M - Příprava na 1. zápočtový test - třída 3SA

Rozměr: px
Začít zobrazení ze stránky:

Download "M - Příprava na 1. zápočtový test - třída 3SA"

Transkript

1 M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete na

2 ± Soustava kvadratické a lineární rovnice Soustava kvadratické a lineární rovnice Soustava kvadratické a lineární rovnice je soustava dvou rovnic, z nichž jedna rovnice je lineární a druhá rovnice je kvadratická. Takovouto soustavu řešíme zpravidla tak, že z lineární rovnice vyjádříme jednu neznámou a tu pak dosadíme do rovnice kvadratické. Využíváme tedy metodu dosazovací. Po vyřešení získané kvadratické rovnice o jedné neznámé dosadíme získané řešení do výrazu, kde jsme z původní lineární rovnice vyjádřili první neznámou a vypočteme ji. Výsledek zapíšeme tradičně uspořádanou dvojicí. Ukázkové příklady: Příklad 1: Řešte soustavu rovnic: x + y = 74 3x - y = 1 Řešení: x + y = 74 3x - y = 1 1+ y x = 3 1 æ + y ö ç è 3 ø ( + y) 9 + y 1 + y + 4y + 4y 9 = 74 = y (1) = y + 4y + 9y = y + 4y = 0 y 1, - = 4 ± æ ç è 4 ö -13. ø 13 (- 665) y 1 = 7 y = -95/13 Dosadíme do rovnice (1) a vypočteme x: x x 1+.7 = 5 3 æ 95 ö 1 +. ç - è 13 = ø = 3 1 = - Závěr: ì P = í î [ 5;7 ], Příklad : é 59 95ùü ê - ;- úý ë 13 13ûþ - ± 8649 = 13 = - ± z

3 Řešte soustavu rovnic: x - y = 640 x : y = 7 : 3 Podmínka řešitelnosti je, že y ¹ 0 Z druhé rovnice vyjádříme x: x = 7y/3 (1) Dosadíme do rovnice první: æ 7 y ö ç - y = 640 è 3 ø 49 y - y = y - 9y = y = y = 576 y = 144 y 1 = 1 y = -1 Dosadíme do rovnice (1) a dopočteme x: x 1 = 7. 1 : 3 = 8 x = 7. (-1) : 3 = -8 Závěr: K = {[ 8;1 ]; [- 8; -1]} ± Soustava kvadratické a lineární rovnice - procvičovací příklady K = {[0; 0], [; 4]} Řešte soustavu rovnic: 174 z

4 K = {[3; 0]} K = {[0; -1]} ± Soustavy rovnic Soustavy rovnic Soustava rovnic je zápis dvou nebo více rovnic, které musí platit současně. V soustavě rovnic se může vyskytovat různý počet neznámých. My se zaměříme na takové soustavy rovnic, kde počet neznámých odpovídá počtu rovnic v soustavě (tedy budeme řešit např. soustavu dvou rovnic o dvou neznámých nebo soustavu třech rovnic o třech neznámých, apod.) Soustavy rovnic můžeme řešit různými metodami - např.: metodou dosazovací metodou sčítací metodou, která kombinuje metodu sčítací a dosazovací 3 z

5 metodou grafickou pomocí matic, resp. determinantů Zatím se omezíme na první dvě z uvedených metod. Řešení soustav rovnic metodou dosazovací Tento způsob řešení je založen na postupu, kdy z jedné rovnice vyjádříme jednu neznámou a tu pak dosadíme do zbývajících rovnic soustavy. Pokud byla zadána soustava dvou rovnic, pak už nyní řešíme jednu rovnici o jedné neznámé. Pokud původní soustava obsahovala tři nebo více rovnic, postup vyjádření neznámé opakujeme. Metoda dosazovací je vhodná tehdy, pokud u rovnic v základním tvaru (tj. u rovnic, které dostaneme po odstranění závorek a zlomků a následném sloučení členů) je alespoň u jedné neznámé v některé z rovnic koeficient 1 nebo (-1). Lze ji ale použít i jindy. Metota dosazovací se dále používá tehdy, je-li zadána soustava jedné lineární a jedné kvadratické rovnice. Takovými se ale budeme zabývat později. Metoda dosazovací se s úspěchem dá použít i při řešení soustav třech nebo více rovnic. Ukázkové příklady: Příklad 1: Řešte soustavu rovnic: x + y = 3 x - y = -1 x = 3 - y (3 - y) - y = y - y = -1 -y = -4 y = x = 3 - x = 1 Výsledek zapíšeme: [x; y] = [1; ] Zkouška: L 1 = 1 + = 3 P 1 = 3 L = 1 - = -1 P = -1 L 1 = P 1 L = P Příklad : Řešte soustavu rovnic:. (x + y) - 5. (y - x) = (x + y) + 7. (3x + 5y) = 7 Řešení:. (x + y) - 5. (y - x) = (x + y) + 7. (3x + 5y) = 7 x + y - 5y + 5x = 17 3x + 6y + 1x + 35y = 7 4 z

