Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, TESTY DOBRÉ SHODY (angl. goodness-of-fit tests)
|
|
- Filip Bláha
- před 6 lety
- Počet zobrazení:
Transkript
1 Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, např. hmotnost a pohlaví narozených dětí. Běžný statistický postup pro ověření závislosti dvou veličin je zamítnutí jejich nezávislosti. Pokud bychom jejich nezávislost (H 0 - nulovou hypotézu) nemohli zamítnout, pak nemůžeme usuzovat na jejich závislost. TESTY DOBRÉ SHODY (angl. goodness-of-fit tests) ověřují, zda reálné četnosti získané statistickým šetřením se odlišují od očekávaných četností vypočtených na základě nulové hypotézy nezávislosti.
2 Zkoumané veličiny X a Y (váhu a pohlaví narozených dětí) uspořádáme do kontingenční tabulky. Skutečně naměřené Váha do 2 kg 2-3 kg 3-4 kg nad 4 kg Celkem (empirické) četnosti Chlapci Holčičky Tabulka 1 Celkem Pomocí marginálních četností (v šedém sloupci a šedém řádku) vypočteme tzv. očekávané neboli teoretické četnosti Váha do 2 kg 2-3 kg 3-4 kg nad 4 kg Celkem Tabulka 2 Chlapci 18,56 229,78 324,09 19, Holčičky 18,44 228,22 321,91 19, Celkem
3 Nulovou hypotézu H 0 : veličiny váha a pohlaví jsou nezávislé zamítneme, když se pozorované četnosti n ij budou významně lišit od očekávaných četností e ij. Testovým kritériem je statistika, která má asymptomaticky (tj. pro dostatečně velké četnosti) rozdělení χ 2 s (r - 1)(s - 1) stupni volnosti r s ( nij eij ) 2 χ = e i= 1 j= 1 r - počet řádků, s - počet sloupců Stupeň volnosti - je počet řádků (sloupců) tabulky, do kterých je možno vložit libovolnou hodnotu a přitom dodržet stanovený řádkový (sloupcový) součet. Dostatečně velké četnosti jsou takové, kdy všechny očekávané četnosti jsou větší než 1 (>1) a naprostá většina očekávaných četností (alespoň 80%) je > 5. ij 2
4 Statistika chí-kvadrát - Tabulka 3 Váha do 2 kg 2-3 kg 3-4 kg nad 4 kg Celkem Chlapci 0,32 2,35 1,65 0,34 4,65 Holčičky 0,32 2,36 1,66 0,34 4,68 Celkem 0,64 4,71 3,30 0,68 9,33 V tabulce jsou vypočteny příspěvky chí-kvadrát každého políčka, jejich součet je výsledná testovací statistika. 2 Je-li testovací statistika větší než "kritická" hodnota rozdělení χ pro zvolenou hladinu významnosti, zamítáme nulovou hypotézu o shodě empirického a teoretického rozložení. Riziko, že hypotézu zamítneme neoprávněně, se rovná zvolené hladině významnosti α. V opačném případě přijímáme hypotézu o shodě. V našem příkladu je vypočtená statistika chí-kvadrát = 9,33 a kritická hodnota (pro zvolenou hladinu významnosti α = 0,05) = 7,81 9,33 > 7,81 => zamítáme nulovou hypotézu
5 Ověřit můžeme výsledek pomocí p-hodnoty, kterou vypočteme funkcí CHITEST s parametry (empirické četnosti; teoretické četnosti) V našem příkladu je =CHITEST(empirické četnosti; teoretické četnosti) = 0,025, tj. p-hodnota < hladina významnosti α 0,025 < 0,05 => zamítáme nulovou hypotézu Zamítneme-li hypotézu o nezávislosti, pak nás obvykle zajímá, které pozorované četnosti (která políčka kontingenční tabulky) se od četností očekávaných významně odchylují. Říkáme, že vyhledáváme zdroje závislosti. Jedna z nejjednodušších metod je posouzení příspěvků jednotlivých políček tabulky k hodnotě testové statistiky 2 viz TABULKA 3. r s ( nij eij ) 2 χ = e i= 1 j= 1 ij
