace k jednotlivým zkouškám na jednotlivých oborech: Obor Obchodní akademie 63-41-M/004 1. Praktická maturitní zkouška Praktická maturitní zkouška z odborných předmětů ekonomických se skládá z obsahu

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11 Témata k ústní maturitní zkoušce z předmětu Účetnictví profilové části maturitní zkoušky Školní rok 2012/2013 třída: 4.T 1. Legislativní úprava účetnictví 2. Účetní dokumentace 3. Manažerské účetnictví

Více

Sbírka. úloh z matematiky. pro 2. ročník. tříletých učebních oborů

Sbírka. úloh z matematiky. pro 2. ročník. tříletých učebních oborů Sbírka úloh z matematik pro. ročník tříletých učebních oborů Jméno: Třída: Obsah Výraz Člen výrazu Absolutní hodnota Sčítání a odčítání výrazů 6 Násobení výrazů 6 Dělení výrazů jednočlenem 8 Vtýkání před

Více

Algebraické výrazy pro učební obory

Algebraické výrazy pro učební obory Variace 1 Algebraické výrazy pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Algebraické výrazy

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu matematika a ve volitelných předmětech Deskriptivní geometrie,

Více

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE Vzdělávací oblast : : Cílové zaměření vzdělávací oblasti Učíme žáky využívat matematických poznatků a dovedností v praktických činnostech rozvíjet pamětˇ žáků prostřednictvím

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10.

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10. 5.10. Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Matematika a její aplikace Matematika a její aplikace Seminář z matematiky Charakteristika vyučovacího předmětu Vyučovací předmět Seminář z

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Informace k jednotlivým zkouškám na jednotlivých oborech:

Informace k jednotlivým zkouškám na jednotlivých oborech: Informace k jednotlivým zkouškám na jednotlivých oborech: I. Obor Ekonomické lyceum 78-42-M/002 1. Práce s obhajobou z ekonomiky nebo společenských věd: Témata pro práci s obhajobou budou žáci zpracovávat

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět: Matematika

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět: Matematika 9. Matematika 104 Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět: Matematika Charakteristika vyučovacího předmětu Obsahové, časové a organizační

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

Vzdělávací oblast: Matematika a její aplikace. Vyučovací předmět: Matematika Ročník: 6. Mezipředmětové vztahy, průřezová témata, projekty, kurzy

Vzdělávací oblast: Matematika a její aplikace. Vyučovací předmět: Matematika Ročník: 6. Mezipředmětové vztahy, průřezová témata, projekty, kurzy Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 6. Žák: čte, zapisuje a porovnává přirozená čísla provádí početní operace s přirozenými čísly zpaměti a písemně provádí

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

5.2.2 Matematika - 2. stupeň

5.2.2 Matematika - 2. stupeň 5.2.2 Matematika - 2. stupeň Charakteristika předmětu Obsahové, časové a organizační vymezení předmětu: Vyučovací předmět Matematika na 2. stupni školy navazuje svým vzdělávacím obsahem na předmět Matematika

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více

Číselné soustavy a převody mezi nimi

Číselné soustavy a převody mezi nimi Číselné soustavy a převody mezi nimi Základní požadavek na počítač je schopnost zobrazovat a pamatovat si čísla a provádět operace s těmito čísly. Čísla mohou být zobrazena v různých číselných soustavách.

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT7

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT7 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT7. Najděte rovnici tečny ke křivce y x v bodě a. x Tečna je přímka. Přímka se zapisuje jako lineární

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ARITMETIKA - SEKUNDA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

UČEBNÍ OSNOVY VYUČOVACÍHO PŘEDMĚTU MATEMATIKA

UČEBNÍ OSNOVY VYUČOVACÍHO PŘEDMĚTU MATEMATIKA UČEBNÍ OSNOVY VYUČOVACÍHO PŘEDMĚTU MATEMATIKA 1. Obsahové vymezení předmětu Matematika prolíná celým základním vzděláváním a její výuka vede žáky především předmět Matematika zahrnuje vzdělávací Matematika

Více

MATEMATIKA - III. období (6. -9. ročník)

MATEMATIKA - III. období (6. -9. ročník) MATEMATIKA - III. období (6. -9. ročník) Charakteristika předmětu Při výuce ve III. období klademe důraz na porozumění matematickým pojmům a jejich souvislostem. Snažíme se žáky motivovat matematizací

Více

MATEMATIKA. 6. 9. ročník Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení

MATEMATIKA. 6. 9. ročník Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení MATEMATIKA 6. 9. ročník Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení Obsah vyučovacího předmětu Matematika je totožný s obsahem vyučovacího oboru Matematika a její aplikace.

Více

PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy

PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy PŘEDMĚT: MATEMATIKA ROČNÍK: PRVNÍ/KVINTA Školní výstupy Učivo Průřezová témata Poznámky, přesahy Žák určuje číselný obor daného čísla (N, Z, Q, R) a rozlišuje základní vlastnosti číselných oborů pracuje

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Základní cvičení z matematiky,

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Škola: Hotelová škola, Vyšší odborná škola hotelnictví a turismu

Více

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3 y, objemy nám vlastně říká, kolik tapety potřebujeme k polepení daného tělesa. Základní jednotkou jsou metry čtverečné (m 2 ). nám pak říká, kolik vody se do daného tělesa vejde. Základní jednotkou jsou

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

MATEMATIKA. Charakteristika předmětu:

MATEMATIKA. Charakteristika předmětu: Vzdělávací obor: Matematika a její aplikace MATEMATIKA Charakteristika předmětu: Předmět matematika je součástí vzdělávací oblasti Matematika a její aplikace. Na naší škole je jedním z hlavních vyučovacích

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

MATEMATIKA Přijímací zkoušky na ČVUT

MATEMATIKA Přijímací zkoušky na ČVUT Kolektiv MATEMATIKA Přijímací zkoušky na ČVUT Praha 200 Vydavatelství ČVUT Lektoři: doc. RNDr. Čeněk Zlatník, CSc. doc. RNDr. Ludmila Machačová, CSc. Jaroslav Černý, Růžena Černá, František Gemperle, Vladimíra

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více