6 7x - 3y = 17 4x + 41y = y x = y y = y + 41y = y + 87y = y = -359 y = -1 x = Výsledek zapíšeme [x; y] = [; -1] Zkouška: L 1 =. [ + (-1)] - 5. (-1 - ) = - 5. (-3) = 17 P 1 = 17 L = 3. [ +.(-1)] + 7. [ (-1)] = = 7 P = 7 L 1 = P 1 L = P Příklad 3: Řešte soustavu rovnic x - y = 1 3x - 3y = 3 x = 1 + y 3. (1 + y) - 3y = y - 3y = 3 0 = 0 Soustava má nekonečně mnoho řešení. Výsledek zapíšeme: [x; y] = [x; x - 1] (v tomto obecném zápisu výsledku první neznámou volíme libovolně a druhou neznámou vyjádříme ze kterékoliv zadané rovnice) Ověření správnosti řešení: Pro x = 1 dostáváme [1; 0] L 1 = 1-0 = 1 P 1 = 1 L = = 3 P = 3 L 1 = P 1 L = P Příklad 4: Řešte soustavu rovnic: 3x + y = z z

7 3y + z = x + 1 3x + z = y Stanovíme podmínky řešitelnosti: z ¹ -1; x ¹ -1; y ¹ -1 3x + y =. (z + 1) 3y + z =. (x + 1) 3x + z =. (y + 1) 3x + y = z + 3y + z = x + 3x + z = y + 3x + y - z = -x + 3y + z = 3x - y + z = Z první rovnice vyjádříme neznámou y: y = -3x + z + (1) Dosadíme do zbývajících dvou rovnic: 3. (-3x + z + ) + z =. (x + 1) 3x + z =. (-3x + z + + 1) -9x + 6z z = x + 3x + z = -6x + 4z x + 7z = -4 9x - 3z = 6 Druhou rovnici vykrátíme třemi, poté z ní vyjádříme neznámou z: z = 3x - () Dosadíme do první rovnice: -11x + 7. (3x - ) = -4-11x + 1x - 14 = -4 10x = 10 x = 1 Dosadíme do rovnice (): z = = 1 Dosadíme do rovnice (1): y = = 1 Výsledky neodporují podmínkám řešitelnosti. Zapíšeme výsledek: [x; y; z] = [1; 1; 1] Zkouška: L = = = P 1 = L 1 = P L = = = 1+ 1 P = L = P L = = 3 = P 3 = L 3 = P Shrnutí postupu řešení soustavy rovnic dosazovací metodou: 6 z

8 1. Jsou-li ve jmenovateli neznámé, stanovíme podmínky řešitelnosti. Rovnice upravíme do "základního" tvaru, tj. do tvaru, kdy na levé straně rovnice máme sloučené neznámé (v pořadí podle abecedy) a na pravé straně máme číslo; používáme přitom běžného postupu řešení samostatných rovnic - tedy nejprve odstraňujeme závorky, pak zlomky, atd. 3. Z libovolné rovnice vyjádříme libovolnou neznámou (výhodné je volit tu, kde je koeficient 1). 4. Tuto vyjádřenou neznámou dosadíme do zbývající rovnice (příp. do zbývajících rovnic, je-li jich více). 5. Vyřešíme vzniklou rovnici o jedné neznámé běžným způsobem (platí tehdy, pokud byla zadána soustava dvou rovnic o dvou neznámých; pokud rovnic bylo více, vznikla nám nyní soustava více rovnic a musíme dále opakovat kroky ) - 4) ). 6. Vypočtenou neznámou dosadíme do rovnice, kde jsme vyjádřili první neznámou (krok 3) ) a vyřešíme druhou neznámou. 7. Provedeme zkoušku, a to tak, že dosazujeme do každé strany každé rovnice. 8. Zapíšeme výsledek uspořádanou dvojicí. Řešení soustav rovnic metodou sčítací Sčítací metodu je výhodné použít tehdy, pokud je u všech neznámých v rovnicích upravených do "základního" tvaru koeficient jiný než číslo 1 nebo (-1). Lze ji s výhodou ale samozřejmě použít i v případě, že tam jednička je. Sčítací metodu používáme zpravidla u soustavy dvou rovnic o dvou neznámých. Je ji ale možno použít i pro více rovnic. Ukázkové příklady: Příklad 5: Řešte soustavu rovnic:. (x - 3y) = 15 4x - y = -3 x - 6y = 15 (1) 4x - y = -3 Rovnice upravíme tak, aby po jejich sečtení vypadla neznámá x. Znamená to, že první rovnici vynásobíme číslem (-) a druhou necháme beze změn. Pozn.: Sečíst rovnice znamená sečíst jejich levé strany a jejich pravé strany. -4x + 1y = -30 4x - y = -3 Rovnice sečteme -4x + 4x + 1y - y = y = -33 y = -3 Vrátíme se k rovnicím v zápisu (1), tj. k rovnicím upraveným do "základního" tvaru. Nyní je upravíme tak, aby po jejich sečtení vypadla neznámá y. Stačí tedy první rovnici ponechat a druhou vynásobit číslem (-6): x - 6y = 15-4x + 6y = 18 Obě rovnice opět sečteme: x - 4x - 6y + 6y = x = 33 x = -1,5 Zapíšeme výsledek: [x; y] = [-1,5; -3] Zkouška se provádí stejným způsobem jako u dosazovací metody. Pozn.: Někdy se soustava rovnic také řeší tak, že jednu neznámou vyřešíme sčítací metodou a vzniklý kořen pak dosadíme do některé ze zadaných rovnic. Vyřešením rovnice o jedné neznámé pak získáme kořen druhý. V tomto případě ale už nelze hovořit o sčítací metodě. 7 z