6 Přesnější je ale užít tzv. standardizovaná residua normované normální rozdělení, tzn. významná jsou políčka s absolutní hodnotou standardizovaných residuí větší než 2 (směrodatné odchylky). n e, která mají přibližně Standardizované odchylky Tabulka 4 Váha do 2 kg 2-3 kg 3-4 kg nad 4 kg Celkem Chlapci 0,566 1,532-1,283-0,580 0,235 Holčičky -0,568-1,537 1,287 0,582-0,236 Celkem -0,002-0,005 0,004 0,002-0,001 Užijeme-li standardizovaná residua, podle jejich znaménka vidíme navíc, zda pozorovaná četnost je větší či menší než očekávaná. ij e ij ij
7 KONTINGENČNÍ TABULKA 2 x 2 Kontingenční tabulky často používáme v EPIDEMIOLOGII. Velmi často používáme právě tabulku 2 x 2 k zjištění, zda - výskyt vybrané diagnózy závisí na uvažované expozici - léčba nebo změna životního stylu má vliv na zdraví jedince - osvětové programy ovlivnily zdraví populace Náhodná veličina Y - např. onemocnění Náhodná veličina X - obvykle expozice ANO NE Celkem ANO a b a + b NE c d c + d Celkem a + c b + d a + b + c + d = n
8 K popisu četností v této tzv. čtyřpolní tabulce používáme pouze 4 hodnoty, proto je i pro zápis zjednodušeného výpočtu označujeme a, b, c, d χ 2 test nezávislosti v tabulce 2 x 2 Vzorec pro výpočet statistiky chí-kvadrát se zjednoduší na tvar: 2 2 ( ad bc) χ = n ( a + b)( a + c)( b + d)( c + d) Na příkladu testování vrozené vady kyčlí u dívek a chlapců (viz "6b_priklad_vady_kycli.xls") vidíme, že pro velké počty pozorovaných (a očekávaných) hodnot vychází CHITEST stejně jako výpočet podle zjednodušeného vzorce.
9 Pro malé pozorované (očekávané) četnosti můžeme test nezávislosti zpřesnit tzv. Yatesovou korekcí. Yatesova korekce 2 χ n 2 ( ad bc ) = 2 ( a + b)( a + c)( b + d)( c + d) n Tato veličina má opět rozdělení chí-kvadrát s jedním stupněm volnosti
10 Fischerův exaktní test Oba předchozí testy byly pouze přibližné a pro malé četnosti nejsou vhodné. V případě, že nejméně jedna očekávaná četnost je < 5 používáme Fischerův exaktní faktoriálový test. Spočívá v tom, že sestrojíme všechny možné tabulky, které mají stejné marginální četnosti jako původní tabulka a vybereme z nich ty, které jsou pro hypotézu nezávislosti ještě méně pravděpodobné než původní tabulka. Sečteme-li pravděpodobnosti těchto tabulek, získáme tak součet P, který je hodnotou Fischerova testu. V praxi se tento přesný test používá opravdu pro malé četnosti, protože s rostoucím n roste dramaticky i počet možných tabulek. Pokud i nejmenší hodnota ve čtyřpolní tabulce je dostatečně velká (> 5), zmíněné testy chí-kvadrát nebo Yatesova korekce jsou pro tyto četnosti dostatečně blízké přesnému testu.
11 Princip Fisherova exaktního testu si ukážeme na příkladu tabulky s veličinami KOUŘÍ a SPORTUJE: Sportuje ano ne Suma ano ne Suma ano ne Suma ano ne Suma Kouří ano ano ano ano ne ne ne ne Suma Suma Suma Suma V první tabulce jsou naměřené četnosti u 32 studentů právnické fakulty a chceme zjistit, zda spolu souvisí sport a kouření u studentů. Četnosti jsou pro test chí-kvadrát malé - nelze jej použít. Vypočteme proto pravděpodobnost pro všechny tabulky podle vzorce: ( a + b)!( c + d)!( a + c)!( b + d)! p i = n! a! b! c! d!, kde n je celková četnost v tabulce a a,b,c,d je označení políček zleva doprava a dolů.
12 Výsledná pravděpodobnost se určí jako součet pravděpodobností ve všech tabulkách, tj. p p = i V našem příkladu je to p = 0, , , , = 0,041 Vypočtený výsledek nám sděluje, že první tabulka a tabulky ještě méně příznivé pro platnost hypotézy H 0 mohou nastat s pravděpodobností 0,041, tj. 4,1 %. Na hladině významnosti α = 0,05 tedy zamítáme nulovou hypotézu a přijímáme alternativní hypotézu, že sportování a kouření u studentů spolu souvisí.
