EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek
|
|
- Vít Konečný
- před 5 lety
- Počet zobrazení:
Transkript
1 EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření Jan Krystek 9. května 2019
2 CHYBY A NEJISTOTY MĚŘENÍ Každé měření je zatíženo určitou nepřesností způsobenou nejrůznějšími negativními vlivy, které se vyskytují v měřícím procesu. Toto se projeví odchylkou mezi naměřenou a skutečnou hodnotou sledované veličiny. Výsledek měření se tak vždy pohybuje v určitém pravděpodobném rozsahu - chybovém intervalu 2/24
3 MĚŘENÍ V MECHANICE K vyhodnocení výsledků v technických měřeních můžeme volit různé přístupy. Při určení nepřesnosti měření existují dva základní postupy: chybový nejistoty měření 3/24
4 CHYBY MĚŘENÍ Chyby se vyjadřují v absolutních nebo relativních hodnotách. Podle jejich působení lze chyby dělit na: systematické náhodné hrubé Podle zdroje chyb se dělí na: chyby přístroje chyby metody chyby pozorování chyby vyhodnocení 4/24
5 CHYBY MĚŘENÍ - hrubé Hrubé chyby jsou způsobeny vyjimečnou příčinou, nesprávným zapsáním výsledku, náhlým selháním měřící aparatury, nesprávným nastavením podmínek měření apod. Naměřená hodnota se značně liší od ostatních hodnot získaných při opakovaném měření. Toto měření je třeba vyloučit ze zpracování, v opačném případě by zkreslovala výsledek. 5/24
6 CHYBY MĚŘENÍ - systematické Systematická chyba se přičítá či násobí k měřené hodnotě. Ovlivňuje je ji zpravidla jedním směrem. Chybu můžeme tedy matematicky z naměřených dat korigovat, pokud ji známe. Problémem je její identifikace a kvantifikace. Po následné korekci naměřených dat získáme správné výsledky měření. Odhalení může být někdy náročné. Pokud systematická chyba nevyplývá přímo z metody měření, není problém ji matematicky korigovat. Např. při nepřímém měření odporu voltmetrem a ampérmetrem se kompenzuje dle zapojení bud spotřeba ampérmetru nebo voltmetru. Je-li však korekce menší než chyby způsobené nepřesností přístrojů, nemusíme kompenzaci započítávat. 6/24
7 CHYBY MĚŘENÍ - systematické Další možností identifikace systematické chyby je srovnávací měření jinou metodou. V některých případech nás může na systematickou chybu upozornit i nesouhlas naměřených hodnot s matematickým modelem příslušného děje (výsledky neodpovídají teoretickému předpokladu). 7/24
8 CHYBY MĚŘENÍ - náhodné Nejčastěji uvažujeme o součtu velkého množství malých rušivých účinků, které ovlivňují výslednou hodnotu. Náhodnou chybu z jednoho měření nemůžeme stanovit. Potřebujeme vícenásobné měření a zpracování statistickými metodami za předpokladu určitého rozložení náhodných chyb. Minimální počet měření umožňující statistické zpracování je Maximální počet měření bývá omezen časem, náklady apod. Více než 100 násobné opakování zpravidla již výrazně nezpřesňuje výsledek. 8/24
9 Veličiny a výrazy spojené s chybami Správná hodnota měřené veličiny X i-tá hodnota veličiny x i Absolutní chyba měření xi = X x i tato chyba charakterizuje velikost intervalu, ve kterém bude skutečná hodnota pravděpodobně ležet absolutní chyba má rozměr měřené veličiny Relativní chyba měření δxi = x i X 100 [%] bezrozměrná veličina, obvykle se udává v procentech 9/24
10 Veličiny a výrazy spojené s chybami Měříme-li veličinu n krát, potom nejpravděpodobnější hodnotou měřené veličiny x je aritmetický průměr x = 1 n x i n Směrodatná (standardní) absolutní odchylka: δx = σ = 1 n n i=1 x 2 i, neboli, odmocnina z rozptylu, kde x i je zdánlivá absolutní chyba (odchylky od aritmetického průměru) Výsledek se napíše ve tvaru x = x ± δx Variační koeficient bezrozměrné číslo, jehož stonásobek udává variabilitu v %. 100 [%] vx = δx x 10/24