9 Pozn.: Pokud chceme řešit sčítací metodou soustavu více než dvou rovnic, pak postupujeme tak, že např. v soustavě třech rovnic, která je v "základním" tvaru, upravíme rovnice tak, aby po sečtení libovolných dvou rovnic vypadla jedna neznámá a při sečtení jiné libovolné dvojice vypadla tatáž neznámá. Tím získáme soustavu dvou rovnic o dvou neznámých, kterou pak řešíme podle postupu v příkladu 5. ± Soustavy o třech a více neznámých - procvičovací příklady [1/3; 1/] [4; 1; ; 3] [5; 5; 5] [-0,5; 3,75; 7,75; 0,5] 8 z

10 [5; ; 0] [1; 4; 5] [3; 4; 5] Nekonečně mnoho řešení 9 z

11 [3; ; ; 3] [1; -1; ] [3;,5] [1; 1; 1; 1] [1; 6] 10 z

12 [0; 0,5; 0] é5 5 ê ;- ;- ë3 3 4 ; 3 7ù 3ú û [0; 17; 5] [3; 4] [0; 0; 0] 11 z

13 [10; 1] [1; ; -] [4; 6; 8]. 173 [3; ; 1] [0,; -1; 1] 1 z

14 [7; 5; -3] [15; 1; 10] [8; 5; 3] Nemá řešení [5; 4; 1; ; 1] ± Jednoduché nerovnice Nerovnice Nerovnice je zápis nerovnosti dvou matematických výrazů. Nerovnice, podobně jako rovnice, může obsahovat jednu nebo více neznámých. Postup řešení nerovnic je obdobný, jako při řešení rovnic s tou výjimkou, že pokud násobíme nebo dělíme nerovnici záporným číslem, mění se znak nerovnosti v opačný. >... čteme větší 13 z

15 <... čteme menší... čteme menší nebo rovno ³... čteme větší nebo rovno Výsledek řešení nerovnice zpravidla graficky znázorňujeme, zapisujeme intervalem a provádíme ověření správnosti řešení. Pozn.: Ověření správnosti, ne tedy zkouška, proto, že většinou je řešením celý interval a my nemáme možnost všechna čísla z daného intervalu dosadit. Ukázkové příklady: Příklad 1: Řešení: Celou nerovnici vynásobíme čtyřmi, což je kladné číslo, proto znak nerovnosti se nemění. x (x + 3) > 4 x x - 6 > 4-7 > 4 Výsledkem je nepravdivá rovnost, proto nerovnice nemá řešení. Příklad : Řešení: Celou nerovnici vynásobíme dvanácti:. (7 - x) > 3x x > 3x - 7-7x > -1 V tomto případě budeme celou nerovnici dělit číslem (-7), což je číslo záporné, proto se znak nerovnosti změní v opačný: x < 3 Výsledek zapíšeme intervalem: x Î (- ; 3) Graficky znázorníme: Provedeme ověření správnosti řešení pro libovolné číslo z výsledného intervalu - např. pro x = 0: 14 z

16 7 -.0 L = = 6 L > P 7 6 Pokud by při řešení nerovnice vyšel závěr, kterým je pravdivá nerovnost, pak řešením je každé reálné číslo, které však nesmí odporovat podmínce řešitelnosti. ± Nerovnice - procvičovací příklady Každé reálné číslo Řešením je libovolné přirozené číslo z