13 MÍRY VZTAHU DVOU ALTERNATIVNÍCH VELIČIN Předchozí teorie testovala jen závislost nebo nezávislost dvou diskrétních veličin. Neříkala však nic o míře závislosti. Uvažujme opět čtyřpolní tabulku. a Vzorcem a + b vypočteme pravděpodobnost onemocnění u skupiny exponovaných, vzorcem c c + d u neexponovaných. Náhodná veličina Y - např. onemocnění Náhodná veličina X - obvykle expozice ANO NE Celkem ANO a b a + b NE c d c + d Celkem a + c b + d a + b + c + d
14 RELATIVNÍ RIZIKO Relativní riziko RR je podíl pravděpodobnosti onemocnění u exponovaných a neexponovaných: RR = a a + b c c + d = a ( c + d) c ( a + b) Pokud platí model nezávislosti, je očekávaná četnost v prvním políčku ( a + b)( a + c) O11 = a + b + c + d, analogicky vypočteme očekávané četnosti v ostatních polích a dosadíme je do vzorce pro relativní riziko. Dostaneme RR=1. Pokud nemoc nezávisí na expozici, RR -> 1. Pokud je onemocnění u exponovaných osob častější než u neexponovaných, je RR > 1. Opačně RR < 1 by znamenalo, že onemocnění nastalo častěji u osob neexponovaných.
15 KŘÍŽOVÝ POMĚR, PODÍL ŠANCÍ, SÁZKOVÝ POMĚR - anglicky ODDS RATIO Tato charakteristika (častěji používaná v anglosaských zemích) není založena na pojmu pravděpodobnosti, ale na pojmu ŠANCE NA ONEMOCNĚNÍ. Termín je převzat z oblasti sázek, kde se nepoužívá termín pravděpodobnost výhry, ale ŠANCE NA VÝHRU, tj. poměr mezi "výhrou" a "prohrou". Vypočteme podíl nemocných a zdravých a c u exponovaných osob i neexponovaných osob. Křížový poměr je b d Křížový poměr, podobně jako relativní riziko, je roven jedné, pokud jsou sledované veličiny nezávislé. a OR = b = c d ad bc
16 Jinak se ale hodnoty RR a OR liší: OR nabývá v případě kladné závislosti (vzniku onemocnění na expozici) vyšší hodnoty než než RR. V případě, že onemocnění nastalo častěji u osob neexponovaných, je OR nižší než RR (obě hodnoty jsou menší než jedna).
17 HYPOTÉZA SYMETRIE Mc Nemar Zatím jsme se zabývali hypotézou nezávislosti, ale v praxi nás zajímají i jiné hypotézy. Chceme například porovnat efekt léčby. Vlastně chceme pomocí tabulky četností provést obdobu "párového" testu, přestože nemáme jednotlivé páry hodnot, ale pouze počty naměřených hodnot. Na rozdíl od hypotézy nezávislosti zde naopak víme, že veličiny jsou závislé, protože jsme měřili na stejných datech. Představme si, že zjišťujeme, zda u dětí vybraného okresu závisí výskyt infektů horních cest dýchacích na věku. Výskyt onemocnění byl zjišťován v šesti měsících a ve třech letech věku.
18 Použití testu nezávislosti chí-kvadrát by bylo zcela chybné. U dětí, které byly zdravé v 6 měsících je zřejmě vyšší pravděpodobnost, že budou zdravé i ve 3 letech a naopak. Příslušné pozorované hodnoty jsou v tabulce: Onemocnění v 3. roce věku Onemocnění v 6. měsíci věku ANO NE Celkem ANO - nemocné NE - zdravé Celkem Nás spíše zajímá, zda jsou stejné pravděpodobnosti že děti, které byly zdravé v 6 měsících, jsou nemocné ve 3 letech a že děti, které byly nemocné v 6 měsících, jsou zdravé ve 3 letech. Porovnáváme tedy políčka b a c v kontingenční tabulce.
