Dvě strany jedné mince - Dvě strany jedné mince - jaderná fyzika pomáhá v lékařství a technologie jaderných zbraní

Rozměr: px
Začít zobrazení ze stránky:

Download "Dvě strany jedné mince - Dvě strany jedné mince - jaderná fyzika pomáhá v lékařství a technologie jaderných zbraní"

Transkript

1 Dvě strany jedné mince - Dvě strany jedné mince - jaderná fyzika pomáhá v lékařství a technologie jaderných zbraní Anna Macková Ústav jaderné fyziky AV ČR, Řež

2 Základní představy - atom a atomové jádro Rutherfordův pokus

3 Základní představy - radioaktivní přeměny N(t) = N o. e λ. τ

4 Ionizující záření Ionizujícím zářením nazýváme takové záření, jehož kvanta mají natolik vysokou energii, že jsou schopna vyrážet elektrony z atomového obalu a tím látku ionizovat. Ionizační účinky jsou tedy společnou vlastností všech druhů ionizujícího záření. Konkrétní mechanismy interakce záření s hmotou jsou však pro každý druh záření specifické. Z tohoto hlediska se ionizující záření rozděluje na dvě skupiny: Záření přímo ionizující - je to záření, jehož kvanta nesou elektrický náboj a proto přímo vyrážejíči vytrhávají Coulombickými elektrickými silami elektrony z atomů. Patří sem záření α, β a β +, protonové záření p + atd. Záření nepřímo ionizující - jeho kvanta nejsou elektricky nabita; svou kinetickou energii předávají v látce nejprve nabitým částicím (většinou elektronům) a ty teprve přímými účinky na atomy látku ionizují. Do této skupiny patří především záření rentgenové a záření g, dále též záření neutronové.

5 Zdroje ionizujícího záření Elektronické zdroje záření, v nichž ionizující záření vzniká v důsledku elektromagnetického urychlování nabitých částic. Jsou to především rentgenové trubice Radioaktivní zářiče, v nichž ionizující záření (α, βči γ) vzniká při radioaktivních přeměnách jader. Radioaktivní zářiče se využívají např. v radioterapii (cesiovéči kobaltové ozařovače) v nukleární medicíně, v řadě průmyslových aplikací Záření vesmírného původu, které vzniká při bouřlivých a vysoce energetických procesech ve vesmíru - termonukleární reakce v nitru hvězd, výbuchy supernov, procesy v okolíčerných děr, rázové vlny v ionizovaném plynu a pod.

6 Kosmické záření Za kosmické záření je obvykle považován vysokoenergetický proudčástic, který do zemské atmosféry proniká z kosmického prostoru. Přesněji řečeno, jedná se o primární kosmické záření, které interaguje (tedy sráží se) sčásticemi zemské atmosféry. Srážkami vznikají další a dalšíčástice, reakce se rozvětvuje a výsledkem je sprška sekundárního kosmického záření, která dopadá na zemský povrch. Kosmické záření je z největšíčásti tvořeno protony (kolem 90%), zbytek tvoří jádra hélia a těžších prvků, jisté malé zastoupení mají i elektrony. Součástí kosmického záření jsou i další stabilníčástice - neutrina, které se však mohou srazit sčásticí v atmosféře jen nesmírně vzácně a mechanismy jejich urychlování nejsou zatím zcela jasné.

7 Sluneční světlo nás ohřívá, protože naše tělo absorbuje infračervené paprsky, které světlo obsahuje. Infračervené paprsky tedy vnímáme, nejsou však zdrojem ionizace v tělesných tkáních. Naproti tomu ionizující záření může narušit normální funkce buněk, nebo je dokonce zničit. Množství energie potřebné k vyvolání významných biologických účinků prostřednictvím ionizace je tak malé, že naše tělo nepociťuje tuto energii, jako je tomu v případě infračervených paprsků, které vyvolávají teplo. Biologické účinky ionizujícího záření se liší podle typu a energie záření. Měřítkem rizika biologického poškození je dávka záření, kterou obdrží tkáně. Ionizace změní elektronovou strukturu látky, a tím i její vlastnosti.v materiálech, jako je ocel, může způsobit tvrdnutí, v mědi může vyvolat zkřehnutí.

8 Dozimetrie Aktivita (základní veličina) - počet samovolných přeměn v daném množství látky za jednotku času Měrná aktivita - aktivita vztažená na určité množství objem, plochu, hmotnost, látkové množsví... Aktivita nevypovídá nic o uvolněné energii, počtu částic... je potřeba definovat jiné veličiny Veličiny charakterizující pole záření Fluence částic hustota prošlých částic počet částic prošlých jednotkovou plochou

9 Vliv záření na organismus Výše uvedené veličiny nevystihují dobře účinky záření na biologické organismy Dávka střední energie deponovaná v jednotkovém množství látky přímo ionizujícími částicemi definován dávkový ekvivalent (sievert) Q jakostní faktor (vliv záření na biolog. účinek), N další modifikující faktory pro záření dopadající na člověka N = 1; pro vnitřní zářiče může mít jinou hodnotu Lineární přenos energie dl - vzdálenost, kterou částice prošla, de střední ztráta energie způsobená srážkami (jakostního faktoru) b) k návrhu, nebo ověření modelů radiačního působ Přirozené zdroje záření pozemské mimozemské (kosmické záření) umělé zdroje záření lékařské aplikace zkoušky jaderných zbraní využití ve vědě a technice

10 Zdroj záření Roční dávka Přírodní zdroje záření Kosmické záření: při mořské hladině ve výšce 300 m nad mořem ve výšce 600 m nad mořem ve výšce m nad mořem Potraviny a nápoje: Záření z půdy: bydlíte-li v dřevěném domku, odečtěte bydlíte-li ve stanu, odečtěte bydlíte-li v žulovém domě, přičtěte pokud nevětráte, přičtěte Umělé zdroje záření: spalování uhlí spad po zkouškách jaderných zbraní každá hodina sledování televize cesta letadlem na vzdálenost 4000 km ve výšce m bydlení na hranici jaderné elektrárny rentgenové vyšetření plic rentgenové vyšetření trávicího a zažívacího traktu radiofarmaceutické vyšetření 0,3 msv 0,325 msv 0,375 msv 0,45 msv 0,35 msv 1,35 msv -0,135 msv -0,27 msv +1,35 msv +1,35 msv 0,04 msv 0,01 msv 0,002 msv 0,25 msv 0,0002 msv 0,08 msv 4 msv 0,3 msv