11 Zaokrouhlování hodnotu chybového intervalu zaokrouhlujeme NAHORU na jednu platnou číslici, ale v případě, že interval začíná číslicí 1 nebo 2, tak na dvě číslice a opět nahoru, hodnota výsledku se zaokrouhluje (matematicky 0-4 dolů, 5-9 nahoru) na stejný počet míst jako hodnotu chybového intervalu, pokud není v desetinné části hodnoty dostatečný počet platných cifer, musíme v zápisu doplnit nuly podle řádu chyby. 11/24
12 Zaokrouhlování Podle výše uvedeného zaokrouhlete tyto hodnoty: 0,5678 ± 0,0031? ±? 0,5678 ± 0,0273? ±? 5,4 ± 0,0056? ±? 2,1004 ± 0,008? ±? 2,1005 ± 0,008? ±? 364,25 ± 0,91? ±? 364,25 ± 0,81? ±? 12/24
13 Zaokrouhlování Podle výše uvedeného zaokrouhlete tyto hodnoty: 0,5678 ± 0,0031 0,568 ± 0,004 0,5678 ± 0,0273 0,5678 ± 0,0028 5,4 ± 0,0056 5,400 ± 0,006 2,1004 ± 0,008 2,100 ± 0,008 2,1005 ± 0,008 2,101 ± 0, ,25 ± 0, ± 1 364,25 ± 0,81 364,3 ± 0,9 13/24
14 Měřící přístroje Z hlediska zobrazení údajů dělíme přístroje na analogové - mechanický pohyb ručičky (případně stupnice vůči rysce...), digitální - ukazují přímo číselnou hodnotu (zahrnujeme se i měřidla, která ručku nebo sloupec jen zobrazují na displeji). 14/24
15 Analogové přístroje U analogových měřidel pracujeme s těmito veličinami měřící rozsah (max. hodnota, kterou můžeme měřit) - M, maximální absolutní chyba - u, třída přesnosti měřidla - T = u M 100 (normované hodnoty třídy přesnosti - 1; 1,5; 2,5; 5) 15/24
16 Analogové přístroje ČTENÍ STUPNICE měřidlo musí být v předepsané poloze chyby mohou vzniknout při nesprávném pozorování (z nesprávného úhlu, dojde ke zkreslení...) dle velikosti čárky vůči velikosti ručičky jsme schopni rozlišit zpravidla ±0,5 velikosti dílku jsou-li čárky tenké vůči jejich vzdálenosti, můžeme odhadovat desetiny nejmenších dílků a chyba je ±0,1 0,2 dílku. 16/24
17 Analogové přístroje PŘÍKLAD CHYBY ANALOGOVÉHO PŘÍSTROJE Rozsah měřidla je M = 30, jeho třída přesnosti je T = 2,5, naměřená hodnota x = 14,5. Určete chybu měření. 17/24
18 Analogové přístroje PŘÍKLAD CHYBY ANALOGOVÉHO PŘÍSTROJE Rozsah měřidla je M = 30, jeho třída přesnosti je T = 2,5, naměřená hodnota x = 14,5. Určete chybu měření. Řešení: u = M T 100 = 30 2,5 100 = 0,75 0,8 δx = u x = 0,75 14,5 = 0, ,05 Hodnota x = 14,5 ± 0,8. Relativní chyba měření je 5%. 17/24
19 Digitální přístroje Tyto měřidla ukazují přímo číselnou hodnotu, tudíž odpadají chyby pozorování, případně přepočítání apod. Chybu přístroje výrobci udávají jako součet dvou členů a to dvěma způsoby ± (% chyby čtení + % chyby rozsahu), ± (% chyby čtení + počet digitů s nejmenší váhou (LSB)), zjednodušeně je možno uvádět jejich třídu přesnosti jako u analogových přístrojů. Displeje jsou charakterizovány svoji délkou - počtem zobrazených cifer 18/24
20 Nejistota měření Jedná se o komplexnější posouzení měření. Uvažuje se celý měřící řetězec (fyzikální jev, etalon, kalibrační postup, měřidlo, rušivé vlivy,...). Často se však v řetězci uplatňuje nepřesnost pouze jednoho jeho článku. Dle charakteru rozlišujeme dvě nejistoty: typu A nebo B. 19/24
21 Nejistota měření Výpočtu nejistot se týkají následující parametry nejistota typu A B u A u A, koeficient nejistoty typu A k A, rozšířená nejistota typu A a koeficient rozšíření u S = k S u A 20/24