19 Hypotéza vlastně ověřuje, zda je tabulka symetrická kolem hlavní úhlopříčky - platí-li p 12 = p 21. Takováto hypotéza je odlišná od hypotézy nezávislosti. Navíc nás v podstatě nezajímají hodnoty v polích a, d (p 11 a p 22 ), zajímají nás pouze případy, kdy došlo ke změně v jednom nebo druhém směru. 2 ( b c) K tomuto testu používáme tzv. Mc Nemarův test symetrie: M = b + c, kde M má rozložení chí-kvadrát s jedním stupněm volnosti viz 6b_symetrie_mcnemar.xls. Pokud test vyjde statisticky významný, znamená to, že tabulka není symetrická podle hlavní osy významně převažují děti, kterých je více (které nebyly nemocné ve 3 měsících, ale byly nemocné ve 3 letech).
20 Na podobném principu jako Yatesova korekce je založena přesnější varianta Mc 1 2 ( b c ) Nemarova testu: M = 2 b + c, kde M má opět rozložení chí-kvadrát s jedním stupněm volnosti. Testujeme vlastně hypotézu, zda pravděpodobnosti π 1, jejíž odhad je a π 2, jejíž odhad je c p2 = b + c, se rovnají. p 1 = b b + c Protože π 1 +π 2 = 1, testujeme hypotézu, že π 1 = 0,5 O Mc Nemarově testu se často hovoří jako o testu pro "párová" data.
Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests), : veličiny X, Y jsou nezávislé nij eij
Testy dobré shody Máme dvě veličiny a předpokládáme, že jsou nezávislé (platí nulová hypotéza nezávislosti). Často chceme naopak prokázat jejich závislost. K tomu slouží: TESTY DOBRÉ SHODY (angl. goodness-of-fit
Test dobré shody v KONTINGENČNÍCH TABULKÁCH
Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,
Jana Vránová, 3. lékařská fakulta UK
Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13
Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test
11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat Epidemiologické ukazatele
Testování statistických hypotéz z a analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. 1 Záznam epidemiologických dat Rizikový faktor Populace Přítomen Nepřítomen Celkem Nemocní a b a+b Kontroly
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
Přednáška X. Testování hypotéz o kvantitativních proměnných
Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz PŘEHLED TESTŮ rozdělení normální spojité alternativní / diskrétní
Epidemiologické ukazatele. lních dat. analýza kategoriáln. Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat. a I E
Testování statistických hypotéz z a analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Epidemiologické ukazatele Rizikový faktor Populace Přítomen Nepřítomen Celkem Nemocní a b a+b Kontroly
Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)
VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p
Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně
Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný
6. Testování statistických hypotéz. KGG/STG Zimní semestr 6. Testování statistických hypotéz
6. Testování statistických Testování statistických Princip: Ověř ěřování určit itého předpokladu p zjišťujeme, zda zkoumaný výběr r pochází ze základnz kladního souboru, který mám určit ité rozdělen lení
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
Testování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
Jednofaktorová analýza rozptylu
I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých
Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11
Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
2 ) 4, Φ 1 (1 0,005)
Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje
TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B
TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,
STATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
Úvod do analýzy rozptylu
Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme
STATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
Ranní úvahy o statistice
Ranní úvahy o statistice Neúplný návod ke čtení statistických výsledků Dušan Merta květen 2016 Co nás čeká 1 Základní pojmy 2 Testování hypotéz 3 Confidence interval 4 Odds ratio 2 / 26 Základní pojmy
Cvičení ze statistiky - 8. Filip Děchtěrenko
Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly
Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.
Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.
Úkol 1.: Testování nezávislosti nominálních veličin V roce 1950 zkoumali Yule a Kendall barvu očí a vlasů u 6800 mužů.