11 Mechanismy účinku na živou tkáň Proces účinku ionizujícího záření na živou tkáň probíhá ve čtyřech význačných etapách lišících se svou rychlostí a druhem probíhajících procesů Fyzikální stadium Při interakci kvanta ionizujícího záření s hmotou je energie záření předávána elektronům v atomech za vzniku ionizace a excitace. Tento primární proces je velmi rychlý trvá jen cca sekundy. Fyzikálně-chemické stádium Zde nastávají sekundární fyzikálně-chemické procesy interakce iontů s molekulami, při nichž dochází k disociaci molekul a vzniku volných radikálů (např. z vody H 2 O vznikají vodíkové kationty H + a hydroxylové anionty OH - a nestabilní produkty schopné oxidace H 2 O 2, HO 2 ) sec. Chemické stádium Vzniklé ionty, radikály, excitované atomy a další produkty reagují s biologicky důležitými organickými molekulami a mění jejich složení a funkci. Typickou poruchou na molekulární úrovni jsou zlomy vlákna v molekule DNA. Jednotlivé procesy tohoto chemického stádia trvají různě dlouhou dobu - od tisícin sekundy do řádově jednotek sekundy. Biologické stádium Molekulární změny v biologicky důležitých látkách (v DNA, enzymech, proteinech) mohou vyústit ve funkční a morfologické změny v buňkách, orgánech i v organismu jako celku. Biologické stádium se při vysokých dávkách záření může projevit již po několika desítkách minut (akutní poškozeníči nemoc z ozáření), může však zahrnovat dobu latence několika let nebo i desítek let (pozdní stochastické účinky).

12

13 Rentgenová diagnostika Záření se používá v medicíně dvěma způsoby: malé dávky při diagnóze poranění nebo nemocí a veliké dávky na ničení rakovinotvorných buněk. Nejznámější formou záření používaného v medicíně je rentgenové záření (X). Většinou se používá na zobrazení zubů, hrudníku a končetin. Typický rentgen zubů představuje 0,1 msv, rentgen plic 0,5 msv, rentgen prsu 1 msv, rentgenové vyšetření fyziologických procesů představuje 1 až 10 msv. Radioaktivní látky vpravené do těla se používají ke sledování tělesných funkcí a k lokalizaci nádorů. Dávkové ekvivalenty z těchto vyšetření se pohybují mezi 1 až 10 msv.

14 Rentgenová tomografie - CT Klasické rtg-zobrazení je planární - je to dvojrozměrná projekce density tkáně do určité roviny. Skutečná tkáň je však objekt trojrozměrný, takže planární obraz, který je dvojrozměrnou projekcí skutečnosti, může zachycovat jen část reality. O uspořádání tkáně v "hloubkovém třetím rozměru", kolmém k zobrazované rovině, nemůžeme z planárního obrazu nic zjistit. Planární obrazy mají z tohoto hlediska závažné úskalí - možnost překrývání a superpozice struktur uložených v různých hloubkách. Pomáháme si zde sice zobrazováním ve více různých projekcích, avšak riziko falešného nálezu či neodhalení anomálie v hloubi organismu, překryté jinou strukturou, nelze nikdy vyloučit.

15 Radioizotopová scintigrafie in vivo

16 PET diagnostika PET (Pozitronová anihilační spektroskopie) - jsou používána radiofarmaka značená radionuklidy rozpadajícími se za vzniku pozitronu β +. Pozitron je částice podobná elektronu, má však opačný kladný náboj. Zajímavá je interakce pozitronu s okolní hmotou. Když totiž přijde do styku s běžným elektronem, společně anihilují, tedy zmizí z povrchu zemského. Pozůstatkem je tzv. anihilační záření,čili 2 fotony o shodné energii 511 kev pohybující se po přímce opačným směrem od místa anihilace. Nachází-li se radionuklid uvnitř prstence vhodných detektorů, lze při současném zaznamenání dvou dopadů fotonu na povrch prstence určit koincidenční přímku. Takových přímek jsou při PET stanovovány statisíce za sekundu. Výkonný počítač z nich poté zrekonstruuje transaxiálnířezy. PET kamera umožňuje snímat anihilační záření z různých radionuklidů. Nejčastěji se používá 18 F a biogenních prvků ( 11 C, 13 N, 15 O). Tyto radionuklidy jsou po výrobě v cyklotronu zabudovávány do rozličných molekul radiofarmak. V klinické praxi je na celém světě zdaleka nejvíce rozšířena 2-[ 18 F]fluoro-2-deoxy-D-glukóza ( 18 FDG).

17 Jaderné zbraně Jaderná bomba se obvykle skládá ze dvou oddělených podkritických množství štěpného materiálu, která v součtu tvoří množství nadkritické (asi 1 litr). Ta jsou proti sobě vymrštěna explozí klasické výbušniny. Síla výbuchu zajistí, že nebudou oběčásti od sebe během prvních několika milisekund odhozeny teplem počínajícířetězové reakce a tlakem vylétajících neutronů. V nadkritickém množství štěpného materiálu je pak nastartována řetězová reakce, která uvolní velké množství různých druhů energie. Atomová bomba svržená 9. srpna 1945 na Nagasaki.

18 Používaným typem je také implozní puma (Fat Man, shozený na Nagasaki). Liší se zejména tím, že je zde použito plutonium namísto uranu 235. Po výbuchu konvenční trhaviny je plutonium stlačeno, čímž se zvýší hustota a dosáhne se kritického množství. Uvnitř koule plutonia je zdroj neutronů, které ve vhodném okamžiku zahájířetězovou reakci. Dále bývá puma vylepšena vnějším pláštěm z odražeče neutronů, které takto neunikají mimo štěpný materiál anebo je v plášti uran 238, který štěpí rychlé neutrony unikající z plutonia. Puma je výhodná tím, že zde stačí daleko menší množství štěpného materiálu a každé vylepšení snižuje jeho další množství a zvyšuje účinnost pumy. Výbuch odpovídá obvykle několika tisícům až miliónům tun klasické výbušniny TNT (největší známá bomba byla ekvivalentní 57 Mt TNT, původně to mělo být dokonce 100 Mt). Součástí jsou obvykle i inicializační neutronové zářiče, případně neutronové odražeče, které zajišťují zachycení co nejvyššího množství neutronů pro další štěpení. Délka pumy: 2,34 m Průměr: 1,52 m Hmotnost: kg Výbuch o ekvivalentu: 21 kt TNT