22 Nejistota měření typu A je způsobena mnoha malými náhodnými vlivy (podobně jako náhodné chyby), pokud je počet měření n alespoň 10, pak je určení nejistot stejné jako u stanovení chyby, při menším počtu násobíme chybu koeficientem k A z tabulky níže, jelikož se zmenšujícím se n totiž klesá věrohodnost nejistoty počet měření n koef. k A /24
23 Nejistota měření typu A Rozšířená nejistota pokud interval nejistoty u A vynásobíme konstantou k S, pak mluvíme o rozšířených nejistotách, pro k S = 2 do intervalu spadá 95% hodnot z n měření, pro k S = 3 je to 99,7% hodnot, pro k S = 1 je to 68% hodnot. 22/24
24 Nejistota měření typu B nemá náhodný charakter, při opakovaných měřeních na sebe upozorní trvalým výskytem, stanovíme ji z charakteru měření, bez statistického výpočtu, při jejím určení tedy odhadujeme maximální rozsah odchylek od naměřené hodnoty tak, aby v něm skutečná hodnota s velkou pravděpodobností ležela. 23/24
25 Použitá literatura Chyby a nejistoty měření; P. Schovánek, V. Havránek, text vznikl v rámci projektu: Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ khe0007/opory/opory.php?stranka= nejistota_postup 24/24
Posouzení přesnosti měření
Přesnost měření Posouzení přesnosti měření Hodnotu kvantitativně popsaného parametru jakéhokoliv objektu zjistíme jedině měřením. Reálné měření má vždy omezenou přesnost V minulosti sloužila k posouzení
VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření
VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ # Nejistoty měření Přesnost měření Klasický způsob vyjádření přesnosti měření chyba měření: Absolutní chyba X = X M X(S) Relativní chyba δ X = X(M) X(S) - X(M) je naměřená hodnota
Úvod do teorie měření. Eva Hejnová
Úvod do teorie měření Eva Hejnová Literatura: Novák, R. Úvod do teorie měření. Ústí nad Labem: UJEP, 2003 Sprušil, B., Zieleniecová, P.: Úvod do teorie fyzikálních měření. Praha: SPN, 1985 Brož, J. a kol.
Úvod do teorie měření. Eva Hejnová
Úvod do teorie měření Eva Hejnová Program semináře 1. Základní pojmy - metody měření, druhy chyb, počítání s neúplnými čísly, zaokrouhlování 2. Chyby přímých měření - aritmetický průměr a směrodatná odchylka,
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT
PROKAZOVÁNÍ SHODY VÝROBKŮ část 3, díl 8, kapitola 4, str. 1 3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT Vyjadřování standardní kombinované nejistoty výsledku zkoušky Výsledek zkoušky se vyjadřuje v
Chyby a nejistoty měření
Moderní technologie ve stdi aplikované fyziky CZ..07/..00/07.008 Chyby a nejistoty měření (doplňjící tet k laboratorním cvičení) Připravili: Petr Schovánek, Vítězslav Havránek Obsah Obsah... Seznam ilstrací...
Úvod do teorie měření. Eva Hejnová
Úvod do teorie měření Eva Hejnová Literatura: Novák, R. Úvod do teorie měření. Ústí nad Labem: UJEP, 2003 Sprušil, B., Zieleniecová, P.: Úvod do teorie fyzikálních měření. Praha: SPN, 1985 Brož, J. a kol.
Manuální, technická a elektrozručnost
Manuální, technická a elektrozručnost Realizace praktických úloh zaměřených na dovednosti v oblastech: Vybavení elektrolaboratoře Schématické značky, základy pájení Fyzikální principy činnosti základních
Chyby a neurčitosti měření
Radioelektronická měření (MREM) Chyby a neurčitosti měření 10. přednáška Jiří Dřínovský Ústav radioelektroniky FEKT VUT v Brně Základní pojmy Měření je souhrn činností s cílem určit hodnotu měřené veličiny
T- MaR. Ústav technologie, mechanizace a řízení staveb. Teorie měření a regulace. Podmínky názvy. 1.c-pod. ZS 2015/ Ing. Václav Rada, CSc.