17 ± Nerovnice v součinovém a podílovém tvaru Nerovnice v součinovém nebo podílovém tvaru Pokud máme nerovnici v podílovém tvaru, tzn. že ve jmenovateli je výraz s neznámou, nemůžeme takovouto nerovnici násobit nejmenším společným jmenovatelem jako tomu bylo u rovnic, protože nevíme, zda je jmenovatel kladný nebo záporný. Použijeme tedy jiný postup. Stejný postup použijeme i tehdy, budeme-li mít na jedné straně nerovnice součin (nebo podíl) a na druhé straně nerovnice číslo nula. Do takového tvaru lze nerovnici poměrně často převést. Postup je pak následující: 1. Zvážíme, zda podíl (nebo součin) má být kladný nebo záporný (případně nezáporný nebo nekladný). Má-li být kladný, musí být oba činitelé, příp. dělenec i dělitel, buď oba kladné nebo oba záporné; to využijeme v dalším řešení. Má-li být záporný, pak musí být buď první činitel kladný a druhý záporný nebo první činitel záporný a druhý kladný (obdobně pro zlomek). 3. Ze dvou situací, které tak postupně řešíme, nakonec uděláme sjednocení. Ukázkové příklady: Příklad 1: 16 z

18 Řešení: Vidíme, že nerovnice je v podílovém tvaru, na pravé straně je číslo 0. Aby byla splněna, mohou tedy nastat dvě situace: 1. možnost: x - Ö3 > 0 Ù x + Ö > 0 Odtud: x > Ö3 Ù x > -Ö/ Z těchto dvou nerovnic děláme průnik (musí platit současně); vhodné je grafické znázornění: Řešením je to, co je šrafováno obousměrně, tedy interval (Ö3; + ). možnost: x - Ö3 < 0 Ù x + Ö < 0 Odtud: x < Ö3 Ù x < -Ö/ Z těchto dvou nerovnic opět děláme průnik (musí platit současně); vhodné je opět grafické znázornění: Řešením je opět to, co je šrafováno obousměrně, tedy interval (- ; -Ö/ ) Celkovým řešením je sjednocení obou intervalů, tedy x Î (- ; -Ö/ ) È (Ö3; + ) Celkové řešení graficky znázorníme: Ověření správnosti: Pro x = : L = = = přibližně 0,05 > P = 0 L > P Příklad : 17 z

19 Převedeme vše na levou stranu a poté na společného jmenovatele: ( x + )(. x - ) - ( x - 5 )(. x + ) + 3. ( x - 5) ( x - 5 )(. x + ) V čitateli roznásobíme a sloučíme: x x 6x - 9 ( x - 5 )(. x + ) 3. ( x - 3) ( x - 5 )(. x + ) - x + 5x x -15 > 0 ( x - 5 )(. x + ) > 0 > 0 > 0 Celou nerovnici vydělíme třemi, znak nerovnosti se nezmění: ( x - 3) ( x - 5 )(. x + ) > 0 Nyní mohou nastat následující situace: 1. možnost: x - 3 > 0 Ù x - 5 < 0 Ù x + < 0 x > 3/ Ù x < 5 Ù x < - Závěr: x Î { }. možnost: x - 3 < 0 Ù x - 5 > 0 Ù x + < 0 x < 3/ Ù x > 5 Ù x < - Závěr: x Î { } 3. možnost: x - 3 < 0 Ù x - 5 < 0 Ù x + > 0 x < 3/ Ù x < 5 Ù x > - Závěr: x Î (-; 3/) 4. možnost: x - 3 > 0 Ù x - 5 > 0 Ù x + > 0 x > 3/ Ù x > 5 Ù x > - Závěr: x Î (5; + ) Celkové řešení: x Î (-; 3/) È (5; + ) Graficky znázorníme: 18 z

20 Ověření správnosti řešení: Pro x = 0: 0 - L = = P = 1- = 1- = -0,5 0 + L > P Příklad 3: Řešení: ± Nerovnice v součinovém nebo v podílovém tvaru - procvičovací příklady 19 z

21 z

22 z

23 x 4 - x 3 -x - x z

24 Obsah Soustava kvadratické a lineární rovnice 1 Soustava kvadratické a lineární rovnice - procvičovací příklady Soustavy rovnic 3 Soustavy o třech a více neznámých - procvičovací příklady 8 Jednoduché nerovnice 13 Nerovnice - procvičovací příklady 15 Nerovnice v součinovém a podílovém tvaru 16 Nerovnice v součinovém nebo v podílovém tvaru - procvičovací příklady :31:03 Vytištěno v programu dosystem - EduBase (www.dosli.cz)

M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK

M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento

Více

Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic

Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic Lineární funkce, rovnice a nerovnice Soustavy lineárních rovnic motivace Využívají se napřklad při analytickém vyšetřování vzájemné polohy dvou přímek v rovině a prostoru. Při řešení některých slovních

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Lineární funkce, rovnice a nerovnice 4 lineární nerovnice