19 TNT - je velmi stabilní a málo citlivý vůči vnějším vlivům a přitom se vyznačuje velmi vysokou razancí výbuchu. Je proto ideální látkou pro přípravu jak průmyslových tak vojenských trhavin. - Permonit, Permonex, Karpatit, známé jsou i vojensky využívané Atomaly ařada dalších. Díky tomu, že jeho explozivní vlastnosti jsou velmi dobře prozkoumány, uvádí se pro vyjádření síly jaderného nebo termojaderného výbuchu ekvalentní množství TNT v kilotunách (kt)či megatunách (MT). Jako výbušnina vykazuje tyto základní vlastnosti: Energie výbuchu: kj/kg, tj kcal/kg Detonační rychlost: m/s Objem spalných plynů: 730 l/kg Teplota exploze: C Specifické spalné teplo: 4,184 MJ/kg Vodíková bomba je atomová bomba, jejíž pouzdro tvoří těžké izotopy vodíku deuterium a tritium. Atomový výbuch vytvoří počáteční teplotu několika milionů stupňů Celsia, která rozběhne jadernou fúzi. Podle velikosti nálože výbuch odpovídá přes 100 Kt TNT, největší sestrojené bomby mají účinek desítek megatun TNT. Bomba je schopna ničit domy v okruhu 20 km a zapalovat hořlavé předměty do vzdálenosti 100 km. Kobaltová bomba Je to též vodíková bomba, v jejímž obalu je nejen deuterium a tritium, ale i kobalt, který se působením neutronů změní na izotop s poločasem rozpadu 5,24 roku a dlouhodobě zamoří půdu. Neutronová bomba Je to také vodíková bomba, u které je však omezen její destruktivní účinek a naopak posíleno vyzařování různých druhů záření a zejména proudu neutronů (který poškodí obaly buněk, zasažená osoba bez možnosti léčení do dnů, týdnů, měsíců nebo i let umírá). Bomba je určená k zabíjení osob, zejména vojáků chráněných v pancéřovaných vozidlech; naopak je relativně šetrná k civilním budovám v oblasti, v níž boje probíhají.

20 Car-bomba (rusky: Царь-бомба) byla dvoustupňová (původně ale plánovaná jako třístupňová) termonukleární puma, nejsilnější zbraň, která byla v historii odpálena. Bomba byla vyvíjena pod jménem Ivan (Иван),či Váňa (Ваня), car-bomba je označení západních zdrojů, které se však rozšířilo i do dnešního Ruska (srovnej Car-puška). Práce na konstrukci bomby RDS-220 (jiné označení Arzamas-16) začaly v roce 1954 pod vedením akademika I. V. Kurčatova a J. B. Charitona. Jaderná bomba RDS-220 měla hmotnost 24,8 tun (samotná bomba 24 tun, padákový systém 800 kg), délku 8 metrů a průměr 2 metry. Pro její dopravu byl upraven čtyřmotorový turbovrtulový bombardér Tupolev Tu-95V (letové zkoušky a shozy makety bomby byly dokončené v roce 1959). Na místo třetího stupně tvořeného uranem 238, byla bomba nakonec vybavena pláštěm z olova, které účinek pumy naopak utlumilo na 57 Mt namísto plánovaných 100 Mt.[1] Bomba byla odpálena shozem z bombardéru nad sovětskou jadernou střelnicí Nová země dne 30.října 1961 nad ránem. Její rázová vlna třikrát oběhla zeměkouli a její svit byl vidět na většině severní polokoule.

21

22 Účinky jaderných zbraní Celkové množství energie uvolněné jaderným výbuchem záleží na typu bomby. Většina energie je uvolněna ve formě tlakové vlny a tepelného záření. Ionizující záření je silně absorbováno vzduchem a tedy je nebezpečné pouze pro menší typy jaderných bomb. Tepelné záření je tlumeno nejpomaleji se vzdáleností od epicentra a tedy způsobuje největší škody u větších bomb. U jaderné bomby shozené na Hirošimu (explodovala ve výšce 550 m), v epicentru byla teplota přibližně C (povrch slunce má teplotu C), na několik sekund byla dosažena teplota asi půl milionu C, na velmi malou dobu (vřádu několika milisekund) i několik (desítek) milionů C (jen díky tomu lze zkonstruovat termonukleární zbraň). Co hlavně odlišuje jadernou zbraň od klasických (chemických) výbušnin je přítomnost elektromagnetického impulsu, ionizujícího záření, a hlavně uvolnění množství radioaktivních látek. Ačkoliv procentuální zastoupení radioaktivity na celkově uvolněné energii není velké, dávka záření, které jsou oběti atomového útoku vystaveny, má devastující účinky na jejich zdraví. Little Boy dne 6. srpna Město Hirošima bylo zvoleno jako primární cíl ze strategických důvodů, jelikož se jednalo o městskou průmyslovou oblast a za druhé, že se nacházelo v příhodné lokalitě a za třetí se podle rozvědky nenacházel na jeho území žádný americký válečný zajatec. Jako sekundární cíl bylo zvoleno město Kokura, v kterém byly velké vojenské sklady. Při explozi atomové bomby Little Boy o síle 12 až 20 kilotun TNT bylo okamžitě zabito 70 tisíc obyvatel města a z celkového počtu 90 tisíc budov bylo zničeno 62 tisíc.

23 Energii uvolněnou atomovým výbuchem je možno rozdělit na následující kategorie: tlaková vlna % celkové uvolněné energie tepelné záření % celkové uvolněné energie ionizující záření 5 % celkové uvolněné energie radioaktivní záření 5 10 % celkové uvolněné energie Výbuch způsobil devastaci většíčásti města a okamžitou smrt asi obyvatel. Dalších lidí bylo zraněno a tisíce dalších později zemřelo na následky radioaktivního ozáření. Celkem zahynulo asi obyvatel města. _Before_and_after_%28adjusted%29.jpg

24 Jaderná energetika

25 Palivový cyklus jaderných elektráren je poměrně složitý. Začíná těžbou uranové rudy a jejím chemickým zpracováním. K získání 1 kg jaderného paliva jsou třeba 2 až 4 tuny uranové rudy. Nahradí se tím až 100 tun kvalitního černého uhlí. Z rozemleté rudy se získá žlutý koncentrát oxidu uranu U 3 O 8, obsahující minimálně 65 % přírodního uranu. Z něho se rafinuje čistý kovový uran a obohacuje izotopem 92 U 235 z přírodních 0,7 % na 2,5 až 4 %. Výroba paliva začíná přeměnou na oxid uraničitý UO 2, který se lisuje do malých pelet (o hmotnosti asi 5 g). Pelety se vkládají do hermeticky uzavřených trubek ze zirkonové slitiny a vytvářejí palivové proutky. Svazek palivových proutků tvoří palivovou kazetu (palivový soubor, palivový článek). Například v každém reaktoru JE Temelín je uloženo 163 palivových kazet, každá kazeta je sestavena z 312 palivových proutků. Každý proutek obsahuje asi 370 pelet. Použité palivo se po několika letech nahrazuje palivem čerstvým a ukládá v meziskladu použitého paliva. Použité palivo obsahuje v průměru 95% 92 U 238, 3% štěpných produktů, 1% 92 U 235 a asi 1% nově vytvořeného plutonia 93 Pu 239. Pouze 3% štěpných produktů je možné považovat za skutečný jaderný odpad, protože zbytek může být po přepracování znovu využit jako palivo. Přepracování je však v současné době technicky i ekonomicky velmi náročné a provádí se jen v několika málo zemích. U nás se po několika desítkách let předpokládá trvalé uložení použitého paliva do hlubinného konečného úložiště.