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace Podmínky názvy 1.c-pod. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. MĚŘENÍ praktická část OBECNÝ ÚVOD Veškerá měření mohou probíhat
Úvod do teorie měření. Eva Hejnová
Úvod do teorie měření Eva Hejnová Podmínky získání zápočtu: Podmínkou pro získání zápočtu je účast na cvičeních (maximálně tři absence) a úspěšné splnění jednoho písemného testu alespoň na 50 % max. počtu
Laboratorní práce č. 1: Měření délky
Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.
Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 Teorie měření a regulace Praxe názvy 1. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. OBECNÝ ÚVOD - praxe Elektrotechnická měření mohou probíhat pouze při
Literatura Elektrická měření - Přístroje a metody, Metrologie Elektrotechnická měření - měřící přístroje
Měření Literatura Haasz Vladimír, Sedláček Miloš: Elektrická měření - Přístroje a metody, nakladatelství ČVUT, 2005, ISBN 80-01-02731-7 Boháček Jaroslav: Metrologie, nakladatelství ČVUT, 2013, ISBN 978-80-01-04839-9
Počítání s neúplnými čísly 1
Aproximace čísla A: Počítání s neúplnými čísly 1 A = a ± nebo A a, a + Aproximace čísla B: B = b ± β nebo B b β, b + β nebo a A a+ nebo b β B b + β Součet neúplných čísel odvození: a + b β A + B a+ + (b
Chyby měřidel a metody měření vybraných fyzikálních veličin
Chyby měřidel a metody měření vybraných fyzikálních veličin Jaké měřidlo je vhodné zvolit? Pravidla: Přesnost měřidla má být pětkrát až desetkrát vyšší, než je požadovaná přesnost měření. Např. chceme-li
Chyby měřidel a metody měření vybraných fyzikálních veličin
Chyby měřidel a metody měření vybraných fyzikálních veličin Viz oskenovaný text ze skript Sprušil, Zieleniecová: Úvod do teorie fyzikálních měření http://physics.ujep.cz/~ehejnova/utm/materialy_studium/chyby_meridel.pdf
Chyby měřidel a metody měření vybraných fyzikálních veličin
Chyby měřidel a metody měření vybraných fyzikálních veličin Jaké měřidlo je vhodné zvolit? Pravidla: Přesnost měřidla má být pětkrát až desetkrát vyšší, než je požadovaná přesnost měření. Např. chceme-li
Charakterizují kvantitativně vlastnosti předmětů a jevů.
Měřicí aparatura 1 / 34 Fyzikální veličiny Charakterizují kvantitativně vlastnosti předmětů a jevů. Můžeme je dělit: Podle rozměrů: Bezrozměrné (index lomu, poměry) S rozměrem fyzikální veličiny velikost
Měřicí přístroje a měřicí metody
Měřicí přístroje a měřicí metody Základní elektrické veličiny určují kvalitativně i kvantitativně stav elektrických obvodů a objektů. Neelektrické fyzikální veličiny lze převést na elektrické veličiny
Čas potřebný k prostudování učiva kapitoly: 1,25 hodiny
Fyzikální praktikum III 15 3. PROTOKOL O MĚŘENÍ V této kapitole se dozvíte: jak má vypadat a jaké náležitosti má splňovat protokol o měření; jak stanovit chybu měřené veličiny; jak vyhodnotit úspěšnost
Náhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
Technický experiment, příprava, provedení, hodnocení výsledků
Technický experiment, příprava, provedení, hodnocení výsledků 1 Katedra stavebních hmot a hornického stavitelství VŠB - Technická univerzita Ostrava 8. 3. 2012 Experiment Experiment se snaží získat potřebné
Úvod do problematiky měření
1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek
Vyjadřování přesnosti v metrologii