Lineární funkce, rovnice a nerovnice 4 lineární nerovnice Lineární funkce, rovnice a nerovnice 4 lineární nerovnice 4.1 ekvivalentní úpravy Při řešení lineárních nerovnic používáme ekvivalentní úpravy (tyto úpravy nijak neovlivní výsledek řešení). Jsou to především

Více

Lineární rovnice pro učební obory

Lineární rovnice pro učební obory Variace 1 Lineární rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

Úvod do řešení lineárních rovnic a jejich soustav

Úvod do řešení lineárních rovnic a jejich soustav Úvod do řešení lineárních rovnic a jejich soustav Rovnice je zápis rovnosti dvou výrazů, ve kterém máme najít neznámé číslo (neznámou). Po jeho dosazení do rovnice musí platit rovnost. Existuje-li takové

Více

4. Lineární (ne)rovnice s racionalitou

4. Lineární (ne)rovnice s racionalitou @04 4. Lineární (ne)rovnice s racionalitou rovnice Když se řekne s racionalitou, znamená to, že zadaná rovnice obsahuje nějaký zlomek a neznámá je ve jmenovateli zlomku. Na co si dát pozor? u rovnic je

Více

M - Příprava na pololetní písemku č. 1

M - Příprava na pololetní písemku č. 1 M - Příprava na pololetní písemku č. 1 Určeno jako studijní materiál pro třídu 2K. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

M - Lomené algebraické výrazy pro učební obory

M - Lomené algebraické výrazy pro učební obory M - Lomené algebraické výrazy pro učební obory Určeno jako studijní materiál pro třídy učebních oborů. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.

Více

Řešení slovních úloh pomocí lineárních rovnic

Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)

Více

Variace. Číselné výrazy

Variace. Číselné výrazy Variace 1 Číselné výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné výrazy Číselné výrazy, výpočty

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší

Více

Soustava 2 lineárních rovnic o 2 neznámých 3 metody: Metoda sčítací

Soustava 2 lineárních rovnic o 2 neznámých 3 metody: Metoda sčítací Soustava 2 lineárních rovnic o 2 neznámých 3 metody: a Sčítací b Dosazovací c Substituce Metoda sčítací Cílem sčítací metody je sečíst 2 rovnice tak, aby se eliminovala odstranila jedna neznámá! Vždy se

Více

Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h)

Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h) Příklad Řešte v R rovnice: a) 8 3 5 5 2 8 =20+4 b) = + c) = d) = e) + =2 f) +6 +8=4 g) + =0 h) = Řešení a Máme řešit rovnici 8 3 5 5 2 8 =20+4 Zjevně jde o lineární rovnici o jedné neznámé. Nejprve roznásobíme

Více

Lomené algebraické výrazy

Lomené algebraické výrazy Variace 1 Lomené algebraické výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Lomené algebraické výrazy

Více

Algebraické výrazy - řešené úlohy

Algebraické výrazy - řešené úlohy Algebraické výrazy - řešené úlohy Úloha č. 1 Určete jeho hodnotu pro =. Určete, pro kterou hodnotu proměnné je výraz roven nule. Za proměnnou dosadíme: = a vypočteme hodnotu výrazu. Nejprve zapíšeme rovnost,

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Logaritmy a věty o logaritmech

Logaritmy a věty o logaritmech Variace 1 Logaritmy a věty o logaritmech Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Logaritmy Definice

Více

Funkce pro učební obory

Funkce pro učební obory Variace 1 Funkce pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

M - Kvadratická funkce

M - Kvadratická funkce M - Kvadratická funkce Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně

Více

Soustavy lineárních a kvadratických rovnic o dvou neznámých

Soustavy lineárních a kvadratických rovnic o dvou neznámých Soustavy lineárních a kvadratických rovnic o dvou neznámých obsah 1.a) x + y = 5 x 2 + y 2 = 13 3 b) x - y = 7 x 2 + y 2 = 65 5 c) x - y = 3 x 2 + y 2 = 5 6 3. a) x + 2y = 9 x. y = 10 12 b) x - 3y = 1

Více

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +, Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

Diferenciální rovnice 1

Diferenciální rovnice 1 Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.

Více

M - Příprava na pololetku č. 2-2SAB

M - Příprava na pololetku č. 2-2SAB M - Příprava na pololetku č. 2-2SAB Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento dokument byl

Více

Lineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x.

Lineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x. Lineární rovnice Rovnice je zápis rovnosti mezi dvěma algebraickými výrazy, které obsahují alespoň jednu proměnnou, kterou nazýváme neznámá. Rovnice má levou stranu L a pravou stranu P. Rovnost pak zapisujeme

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Nerovnice v součinovém tvaru, kvadratické nerovnice

Nerovnice v součinovém tvaru, kvadratické nerovnice Nerovnice v součinovém tvaru, kvadratické nerovnice Příklad: Pro která x R je součin x x 5 kladný? Řešení: Víme, že součin je kladný, mají-li oba činitelé stejné znaménko. Tedy aby platilo x x 5 0, musí

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

Řešení: 1. Metodou sčítací: Vynásobíme první rovnici 3 a přičteme ke druhé. 14, odtud x 2.