CZ.1.07/1.1.30/01.0038

CZ.1.07/1.1.30/01.0038 Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 29 Téma: RADIOAKTIVITA A JADERNÝ PALIVOVÝ CYKLUS Lektor: Ing. Petr Konáš Třída/y: 3ST,

Více

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie je klinický obor využívající účinků ionizujícího záření v léčbě jak zhoubných, tak nezhoubných nádorů

Více

Jaderná fyzika. Zápisy do sešitu

Jaderná fyzika. Zápisy do sešitu Jaderná fyzika Zápisy do sešitu Vývoj modelů atomu 1/3 Antika intuitivně zavedli pojem atomos nedělitelná část hmoty Pudinkový model J.J.Thomson (1897) znal elektron a velikost atomu 10-10 m v celém atomu

Více

Relativistická dynamika

Relativistická dynamika Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte

Více

Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas Třída: 9. C

Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas Třída: 9. C Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití Jméno: Ondřej Lukas Třída: 9. C Co to je Radioaktivita/Co je radionuklid Radioaktivita = Samovolná přeměna atomových jader Objev 1896

Více

1 Měření na Wilsonově expanzní komoře

1 Měření na Wilsonově expanzní komoře 1 Měření na Wilsonově expanzní komoře Cíle úlohy: Cílem této úlohy je seznámení se základními částicemi, které způsobují ionizaci pomocí Wilsonovi mlžné komory. V této úloze studenti spustí Wilsonovu mlžnou

Více

Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 19

Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 19 Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň Monitorovací indikátor: 06.43.10

Více

Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011

Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011 Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011 OCHRANA PŘED ZÁŘENÍM Přednáška pro stáže studentů MU, podzimní semestr 2010-09-08 Ing. Oldřich Ott Osnova přednášky Druhy ionizačního záření,

Více

Jaderná energie. Obrázek atomů železa pomocí řádkovacího tunelového mikroskopu

Jaderná energie. Obrázek atomů železa pomocí řádkovacího tunelového mikroskopu Jaderná energie Atom Všechny věci kolem nás se skládají z atomů. Atom obsahuje jádro (tvořené protony a neutrony) a obal tvořený elektrony. Protony a elektrony jsou částice elektricky nabité, neutron je

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření.

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření. FYZIKA pracovní sešit pro ekonomické lyceum. 1 Jiří Hlaváček, OA a VOŠ Příbram, 2015 FYZIKA MIKROSVĚTA Kvantové vlastnosti světla (str. 241 257) Fotoelektrický jev je uvolňování elektronů z látky vlivem

Více

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Hvězdy zblízka Složení hvězdy Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Plazma zcela nebo částečně ionizovaný plyn,

Více

PRO VAŠE POUČENÍ. Kdo se bojí radiace? ÚVOD CO JE RADIACE? Stanislav Kočvara *, VF, a.s. Černá Hora

PRO VAŠE POUČENÍ. Kdo se bojí radiace? ÚVOD CO JE RADIACE? Stanislav Kočvara *, VF, a.s. Černá Hora Kdo se bojí radiace? Stanislav Kočvara *, VF, a.s. Černá Hora PRO VAŠE POUČENÍ ÚVOD Od počátků lidského rodu platí, že máme strach především z neznámého. Lidé měli v minulosti strach z ohně, blesku, zatmění

Více

Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 RADIOAKTIVITA Mgr. DAGMAR AUTERSKÁ,

Více

Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická. Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE.

Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická. Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE. Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE Studijní texty 2010 Struktura předmětu 1. ÚVOD 2. EKOSYSTÉM MODELOVÁ JEDNOTKA 3.

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

Rozměr a složení atomových jader

Rozměr a složení atomových jader Rozměr a složení atomových jader Poloměr atomového jádra: R=R 0 A1 /3 R0 = 1,2 x 10 15 m Cesta do hlubin hmoty Složení atomových jader: protony + neutrony = nukleony mp = 1,672622.10 27 kg mn = 1,6749272.10

Více

5. RADIAČNÍ OCHRANA I Jiří Konečný

5. RADIAČNÍ OCHRANA I Jiří Konečný 5. RADIAČNÍ OCHRANA I Jiří Konečný 5.1 Před čím chceme člověka ochránit Živé organismy na Zemi vznikly a vyvíjely se v podmínkách stálého působení přírodnino radioaktivního pozadí. Zdroje záření můžeme

Více

2 Primární zdroje energie. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín

2 Primární zdroje energie. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín 2 Primární zdroje energie Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín Obsah přednášky 1. Zdroje energie rozdělení 2. Fosilní paliva 3. Solární

Více

Prvek, nuklid, izotop, izobar

Prvek, nuklid, izotop, izobar Prvek, nuklid, izotop, izobar A = Nukleonové (hmotnostní) číslo A = počet protonů + počet neutronů A = Z + N Z = Protonové číslo, náboj jádra Frederick Soddy (1877-1956) NP za chemii 1921 Prvek = soubor

Více

Radiobiologický účinek záření. Helena Uhrová

Radiobiologický účinek záření. Helena Uhrová Radiobiologický účinek záření Helena Uhrová Fáze účinku fyzikální fyzikálně chemická chemická biologická Fyzikální fáze Přenos energie na e Excitace molekul, ionizace Doba trvání 10-16 - 10-13 s Fyzikálně-chemická

Více

Potřebné pomůcky Sešit, učebnice, pero

Potřebné pomůcky Sešit, učebnice, pero Potřebné pomůcky Druh interaktivity Cílová skupina Stupeň a typ vzdělání Potřebný čas Velikost Zdroj Sešit, učebnice, pero Výklad, aktivita žáků 9. ročník 2. stupeň, ZŠ 45 minut 754 kb Viz použité zdroje

Více

Radiační ochrana. Ing. Jiří Filip Oddělení radiační ochrany FNUSA

Radiační ochrana. Ing. Jiří Filip Oddělení radiační ochrany FNUSA Radiační ochrana. Ing. Jiří Filip Oddělení radiační ochrany FNUSA Legislativa Zákon č. 18/1997 Sb., o mírovém využití jaderné energie a ionizujícího záření a o změně a doplnění některých zákonů atomový

Více

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý Autor: Mgr. Stanislava Bubíková JADERNÁ ENERGIE Datum (období) tvorby: 25. 6. 2012 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemické reakce; chemie a společnost 1 Anotace: Žáci se

Více

Atomová a jaderná fyzika

Atomová a jaderná fyzika Mgr. Jan Ptáčník Atomová a jaderná fyzika Fyzika - kvarta Gymnázium J. V. Jirsíka Atom - historie Starověk - Démokritos 19. století - první důkazy Konec 19. stol. - objev elektronu Vznik modelů atomu Thomsonův

Více

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 20. říjen 202 Název zpracovaného celku: ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Leukippos, Démokritos (5. st. př. n. l.; Řecko).