Vyjadřování přesnosti v metrologii Měření soubor činností, jejichž cílem je stanovit hodnotu veličiny. Výsledek měření hodnota získaná měřením přisouzená měřené veličině. Chyba měření výsledek měření mínus
Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb semmmm Teorie měření a regulace nejistoty - 2 17.SPEC-ch.3. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. NEJISTOTY MĚŘENÍ a co s tím souvisí 2. Speciál informací
Náhodné (statistické) chyby přímých měření
Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně
CW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace 17.SPEC-ch.2. ZS 2014/2015 2014 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace
Přesnost a chyby měření
Přesnost a chyby měření Výsledek každého měření se poněkud liší od skutečné hodnoty. Rozdíl mezi naměřenou hodnotou M a skutečnou hodnotou S se nazývá chyba měření. V praxi se rozlišují dvě chyby, a to
STATISTICKÉ ODHADY Odhady populačních charakteristik
STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s
POČET PLATNÝCH ČÍSLIC PRAVIDLA PRO UVÁDĚNÍ VÝSLEDKŮ MĚŘENÍ 2
PRAVIDLA PRO UVÁDĚNÍ VÝSLEDKŮ MĚŘENÍ RNDr. Simona Klenovská ČMI Brno POČET PLATNÝCH ČÍSLIC PRAVIDLA PRO UVÁDĚNÍ VÝSLEDKŮ MĚŘENÍ 2 Při stanovování počtu platných číslic použijeme následující metodu: u každého
Mˇ eˇren ı ˇ cetnost ı (Poissonovo rozdˇ elen ı) 1 / 56
Měření četností (Poissonovo rozdělení) 1 / 56 Měření četností (Poissonovo rozdělení) Motivace: měření aktivity zdroje Geiger-Müllerův čítac: aktivita: 1 Bq = 1 částice / 1 s = s 1 Jaká je přesnost měření?
Technická diagnostika, chyby měření
Technická diagnostika, chyby měření Obsah přednášky Technická diagnostika Měřicí řetězec Typy chyb měření Příklad diagnostiky: termovize ložisko 95 C měření 2/21 Co to je? Technická diagnostika Obdoba
2. PŘESNOST MĚŘENÍ A1B38EMA P2 1
. ŘESNOST MĚŘENÍ přesnost měření nejistota měření, nejistota typ A a typ B, kombinovaná nejistota, nejistoty měření kazovacími (analogovými) a číslicovými měřicími přístroji, nejistota při nepřímých měřeních,
STATISTICKÉ CHARAKTERISTIKY
STATISTICKÉ CHARAKTERISTIKY 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Základy popisné statistiky
Základy popisné statistiky Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 26 Obsah 1 Základy statistického zpracování dat 2
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní
Manuál pro zaokrouhlování
Manuál pro zaokrouhlování k předmětu Pravděpodobnost a Statistika (PS) Michal Béreš, Martina Litschmannová 19. března 2019 Obsah 1 Úvod 2 2 Obecné poznámky 2 2.1 Typy zaokrouhlování...........................................
UKAZATELÉ VARIABILITY
UKAZATELÉ VARIABILITY VÝZNAM Porovnejte známky dvou studentek ze stejného předmětu: Studentka A: Studentka B: Oba soubory mají stejný rozsah hodnoty, ale liší se známky studentky A jsou vyrovnanější, jsou
Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy )
Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy ) Kalibrace se provede porovnávací metodou pomocí kalibrovaného ocelového měřicího
Základní statistické charakteristiky
Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické
Detailní porozumění podstatě měření
Nejistoty Účel Zjištění intervalu hodnot okolo výsledku měření, který lze přiřadit k hodnotě měřené veličiny Nejčastěji X X [%] X U X U [%] V roce 1990 byl vydán dokument WECC 19/90, který představoval
Zákony hromadění chyb.
Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky
Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy
Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Základní terminologické pojmy (Mezinárodní metrologický slovník VIM3)
Základní terminologické pojmy (Mezinárodní metrologický slovník VIM3) Přesnost a správnost v metrologii V běžné řeči zaměnitelné pojmy. V metrologii a chemii ne! Anglický termín Measurement trueness Measurement
Diskrétní náhodná veličina
Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné
Měření délky, určení objemu tělesa a jeho hustoty
Úloha č. 1a Měření délky, určení objemu tělesa a jeho hustoty Úkoly měření: 1. Seznámení se s měřicími přístroji posuvné měřítko, mikrometr, laboratorní váhy. 2. Opakovaně (10x) změřte rozměry dvou zadaných
Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,
Statistika pro geografy
Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických
STAVEBNÍ LÁTKY CVIČEBNICE K PŘEDMĚTU AI01
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Ústav stavebního zkušebnictví STAVEBNÍ LÁTKY CVIČEBNICE K PŘEDMĚTU AI1 Ing. Věra Heřmánková, Ph.D. a kolektiv Student: Studijní skupina: Školní rok: Zkratka
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta ANALÝZA VÝSLEDKŮ DOTAZNÍKOVÉHO ŠETŘENÍ (FAKULTNÍ DOTAZNÍK) semestrální práce z předmětu STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÉHO ŠETŘENÍ Jan Kubiš, Kateřina
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. GUM: Vyjádření nejistot měření
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE GUM: Vyjádření nejistot měření Chyby a nejistoty měření - V praxi nejsou žádná měření, žádné měřicí metody ani žádné přístroje absolutně přesné. - Výsledek měření
Analytické znaky laboratorní metody Interní kontrola kvality Externí kontrola kvality
Analytické znaky laboratorní metody Interní kontrola kvality Externí kontrola kvality RNDr. Alena Mikušková FN Brno Pracoviště dětské medicíny, OKB amikuskova@fnbrno.cz Analytické znaky laboratorní metody
CW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2014/2015 2.p-1a.mt 2014 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace
Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty
Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)
Pravděpodobnost a statistika
Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,
2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení
2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků
SYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1. ročník bakalářského studia studijní program G studijní obor G
SYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc s využitím přednášky doc Ing Martina
Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb semmmm Teorie měření a regulace chyby*nejistoty - 2 17.SP-ch.4cv ZS 2015/2016 2015 - Ing. Václav Rada, CSc. CHYBY Označení v literatuře není jednotné. obvyklý
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454. Název DUM: Měření fyzikálních veličin
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Měření fyzikálních
Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY
VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový
ρ = měrný odpor, ρ [Ω m] l = délka vodiče
7 Kapitola 2 Měření elektrických odporů 2 Úvod Ohmův zákon definuje ohmický odpor, zkráceně jen odpor, R elektrického vodiče jako konstantu úměrnosti mezi stejnosměrným proudem I, který protéká vodičem
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním
Střední průmyslová škola elektrotechnická a informačních technologií Brno
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:
Zpracování experimentu I
Zpracování experimentu I Eva Kutálková, Petr Ponížil Strategický projekt UTB ve Zlíně, reg. č. CZ.02.2.69/0.0/0.0/16_015/0002204 Chyby měření Absolutní chyba měření X je rozdíl mezi hodnotou správnou X
Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY
VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový
Resolution, Accuracy, Precision, Trueness
Věra Fišerová 26.11.2013 Resolution, Accuracy, Precision, Trueness Při skenování se používá mnoho pojmů.. Shodnost měření, rozlišení, pravdivost měření, přesnost, opakovatelnost, nejistota měření, chyba
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
2 Přímé a nepřímé měření odporu
2 2.1 Zadání úlohy a) Změřte jednotlivé hodnoty odporů R 1 a R 2, hodnotu odporu jejich sériového zapojení a jejich paralelního zapojení, a to těmito způsoby: přímou metodou (RLC můstkem) Ohmovou metodou
Stanovení akustického výkonu Nejistoty měření. Ing. Miroslav Kučera, Ph.D.
Stanovení akustického výkonu Nejistoty měření Ing. Miroslav Kučera, Ph.D. Využití měření intenzity zvuku pro stanovení akustického výkonu klapek? Výhody: 1) přímé stanovení akustického výkonu zvláště při
23. Matematická statistika
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti
Elektrotechnická měření a diagnostika
Chyby měření analogovými přístroji Absolutní a relativní chyba Třída přesnosti Ověřování MP Ověřování MP Ověřování MP Ověřování MP Ověřování MP Chyby digitálních měřících přístrojů příklad
3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.
Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost
Střední od 1Ω do 10 6 Ω Velké od 10 6 Ω do 10 14 Ω
Měření odporu Elektrický odpor základní vlastnost všech pasivních a aktivních prvků přímé měření ohmmetrem nepříliš přesné používáme nepřímé měřící metody výchylkové můstkové rozsah odporů ovlivňující
POKYN PRO UVÁDĚNÍ SHODY A NEJISTOT MĚŘENÍ V PROTOKOLECH O ZKOUŠKÁCH
POKYN PRO UVÁDĚNÍ SHODY A NEJISTOT MĚŘENÍ V PROTOKOLECH O ZKOUŠKÁCH Obsah. ÚČEL 2 2. SOUVISEJÍCÍ PŘEDPISY 2 3. VYSVĚTLENÍ POJMU DEFINICE NEJISTOTA MĚŘENÍ 2 4. STANOVENÍ NEJISTOTY MĚŘENÍM 3 4. STANOVENÍ
Popisná statistika. Statistika pro sociology
Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky
Korekční křivka napěťového transformátoru
8 Měření korekční křivky napěťového transformátoru 8.1 Zadání úlohy a) pro primární napětí daná tabulkou změřte sekundární napětí na obou sekundárních vinutích a dopočítejte převody transformátoru pro
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy:
1 Pracovní úkoly 1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: (a) cívka bez jádra (b) cívka s otevřeným jádrem (c) cívka s uzavřeným jádrem 2. Přímou metodou změřte odpor
1. Změřit metodou přímou závislost odporu vlákna žárovky na proudu, který jím protéká. K měření použijte stejnosměrné napětí v rozsahu do 24 V.
1 Pracovní úkoly 1. Změřit metodou přímou závislost odporu vlákna žárovky na proudu, který jím protéká. K měření použijte stejnosměrné napětí v rozsahu do 24 V. 2. Změřte substituční metodou vnitřní odpor
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
1 Analytické metody durace a konvexita aktiva (dluhopisu) $)*
Modely analýzy a syntézy plánů MAF/KIV) Přednáška 10 itlivostní analýza 1 Analytické metody durace a konvexita aktiva dluhopisu) Budeme uvažovat následující tvar cenové rovnice =, 1) kde jsou současná
Číselné charakteristiky a jejich výpočet
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava ŠKOMAM 2016 Jak získat data? Primární zdroje dat Vlastní měření (fyzika, biologie,
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
Bezpečnost práce, měření fyzikálních veličin, chyby měření
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 1 Bezpečnost práce, měření fyzikálních
( ) C ( ) C ( ) C
1. 2. Jaderná elektrárna Temelín, 373 05 Temelín Obor měřené veličiny: Teplota Kalibrace: Nominální teplota pro kalibraci: (23±3) C Nominální teplota mimo prostory laboratoře: (-10 až 50) C 1) Měřená veličina
1. GPIB komunikace s přístroji M1T330, M1T380 a BM595
1. GPIB komunikace s přístroji M1T330, M1T380 a BM595 Přístroje se programují a ovládají tak, že se do nich z řídícího počítače pošle řetězec, který obsahuje příslušné pokyny. Ke každému programovatelnému
Vyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě.
oučinitel odporu Vyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě Zadání: Vypočtěte hodnotu součinitele α s platinového odporového teploměru Pt-00
Zaokrouhlování: Směrodatná odchylka se zaokrouhluje nahoru na stanovený počet platných cifer. Míry
Červenou barvou jsou poznámky, věci na které máte při vypracovávání úkolu myslet. Úkol 1 a) Pomocí nástrojů explorační analýzy analyzujte kapacity akumulátorů výrobce A po 5 a po 100 nabíjecích cyklech.
Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb semmmm Teorie měření a regulace chyby 1 17.SPEC-ch.2. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. CHYBY MĚŘENÍ a co s tím souvisí 1. Speciál informací o chybách
Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík
Nejistota měř ěření, návaznost a kontrola kvality Miroslav Janošík Obsah Referenční materiály Návaznost referenčních materiálů Nejistota Kontrola kvality Westgardova pravidla Unity Referenční materiál
Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni
Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni Kvantifikace dat Pro potřeby statistického zpracování byly odpovědi převedeny na kardinální intervalovou