Téma 10: Analýza závislosti dvou nominálních veličin Úkol 1.: Testování nezávislosti nominálních veličin V roce 1950 zkoumali Yule a Kendall barvu očí a vlasů u 6800 mužů. barva očí barva vlasů světlá
Náhodné veličiny, náhodné chyby
Náhodné veličiny, náhodné chyby Máme náhodnou veličinu X, jejíž vlastnosti zkoumáme. Pokud známe její rozložení (např. z nějaké dřívější studie) nebo alespoň předpokládáme znalost rozložení, můžeme ji
Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. 1 Př. 1: Cestující na vybraném spoji linky MHD byli dotazováni za účelem zjištění spokojenosti s kvalitou MHD. Legenda 1 Velmi spokojen Spokojen 3 Nespokojen 4 Velmi nespokojen
PSY117/454 Statistická analýza dat v psychologii Přednáška 10
PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
STATISTICKÉ ODHADY Odhady populačních charakteristik
STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s
Analýza dat z dotazníkových šetření
Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Relativní riziko a poměr šancí Princip korelace dvou náhodných veličin Korelační koeficienty Pearsonůva Spearmanův Korelace a kauzalita
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA 2018 4. dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1 Typy proměnných nominální (nominal) o dvou hodnotách lze říci pouze
KONTINGENČNÍ TABULKY Komentované řešení pomocí programu Statistica
KONTINGENČNÍ TABULKY Komentované řešení pomocí programu Statistica Vstupní data transformace před vložením Než data vložíme do tabulky ve Statistice, musíme si je předpřipravit. Označme si P Prahu, S Šumperk
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 1: Opakování ze statistiky LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Z čeho studovat 1) Z KNIHY Krkošková,
Jednofaktorová analýza rozptylu
Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato
Statistické metody uţívané při ověřování platnosti hypotéz
Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 4. až 5.4 hod. http://www.osu.cz/~tvrdik
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Testování hypotéz. testujeme (většinou) tvrzení o parametru populace. tvrzení je nutno předem zformulovat
Testování hypotéz testujeme (většinou) tvrzení o parametru populace tvrzení je nutno předem zformulovat najít odpovídající test, podle kterého se na základě informace z výběrového souboru rozhodneme, zda
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost
Testy statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 5 Jak analyzovat kategoriální a binární
Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.
Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů 1) Test na velikost rozptylu Test na velikost rozptylu STATISTICA nemá. 2) Test na velikost střední hodnoty V menu Statistika zvolíme nabídku Základní
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
Základy biostatistiky (MD710P09) ak. rok 2008/2009
1(229) Základy biostatistiky (MD710P09) ak. rok 2008/2009 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara katedra pravděpodobnosti a matematické statistiky MFF UK (naposledy upraveno
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Testy hypotéz na základě více než 2 výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů Na analýzu rozptylu lze pohlížet v podstatě
Testování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Příklad: Test nezávislosti kategoriálních znaků
Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
Příklady na testy hypotéz o parametrech normálního rozdělení
Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost
Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky
Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Základy biostatistiky (MD710P09) ak. rok 2007/2008
1(208) Základy biostatistiky (MD710P09) ak. rok 2007/2008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara katedra pravděpodobnosti a matematické statistiky MFF UK (naposledy upraveno
SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY
SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě
NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:
NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného
Statistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
Kontrola: Sečteme-li sloupec,,četnost výskytu musí nám vyjít hodnota rozsahu souboru (našich 20 žáků)
Základní výpočty pro MPPZ Teorie Aritmetický průměr = součet hodnot znaku zjištěných u všech jednotek souboru, dělený počtem všech jednotek souboru Modus = hodnota souboru s nejvyšší četností Medián =
Fisherův exaktní test
Katedra pravděpodobnosti a matematické statistiky Karel Kozmík Fisherův exaktní test 4. prosince 2017 Motivace Máme kontingenční tabulku 2x2 a předpokládáme, že četnosti vznikly z pozorování s multinomickým
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
ADDS cviceni. Pavlina Kuranova
ADDS cviceni Pavlina Kuranova Testy pro dva nezávislé výběry Mannův Whitneyho test - Založen na Wilcoxnově statistice W - založen na pořadí jednotlivých pozorování (oba výběry spojeny do jednoho celku)
Testování hypotéz. 4. přednáška 6. 3. 2010
Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
5. Závislost dvou náhodných veličin různých typů (kategoriální a metrická veličina)
5. Závislost dvou náhodných veličin různých typů (kategoriální a metrická veličina) Cílem tématu je správné posouzení a výběr vhodného testu v závislosti na povaze metrické a kategoriální veličiny. V následující
Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.
Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme
MÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)
Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze
SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík
SEMESTRÁLNÍ PRÁCE Leptání plasmou Ing. Pavel Bouchalík 1. ÚVOD Tato semestrální práce obsahuje písemné vypracování řešení příkladu Leptání plasmou. Jde o praktickou zkoušku znalostí získaných při přednáškách
TECHNICKÁ UNIVERZITA V LIBERCI. Statistický rozbor dat z dotazníkového šetření
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Analýza výsledků dotazníkového šetření - fakultní dotazník Vypracovaly: Klára Habrová,