Více

JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník JADERNÁ FYZIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Základní pojmy Jaderná síla - drží u sebe nukleony, velmi krátký dosah, nasycení Vazebná energie jádra: E V = ( Z m p + N

Více

Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje

Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje 16.3.2009,vyhotovila Mgr. Alena Jirčáková Atom atom (z řeckého átomos nedělitelný)

Více

Jaderný palivový cyklus

Jaderný palivový cyklus Jaderný palivový cyklus Číslo projektu Název školy Předmět CZ.1.07/1.5.00/34.0425 INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov BIOLOGIE A EKOLOGIE Tematický okruh Téma Klasické

Více

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka

Více

ATOMOVÁ FYZIKA JADERNÁ FYZIKA

ATOMOVÁ FYZIKA JADERNÁ FYZIKA ATOMOVÁ FYZIKA JADERNÁ FYZIKA 12. JADERNÁ FYZIKA, STAVBA A VLASTNOSTI ATOMOVÉHO JÁDRA Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. JADERNÁ FYZIKA zabývá strukturou a přeměnami atomového jádra.

Více

Jaroslav Reichl. Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl, 2017

Jaroslav Reichl. Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl, 2017 Střední průmyslová škola sdělovací techniky Panská Praha 1 Jaroslav Reichl, 017 určená studentům 4. ročníku technického lycea jako doplněk ke studiu fyziky Jaroslav Reichl Obsah 1. SPECIÁLNÍ TEORIE RELATIVITY....

Více

Reg.č.. CZ.1.07/1.4.00/ kladní škola T. G. Masaryka, Hrádek nad Nisou, Komenského 478, okres Liberec, příspp. spěvková organizace

Reg.č.. CZ.1.07/1.4.00/ kladní škola T. G. Masaryka, Hrádek nad Nisou, Komenského 478, okres Liberec, příspp. spěvková organizace Reg.č.. CZ.1.07/1.4.00/21.1720 Příjemce: ZákladnZ kladní škola T. G. Masaryka, Hrádek nad Nisou, Komenského 478, okres Liberec, příspp spěvková organizace Název projektu: Kvalitní podmínky nky- kvalitní

Více

Kam kráčí současná fyzika

Kam kráčí současná fyzika Kam kráčí současná fyzika Situace před II. světovou válkou Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie velkého

Více

VY_52_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen

VY_52_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen VY_52_INOVACE_VK64 Jméno autora výukového materiálu Věra Keselicová Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace 8. ročník

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní

Více

RADIOAKTIVITA A VLIV IONIZUJÍCÍHO ZÁŘENÍ

RADIOAKTIVITA A VLIV IONIZUJÍCÍHO ZÁŘENÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 RADIOAKTIVITA A VLIV IONIZUJÍCÍHO

Více

Jaderný palivový cyklus - Pracovní list

Jaderný palivový cyklus - Pracovní list Číslo projektu Název školy Předmět CZ.107/1.5.00/34.0425 INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov BIOLOGIE A EKOLOGIE Tematický okruh Téma Ročník 2. Autor Klasické energie

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Fyzika atomu - model atomu struktura elektronového obalu atomu z hlediska energie atomu - stavba atomového jádra; základní nukleony

Více

2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A

2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A 2. Jaderná fyzika 9 2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A V této kapitole se dozvíte: o historii vývoje modelů stavby atomového jádra od dob Rutherfordova experimentu;

Více

Radioaktivita,radioaktivní rozpad

Radioaktivita,radioaktivní rozpad Radioaktivita,radioaktivní rozpad = samovolná přeměna jader nestabilních nuklidů na jiná jádra, za současného vyzáření neviditelného radioaktivního záření Výskyt v přírodě v přírodě se vyskytuje 264 stabilních

Více

ZDROJE A PŘEMĚNY ENERGIE

ZDROJE A PŘEMĚNY ENERGIE INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ZDROJE A PŘEMĚNY ENERGIE ING.

Více

UNIVERZITA PARDUBICE FAKULTA ZDRAVOTNICKÝCH STUDIÍ

UNIVERZITA PARDUBICE FAKULTA ZDRAVOTNICKÝCH STUDIÍ UNIVERZITA PARDUBICE FAKULTA ZDRAVOTNICKÝCH STUDIÍ BAKALÁŘSKÁ PRÁCE 2015 HELENA MARTINKOVÁ Univerzita Pardubice Fakulta zdravotnických studií Radionuklidové metody v diagnostice a určení terapeutické odpovědi

Více

ZÁKON č. 18/1997 Sb. ze dne 24. ledna 1997

ZÁKON č. 18/1997 Sb. ze dne 24. ledna 1997 ZÁKON č. 18/1997 Sb. ze dne 24. ledna 1997 o mírovém využívání jaderné energie a ionizujícího záření (atomový zákon) a o změně a doplnění některých zákonů Změna: 83/1998 Sb. Změna: 71/2000 Sb. Změna: 132/2000

Více

vysokoteplotního plazmatu na tokamaku GOLEM

vysokoteplotního plazmatu na tokamaku GOLEM Měření základních parametů vysokoteplotního plazmatu na tokamaku GOLEM J. Krbec 1 1 České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská U3V Fyzika přátelsky / Aplikované přírodní

Více

Test z fyzikálních fyzikálních základ ů nukleární medicíny

Test z fyzikálních fyzikálních základ ů nukleární medicíny Test z fyzikálních základů nukleární medicíny 1. Nukleární medicína se zabývá a) diagnostikou pomocí otevřených zářičů a terapií pomocí uzavřených zářičů aplikovaných in vivo a in vitro b) diagnostikou

Více

FYZIKA ATOMOVÉHO JÁDRA

FYZIKA ATOMOVÉHO JÁDRA FYZIKA ATOMOVÉHO JÁDRA Je to nejstarší obor fyziky Stručně jaderná nebo nukleární fyzika Zabývá se strukturou jader, jadernými ději a jejich využití v praxi JÁDRO ATOMU Tvoří centrální část atomu o poloměru