Řešení: 1. Metodou sčítací: Vynásobíme první rovnici 3 a přičteme ke druhé. 14, odtud x 2. Soustav rovnic Metod řešení soustav rovnic o více neznámých jsou založen na postupné eliminaci neznámých Pro dvě lineární rovnice o dvou neznámých používáme metodu sčítací (aditivní), kd vhodně vnásobíme

Více

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na

Více

9. Soustavy rovnic DEFINICE SOUSTAVY LINEÁRNÍCH ROVNIC O DVOU NEZNÁMÝCH. Soustava lineárních rovnic o dvou neznámých je:

9. Soustavy rovnic DEFINICE SOUSTAVY LINEÁRNÍCH ROVNIC O DVOU NEZNÁMÝCH. Soustava lineárních rovnic o dvou neznámých je: 9. Soustavy rovnic Správný nadpis této kapitoly by měl znít soustavy lineárních rovnic o dvou neznámých, z důvodu přehlednosti jsem jej zkrátil. Hned v úvodu čtenáře potěším teorie bude tentokrát krátká.

Více

Logaritmické rovnice a nerovnice

Logaritmické rovnice a nerovnice Přírodovědecká fakulta Masarykovy univerzity Logaritmické rovnice a nerovnice Bakalářská práce Brno 008 Lenka Balounová Prohlašuji, že jsem tuto práci vypracovala sama a čerpala jsem pouze z materiálů

Více

Rovnice a nerovnice v podílovém tvaru

Rovnice a nerovnice v podílovém tvaru Rovnice a nerovnice v podílovém tvaru Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu

Více

ROVNICE, NEROVNICE A JEJICH SOUSTAVY

ROVNICE, NEROVNICE A JEJICH SOUSTAVY Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ ÚLOH ROVNICE, NEROVNICE A JEJICH SOUSTAVY CIFRIK C. Úloha 1 [kvadratická rovnice s kořeny y_1=x_1^2+x_2^2, y_2=x_1^3+x_2^3]

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Algebraické výrazy pro učební obory

Algebraické výrazy pro učební obory Variace 1 Algebraické výrazy pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Algebraické výrazy

Více

M - Příprava na pololetku č. 2-1KŘA, 1KŘB

M - Příprava na pololetku č. 2-1KŘA, 1KŘB M - Příprava na pololetku č. - 1KŘA, 1KŘB Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento dokument

Více

ŘEŠENÍ KVADRATICKÝCH A ZLOMKOVÝCH NEROVNIC V ŠESTI BODECH

ŘEŠENÍ KVADRATICKÝCH A ZLOMKOVÝCH NEROVNIC V ŠESTI BODECH (Tento text je součástí výkladu k definičním oborům, tam najdete další příklady a pokud chcete část tohoto textu někde použít, můžete čerpat ze stažené kompletní verze definičních oborů ve formátu.doc.)

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.7/1.5./34.93 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší odborná

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

Nejprve si uděláme malé opakování z kurzu Množiny obecně.

Nejprve si uděláme malé opakování z kurzu Množiny obecně. @021 3. Řešení grafické přímka v kartézské soustavě souřadnic Nejprve si uděláme malé opakování z kurzu Množiny obecně. Rovnice ax + by + c = 0, kde aspoň jedno z čísel a,b je různé od nuly je v kartézské

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

V exponenciální rovnici se proměnná vyskytuje v exponentu. Obecně bychom mohli exponenciální rovnici zapsat takto:

V exponenciální rovnici se proměnná vyskytuje v exponentu. Obecně bychom mohli exponenciální rovnici zapsat takto: Eponenciální rovnice V eponenciální rovnici se proměnná vyskytuje v eponentu. Obecně bychom mohli eponenciální rovnici zapsat takto: a ( ) f ( ) f kde a > 0, b > 0 b Příkladem velmi jednoduché eponenciální

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU

LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU je lineární rovnice, ve které se vyskytuje jeden nebo více výrazů v absolutní hodnotě. ABSOLUTNÍ HODNOTA x reálného čísla x je

Více

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

Z těchto kurzů shrneme poznatky, které budeme potřebovat: výčtem prvků

Z těchto kurzů shrneme poznatky, které budeme potřebovat: výčtem prvků @00. Základní poznatky Umět řešit rovnice a nerovnice je jedna ze stěžejních úloh středoškolské matematiky. Řešit bez problémů základní rovnice by měl umět každý středoškolák, který získal maturitu (jakoukoli,