Více

POČÍTAČOVÁ TOMOGRAFIE V ZOBRAZOVÁNÍ MALÝCH ZVÍŘAT ÚVOD. René Kizek. Název: Školitel: Datum: 20.09.2013

POČÍTAČOVÁ TOMOGRAFIE V ZOBRAZOVÁNÍ MALÝCH ZVÍŘAT ÚVOD. René Kizek. Název: Školitel: Datum: 20.09.2013 Název: Školitel: POČÍTAČOVÁ TOMOGRAFIE V ZOBRAZOVÁNÍ MALÝCH ZVÍŘAT ÚVOD René Kizek Datum: 20.09.2013 Základy počítačové tomografie položil W. C. Röntgen, který roku 1895 objevil paprsky X. Tyto paprsky,

Více

5 Měření absorpce ionizujícího záření v závislosti na tlaku vzduchu

5 Měření absorpce ionizujícího záření v závislosti na tlaku vzduchu 5 Měření absorpce ionizujícího záření v závislosti na tlaku vzduchu Cíle úlohy: Cílem této úlohy je seznámení se s lineárním absorpčním koeficientem a jeho závislostí na tlaku vzduchu a použitých stínících

Více

Radon zdroje, rizika, opatření

Radon zdroje, rizika, opatření Radon zdroje, rizika, opatření Většina atomů, z nichž jsou složeny minerály, horniny i zeminy v přírodě, je stabilních a během geologického vývoje Země se nemění. Existuje ale část atomů, které stabilní

Více

8.STAVBA ATOMU ELEKTRONOVÝ OBAL

8.STAVBA ATOMU ELEKTRONOVÝ OBAL 8.STAVBA ATOMU ELEKTRONOVÝ OBAL 1) Popiš Daltonovu atomovou teorii postuláty. (urči, které platí dodnes) 2) Popiš Rutherfordův planetární model atomu a jeho přínos. 3) Bohrův model atomu vysvětli kvantování

Více

Letní škola RADIOAKTIVNÍ LÁTKY a možnosti detoxikace

Letní škola RADIOAKTIVNÍ LÁTKY a možnosti detoxikace Letní škola 2008 RADIOAKTIVNÍ LÁTKY a možnosti detoxikace 1 Periodická tabulka prvků 2 Radioaktivita radioaktivita je schopnost některých atomových jader odštěpovat částice, neboli vysílat záření jádro

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura

Více

Jiøí Vlèek ZÁKLADY STØEDOŠKOLSKÉ CHEMIE obecná chemie anorganická chemie organická chemie Obsah 1. Obecná chemie... 1 2. Anorganická chemie... 29 3. Organická chemie... 48 4. Laboratorní cvièení... 69

Více

Identifikace typu záření

Identifikace typu záření Identifikace typu záření U radioaktivního záření rozeznáváme několik druhů, jejichž vlastnosti se diametrálně liší. Jednotlivé druhy rozeznáváme podle druhu emitovaného záření. Tyto druhy radioaktivity

Více

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace) Referát z atomové a jaderné fyziky Detekce ionizujícího záření (principy, technická realizace) Měřicí a výpočetní technika Šimek Pavel 5.7. 2002 Při všech aplikacích ionizujícího záření je informace o

Více

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

Předmět: Technická fyzika III.- Jaderná fyzika. Název semestrální práce: OBECNÁ A SPECIÁLNÍ TEORIE RELATIVITY. Obor:MVT Ročník:II.

Předmět: Technická fyzika III.- Jaderná fyzika. Název semestrální práce: OBECNÁ A SPECIÁLNÍ TEORIE RELATIVITY. Obor:MVT Ročník:II. Předmět: Technická fyzika III.- Jaderná fyzika Název semestrální práce: OBECNÁ A SPECIÁLNÍ TEORIE RELATIVITY Jméno:Martin Fiala Obor:MVT Ročník:II. Datum:16.5.2003 OBECNÁ TEORIE RELATIVITY Ekvivalence

Více

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí

Více

ABSOLVENTSKÁ PRÁCE. Název práce: Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas. Třída: 9.

ABSOLVENTSKÁ PRÁCE. Název práce: Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas. Třída: 9. ABSOLVENTSKÁ PRÁCE Název práce: Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití Jméno: Ondřej Lukas Třída: 9. C Datum odevzdání: 29. 4. 2016 0 Vedoucí učitel: Mgr. Kateřina Wernerová

Více

Pracovní list: Opakování učiva 8. ročníku

Pracovní list: Opakování učiva 8. ročníku Pracovní list: Opakování učiva 8. ročníku Komentář ke hře: 1. Třída se rozdělí do čtyř skupin. Vždy spolu soupeří dvě skupiny a vítězné skupiny se pak utkají ve finále. 2. Každé z čísel skrývá otázku.

Více

Závazné pokyny pro vyplňování statistického formuláře T (MZ) 1-01: Roční výkaz o přístrojovém vybavení zdravotnického zařízení

Závazné pokyny pro vyplňování statistického formuláře T (MZ) 1-01: Roční výkaz o přístrojovém vybavení zdravotnického zařízení Program statistických zjišťování Ministerstva zdravotnictví na rok 2015 ÚZIS ČR Závazné pokyny pro vyplňování statistického formuláře T (MZ) 1-01: Roční výkaz o přístrojovém vybavení zdravotnického zařízení

Více

Jaderná energetika. Důvody podporující v současnosti výstavbu jaderných elektráren jsou zejména:

Jaderná energetika. Důvody podporující v současnosti výstavbu jaderných elektráren jsou zejména: Jaderná energetika První jaderný reaktor 2.12.1942 stadion Chicago USA 1954 první jaderná elektrárna rna (Obninsk( Obninsk,, SSSR)grafitový reaktor, 30MWt, 5MWe 1956 první jaderná elektrárna rna v ČSR

Více

Základní škola a mateřská škola, Ostrava-Hrabůvka, Mitušova 16, příspěvková organizace Školní vzdělávací program 2. stupeň, Člověk a příroda.