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Logaritmická rovnice

Logaritmická rovnice Ročník:. Logaritmická rovnice (čteme: logaritmus z x o základu a) a základ logaritmu x argument logaritmu Vzorce Použití vzorců a principy počítání s logaritmy jsou stejné jako u logaritmů základních,

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více

4. Lineární nerovnice a jejich soustavy

4. Lineární nerovnice a jejich soustavy 4. Lineární nerovnice a jejich soustavy 9. ročník 4. Lineární nerovnice a jejich soustavy 5 > 0 ostrá nerovnost 5.0 50 neostrá nerovnost ( používáme pouze čísla) ZNAKY NEROVNOSTI: > je větší než < je menší

Více

Soustavy dvou lineárních rovnic o dvou neznámých I

Soustavy dvou lineárních rovnic o dvou neznámých I .3.10 Soustavy dvou lineárních rovnic o dvou neznámých I Předpoklady: 308 Pedagogická poznámka: Hodina má trochu netradiční charakter. U každé metody si studenti opíší postup a pak ho zkusí uplatnit na

Více

Rovnice v oboru komplexních čísel

Rovnice v oboru komplexních čísel Rovnice v oboru komplexních čísel Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu Šablona CZ.1.07/1.5.00/34.0218 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_01a

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Variace 1 Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

ROVNICE A NEROVNICE. Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec. VY_32_INOVACE_M1r0108

ROVNICE A NEROVNICE. Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec. VY_32_INOVACE_M1r0108 ROVNICE A NEROVNICE Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec VY_32_INOVACE_M1r0108 KVADRATICKÁ ROVNICE V rámci našeho poznávání rovnic a jejich řešení jsme narazili pouze na lineární

Více

4a) Racionální čísla a početní operace s nimi

4a) Racionální čísla a početní operace s nimi Racionální čísla a početní operace s nimi Množinu racionálních čísel získáme z množiny čísel celých, jejím rozšířením o čísla desetinná s ukončeným des. rozvojem nebo periodická a zlomky, které lze na

Více

Jednoduchá exponenciální rovnice

Jednoduchá exponenciální rovnice Jednoduchá exponenciální rovnice Z běžné rovnice se exponenciální stává, pokud obsahuje proměnnou v exponentu. Obecně bychom mohli exponenciální rovnici zapsat takto: a f(x) = b g(x), kde a, b > 0. Typickým

Více

a se nazývá aritmetická právě tehdy, když existuje takové číslo d R

a se nazývá aritmetická právě tehdy, když existuje takové číslo d R Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ Mgr. Tomáš MAŇÁK. březen 014 Název zpracovaného celku: ARITMETICKÁ POSLOUPNOST A JEJÍ UŽITÍ ARITMETICKÁ POSLOUPNOST Teorie: Posloupnost každé ( ) n n1

Více

4 Rovnice a nerovnice

4 Rovnice a nerovnice 36 Rovnice a nerovnice 4 Rovnice a nerovnice 4.1 Lineární rovnice a jejich soustavy Požadované dovednosti řešit lineární rovnice o jedné neznámé vyjádřit neznámou ze vzorce užít lineární rovnice při řešení

Více

Rozšiřování = vynásobení čitatele i jmenovatele stejným číslem různým od nuly

Rozšiřování = vynásobení čitatele i jmenovatele stejným číslem různým od nuly Rozšiřování a krácení zlomků Rozšiřování vynásobení čitatele i jmenovatele stejným číslem různým od nuly rozšířený zlomek vznikl tak, že jsme čitatel i jmenovatel původního zlomku vynásobili číslem rozšířený

Více

M - Příprava na 1. čtvrtletku pro třídu 4ODK

M - Příprava na 1. čtvrtletku pro třídu 4ODK M - Příprava na 1. čtvrtletku pro třídu 4ODK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu povoleno pouze s odkazem na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Kvadratická funkce Autor: Kubešová

Více

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

Goniometrické rovnice

Goniometrické rovnice Goniometrické rovnice Funkce Existují čtyři goniometrické funkce sinus, kosinus, tangens a kotangens. Výraz číslo, ze kterého je daná funkce v obecném tvaru je to x se nazývá argument. Argument může u

Více

2. Řešení algebraické

2. Řešení algebraické @016 2. Řešení algebraické Definice: Nechť a, c jsou reálná čísla. Rovnice v R (s neznámou x) daná formulí se nazývá lineární rovnice a ax + c = 0 se nazývají lineární nerovnice. ax + c 0 ax + c < 0 ax

Více

( ) ( ) Logaritmické nerovnice II. Předpoklady: 2924

( ) ( ) Logaritmické nerovnice II. Předpoklady: 2924 5 Logaritmické nerovnice II Předpoklad: Pedagogická poznámka: Většina studentů spočítá pouze první tři příklad, nejlepší se dostanou až k pátému Pedagogická poznámka: U následujících dvou příkladů je opět

Více

Mocniny. Nyní si ukážeme jak je to s umocňováním záporných čísel.

Mocniny. Nyní si ukážeme jak je to s umocňováním záporných čísel. Mocniny Mocnina je matematická funkce, která (jednoduše řečeno) slouží ke zkrácenému zápisu násobení. Místo toho abychom složitě psali 2 2 2 2 2, napíšeme jednoduše V množině reálných čísel budeme definovat

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technoiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší odborná

Více

Početní operace se zlomky

Početní operace se zlomky Početní operace se zlomky 1. Sčítání a. zlomků - upravíme zlomky na stejného jmenovatele (rozšiřováním, v některých případech krácením) hledáme společný násobek všech jmenovatelů (nejlépe nejmenší společný

Více

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde

Více

ZLOMKY A RACIONÁLNÍ ČÍSLA. Pojem zlomku. Zlomek zápis části celku. a b. a je část, b je celek, zlomková čára

ZLOMKY A RACIONÁLNÍ ČÍSLA. Pojem zlomku. Zlomek zápis části celku. a b. a je část, b je celek, zlomková čára 9... ZLOMKY A RACIONÁLNÍ ČÍSLA Pojem zlomku Zlomek zápis části celku a b a je část, b je celek, zlomková čára Každé číslo zapsané zlomkem lze vyjádřit jako číslo desetinné 7 Zlomková čára je dělící čára

Více

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3 Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme

Více

Metody výpočtu limit funkcí a posloupností

Metody výpočtu limit funkcí a posloupností Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

1. ČÍSELNÉ OBORY

1. ČÍSELNÉ OBORY ČÍSELNÉ OBORY 1. ČÍSELNÉ OBORY Číselným oborem rozumíme číselnou množinu, na které jsou definovány bez omezení početní operace sčítání a násobení, tj. číselný obor je vzhledem k těmto operacím uzavřený.

Více

Variace. Mocniny a odmocniny

Variace. Mocniny a odmocniny Variace 1 Mocniny a odmocniny Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Mocniny a odmocniny Obor přirozených

Více

EXPONENCIÁLNÍ ROVNICE

EXPONENCIÁLNÍ ROVNICE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol EXPONENCIÁLNÍ

Více

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi.

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi. Řešené příklady z lineární algebry - část 3 Typové příklady s řešením Příklad 3.1: Zobrazení L: P 3 R 23 je zobrazení z prostoru P 3 všech polynomů do stupně 3 (včetně nulového polynomu) do prostoru R

Více

CVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 22 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Kontroloři Státní zemědělské a potravinářské inspekce

Více

Přírodovědecká fakulta Masarykovy univerzity. na rovnice a nerovnice

Přírodovědecká fakulta Masarykovy univerzity. na rovnice a nerovnice Přírodovědecká fakulta Masarykovy univerzity Řešení složitějších úloh na rovnice a nerovnice Bakalářská práce BRNO 006 Hana Kotulková Prohlašuji, že jsem tuto práci vypracovala sama a čerpala jsem pouze

Více

Matematika. 18. října Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze

Matematika. 18. října Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Matematika Ondřej Pártl Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze 8. října 206 Ondřej Pártl (FJFI ČVUT) Matematika 8. října 206 / 72 Obsah Čísla 0 20, desítky, sčítání,

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ.1.07/1.5.00/34.0763 Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220 Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 Autor Ing. Antonín Kučera

Více

55. ročník matematické olympiády

55. ročník matematické olympiády . ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

16. Goniometrické rovnice

16. Goniometrické rovnice @198 16. Goniometrické rovnice Definice: Goniometrická rovnice je taková rovnice, ve které proměnná (neznámá) vystupuje pouze v goniometrických funkcích. Řešit goniometrické rovnice znamená nalézt všechny

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: geometrická posloupnost, geometrická

Více

Souhrnná prezentace. 14. října 2015. Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze

Souhrnná prezentace. 14. října 2015. Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Souhrnná prezentace Ondřej Pártl Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze 4. října 205 Ondřej Pártl (FJFI ČVUT) Souhrnná prezentace 4. října 205 / 70 Obsah Čísla 0 20,

Více

M - Příprava na pololetní písemku č. 2

M - Příprava na pololetní písemku č. 2 M - Příprava na pololetní písemku č. Určeno jako studijní materiál pro třídu K. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu

Více

2.3.1 Rovnice v součinovém tvaru

2.3.1 Rovnice v součinovém tvaru .. Rovnice v součinovém tvaru Předpoklady: 70, 0 Pedagogická poznámka: Hodina obsahuje poměrně dost příkladů (0). I když je někteří stihli vypočítat, mám trochu obavu, zda postup nebyl příliš rychlý. Pokud

Více