Základní škola a mateřská škola, Ostrava-Hrabůvka, Mitušova 16, příspěvková organizace Školní vzdělávací program 2. stupeň, Člověk a příroda. Fyzika Fyzika je tou součástí školního vzdělávacího plánu školy, která umožňuje žákům porozumět přírodním dějům a zákonitostem. Dává jim potřebný základ pro lepší pochopení a orientaci v životě. Díky praktickým

Více

Aplikace jaderné fyziky (několik příkladů)

Aplikace jaderné fyziky (několik příkladů) Aplikace jaderné fyziky (několik příkladů) Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK pavel.cejnar@mff.cuni.cz Příklad I Datování Galileiho rukopisů Galileo Galilei (1564 1642) Všechny vázané

Více

Jaderné systémy I (JS1) & Jaderné reaktory a parogenerátory (JR)

Jaderné systémy I (JS1) & Jaderné reaktory a parogenerátory (JR) Jaderné systémy I (JS1) & Jaderné reaktory a parogenerátory (JR) Pavel Zácha G3-126 Základní jednotky QF=1 pro β, γ QF=3-10 pro n (v závislosti na energii neutronu) QF=20 pro α Pro pochopení, jaká dávka

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: Lasery - druhy

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: Lasery - druhy Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Lasery - druhy Laser je tvořen aktivním prostředím, rezonátorem a zdrojem energie. Zdrojem energie, který může

Více

JADERNÁ ENERGIE. Jaderné reakce, které slouží k uvolňování jaderné energie, jsou jaderná syntéza a jaderné štěpení.

JADERNÁ ENERGIE. Jaderné reakce, které slouží k uvolňování jaderné energie, jsou jaderná syntéza a jaderné štěpení. JADERNÁ ENERGIE Jaderné reakce, které slouží k uvolňování jaderné energie, jsou jaderná syntéza a jaderné štěpení.. Jaderná syntéza (termonukleární reakce): Je děj, při němž složením dvou lehkých jader

Více

SEZNAM VYBRANÝCH POLOŽEK PODLÉHAJÍCÍCH KONTROLNÍM REŽIMŮM PŘI DOVOZU, VÝVOZU A PRŮVOZU

SEZNAM VYBRANÝCH POLOŽEK PODLÉHAJÍCÍCH KONTROLNÍM REŽIMŮM PŘI DOVOZU, VÝVOZU A PRŮVOZU 165 VYHLÁŠKA ze dne 8. června 2009 o stanovení seznamu vybraných položek v jaderné oblasti Státní úřad pro jadernou bezpečnost stanoví podle 47 odst. 7 k provedení 2 písm. j) bodu 2 zákona č. 18/1997 Sb.,

Více

Radioaktivita - dobrý sluha, zlý pán

Radioaktivita - dobrý sluha, zlý pán Radioaktivita - dobrý sluha, zlý pán Science Cafe v Písku 2014 S.Valenta & Z.Drásal Objevy 1896 H.Becquerel objevuje radioaktivitu Objevy 1896 H.Becquerel objevuje radioaktivitu 1897 J.J.Thomson objevuje

Více

Nebezpečí ionizujícího záření

Nebezpečí ionizujícího záření Nebezpečí ionizujícího záření Radioaktivita versus Ionizující záření Radioaktivita je schopnost jader prvků samovolně se rozpadnout na jádra menší stabilnější. Rozeznáváme pak radioaktivitu přírodní (viz.

Více

Detekční trubice typu A ke geigeru ALPHA ix Kat. číslo 109.0601

Detekční trubice typu A ke geigeru ALPHA ix Kat. číslo 109.0601 Detekční trubice typu A ke geigeru ALPHA ix Kat. číslo 109.0601 Obsah: 1. Měření velikosti dávky detekční trubicí typu A... 2 2. Statistická chyba měření... 2 3. Mez průkaznosti (NWG)...3 4. Měření kontaminace...

Více

44.1 ATOM A JEHO JÁDRO 44.2 JADERNÉ ŠTĚPENÍ: ZÁKLADNÍ PROCES. Hlubší pohled na štěpení

44.1 ATOM A JEHO JÁDRO 44.2 JADERNÉ ŠTĚPENÍ: ZÁKLADNÍ PROCES. Hlubší pohled na štěpení 44 Energie z j dra Obraz, kter ohromil svït po 2. svïtovè v lce. Robert Oppenheimer vedl vïdeck t m, kter vyvinul atomovou bombu; kdyû byl svïdkem prvnìho jadernèho v buchu, citoval posv tn hinduistick

Více

Aplikace jaderné fyziky

Aplikace jaderné fyziky Aplikace jaderné fyziky Ing. Carlos Granja, Ph.D. Ustav technické a experimentální fyziky ČVUT v Praze XI 2004 1 Aplikace jaderné fyziky lékařské aplikace (zobrazování, radioterapie) výroba radioisotopů

Více

JADERNÁ ENERGIE. Při chemických reakcích dochází ke změnám v elektronových obalech atomů. Za určitých podmínek mohou změnám podléhat i jádra atomů.

JADERNÁ ENERGIE. Při chemických reakcích dochází ke změnám v elektronových obalech atomů. Za určitých podmínek mohou změnám podléhat i jádra atomů. JADERNÁ ENERGIE Při chemických reakcích dochází ke změnám v elektronových obalech atomů. Za určitých podmínek mohou změnám podléhat i jádra atomů. HISTORIE Profesor pařížské univerzity Sorbonny Antoine

Více

Fyzika (učitelství) Zkouška - teoretická fyzika. Čas k řešení je 120 minut (6 minut na úlohu): snažte se nejprve rychle vyřešit ty nejsnazší úlohy,

Fyzika (učitelství) Zkouška - teoretická fyzika. Čas k řešení je 120 minut (6 minut na úlohu): snažte se nejprve rychle vyřešit ty nejsnazší úlohy, Státní bakalářská zkouška. 9. 05 Fyzika (učitelství) Zkouška - teoretická fyzika (test s řešením) Jméno: Pokyny k řešení testu: Ke každé úloze je správně pouze jedna odpověď. Čas k řešení je 0 minut (6

Více

Referát z Fyziky. Detektory ionizujícího záření. Vypracoval: Valenčík Dušan. MVT-bak.

Referát z Fyziky. Detektory ionizujícího záření. Vypracoval: Valenčík Dušan. MVT-bak. Referát z Fyziky Detektory ionizujícího záření Vypracoval: Valenčík Dušan MVT-bak. 2 hlavní skupiny detektorů používaných v jaderné a subjaderné fyzice 1) počítače interakce nabitých částic je převedena

Více

Kosmické záření. Michal Nyklíček Karel Smolek

Kosmické záření. Michal Nyklíček Karel Smolek Kosmické záření Michal Nyklíček Karel Smolek Astročásticová fyzika Věda zabývající se studiem částic přicházejících k nám z vesmíru (= kosmické záření). Nové okno astronomie = kosmické záření nese informace

Více

ELEKTRICKÝ PROUD V KAPALINÁCH, PLYNECH A POLOVODIČÍCH

ELEKTRICKÝ PROUD V KAPALINÁCH, PLYNECH A POLOVODIČÍCH Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D14_Z_OPAK_E_Elektricky_proud_v_kapalinach _plynech_a_polovodicich_t Člověk a příroda

Více

2. Atomové jádro a jeho stabilita

2. Atomové jádro a jeho stabilita 2. Atomové jádro a jeho stabilita Atom je nejmenší hmotnou a chemicky nedělitelnou částicí. Je tvořen jádrem, které obsahuje protony a neutrony, a elektronovým obalem. Elementární částice proton neutron

Více

Miroslav Veverka: Evoluce svým vlastním tvůrcem

Miroslav Veverka: Evoluce svým vlastním tvůrcem 54 Rodokmen atomů Ve velmi raném vesmíru tvořilo hlavní složku světlo a záření vůbec. Z reliktního záření vyplývá, že na jeden proton či neutron tehdy připadalo 100 milionů až 20 miliard fotonů, elektronů

Více

II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO

II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO 2.1 Vnitřní energie tělesa a) celková energie (termodynamické) soustavy E tvořena kinetickou energií E k jejího makroskopického pohybu jako celku potenciální energií

Více

Lukáš Feřt SPŠ dopravní, Plzeň, Karlovarská 99,

Lukáš Feřt SPŠ dopravní, Plzeň, Karlovarská 99, Lukáš Feřt SPŠ dopravní, Plzeň, Karlovarská 99, 326 00 V rámci projektu: Inovace odborného vzdělávání na středních školách zaměřené na využívání energetických zdrojů pro 21. století něco jako kuličku První

Více

CESTA DO HLUBIN ATOMOVÉHO JÁDRA

CESTA DO HLUBIN ATOMOVÉHO JÁDRA CESTA DO HLUBIN ATOMOVÉHO JÁDRA A ZPĚT Anna Macková 1 Úvod Současným vědeckým pozorováním jsou dostupné prostorové vzdálenosti v rozsahu přibližně 10 18 m 10 23 m. V následujícím přehledu jevů probíhajících

Více

Úvod do moderní fyziky. lekce 4 jaderná fyzika

Úvod do moderní fyziky. lekce 4 jaderná fyzika Úvod do moderní fyziky lekce 4 jaderná fyzika objevení jádra 1911 - z výsledků Geigerova Marsdenova experimentu Rutheford vyvodil, že atom se skládá z malého jádra, jehož rozměr je 10000 krát menší než

Více

FYZIKA na LF MU cvičná. 1. Který z následujících souborů jednotek neobsahuje jen základní nebo odvozené jednotky soustavy SI?

FYZIKA na LF MU cvičná. 1. Který z následujících souborů jednotek neobsahuje jen základní nebo odvozené jednotky soustavy SI? FYZIKA na LF MU cvičná 1. Který z následujících souborů jednotek neobsahuje jen základní nebo odvozené jednotky soustavy SI? A. kandela, sekunda, kilogram, joule B. metr, joule, kalorie, newton C. sekunda,

Více

Atomové jádro, elektronový obal

Atomové jádro, elektronový obal Atomové jádro, elektronový obal 1 / 9 Atomové jádro Atomové jádro je tvořeno protony a neutrony Prvek je látka skládající se z atomů se stejným počtem protonů Nuklid je systém tvořený prvky se stejným

Více

ČERNOBYL PŘÍČINY, NÁSLEDKY, ŘEŠENÍ

ČERNOBYL PŘÍČINY, NÁSLEDKY, ŘEŠENÍ Greenpeace International ČERNOBYL PŘÍČINY, NÁSLEDKY, ŘEŠENÍ Zpráva Greenpeace, duben 1996 1 Úvod Katastrofa v Černobylu byla nazvána "největší technologickou katastrofou v historii lidstva". Způsobila

Více

ATOMOVÁ FYZIKA JADERNÁ FYZIKA

ATOMOVÁ FYZIKA JADERNÁ FYZIKA ATOMOVÁ FYZIKA JADERNÁ FYZIKA 17. OCHRANA PŘED JADERNÝM ZÁŘENÍM Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. OCHRANA PŘED JADERNÝM ZÁŘENÍM VLIV RADIACE NA LIDSKÝ ORGANISMUS. 1. Buňka poškození

Více

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník FYZIKA MIKROSVĚTA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Mikrosvět Svět o rozměrech 10-9 až 10-18 m. Mikrosvět není zmenšeným makrosvětem! Chování v mikrosvětě popisuje kvantová

Více

Test z radiační ochrany

Test z radiační ochrany Test z radiační ochrany v nukleární medicíně ě 1. Mezi přímo ionizující záření patří a) záření alfa, beta a gama b) záření neutronové c) záření alfa, beta a protonové záření 2. Aktivita je definována a)

Více

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku V tomto článku uvádíme shrnutí poznatků učiva II. ročníku

Více

1.4 Možnosti odstínění radioaktivního záření

1.4 Možnosti odstínění radioaktivního záření 1.4 Možnosti odstínění radioaktivního záření Cíle kapitoly: Laboratorní úloha je zaměřena na problematiku radioaktivního záření a studentům umožňuje prověřit znalosti, resp. prakticky si vyzkoušet práci

Více

EKOTOXIKOLOGIE EKO/ETXE. Ionizující záření v Životním prostředí. Petr Hekera Katedra ekologie a ŽP PřF UP Olomouc

EKOTOXIKOLOGIE EKO/ETXE. Ionizující záření v Životním prostředí. Petr Hekera Katedra ekologie a ŽP PřF UP Olomouc Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 EKOTOXIKOLOGIE EKO/ETXE IV Ionizující záření v Životním prostředí Petr Hekera

Více

RADIOAKTIVITA TEORIE. Škola: Masarykovo gymnázium Vsetín Mgr.Milan Staněk MGV_F_SS_3S2_D12_Z_MIKSV_Radioaktivita_PL

RADIOAKTIVITA TEORIE. Škola: Masarykovo gymnázium Vsetín Mgr.Milan Staněk MGV_F_SS_3S2_D12_Z_MIKSV_Radioaktivita_PL Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr.Milan Staněk MGV_F_SS_3S2_D12_Z_MIKSV_Radioaktivita_PL Člověk a příroda Fyzika Jaderná fyzika Radioaktivita RADIOAKTIVITA

Více

KINETICKÁ TEORIE STAVBY LÁTEK

KINETICKÁ TEORIE STAVBY LÁTEK KINETICKÁ TEORIE STAVBY LÁTEK Látky kteréhokoliv skupenství se skládají z částic. Prostor, který těleso zaujímá, není částicemi beze zbytku vyplněn (diskrétní struktura látek). Rozměry částic jsou řádově

Více

Struktura atomů a molekul

Struktura atomů a molekul Struktura atomů a molekul Obrazová příloha Michal Otyepka tento text byl vysázen systémem L A TEX2 ε ii Úvod Dokument obsahuje všechny obrázky tak, jak jsou uvedeny ve druhém vydání skript Struktura atomů

Více