V kompletním grafu nenastává problém. Každý uzel je soused se zbytkem vrcholů a může s nimi kdykoliv komunikovat.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "V kompletním grafu nenastává problém. Každý uzel je soused se zbytkem vrcholů a může s nimi kdykoliv komunikovat."

Transkript

1 1 SMĚROVÁNÍ (ROUTING) V kompletním grafu nenastává problém. Každý uzel je soused se zbytkem vrcholů a může s nimi kdykoliv komunikovat. Problém nastává u ostatních grafů: Kritéria dobrého směrování: a) Corectnost - správný paket musí být doručen správnému adresátovi b) Složitost - algoritmus musí použí co nejmíň směrovacích tabulek, zpráv, času atd. c) Efektivnost - všechny pakety by měli být posílané po co nejkratších cestách. Pokud je toto splněno, algoritmus se nazývá optimální. d) Robustnost - V případě topologické změny sítě, by měl algoritmus tyto změny zaznamenat a změnit směrování. e) Adoptivnost - Můžeme zkoumat zatíženost cesty(hrany) a požadujeme rovnoměrné zatížení cest(hran). f) Spravedlnost - Úměrné cesty mají zajištěn úměrný čas přenosu. Nemůžeme požadovat, aby po kratší cestě putoval paket déle než po delší cestě. Směrování pomocí směrovacích tabulek Předpokládáme, že máme vrchol u a pole table u, které obsahuje určité informace. Základní algoritmus: receive m, d ; if d = u then OK else s m, d to table u [d];

2 2 Sestrojení směrovací tabulky: index * * 4 1* * * 4-4* 7 6 4* * * 5* Naše směrovací tabulka má vlastnost nejkratších cest. Pokud požadujeme jinou vlastnost dostaneme i jinou tabulku. - existuje více možností Kolik bitů je potřeba na uchování celé směrovací tabulky? Θ(n 2 log n) pro n vrcholů Celkový počet údajů v tabulce: Θ(n 2 ) Věta : Optimální směrovací schéma pro daný graf vyžaduje Θ(n 2 log n) bitů, které jsou uchovávané ve směrovací tabulce. Náhodný graf - definuje se podle teorie pravděpodobnosti nebo pomocí Kolmogorovské složitosti. Mějme n prázdných vrcholů. Postupně přidáváme hrany. V nějakém okamžiku tento proces zastavíme. Tedy po q - krocích budeme mít q hran. Počet všech vrcholů, které se takto dají vygenerovat je 2 (n 2). Pokud náhodně vybereme z této množiny některé grafy, tyto grafy mají určité vlastnosti. Definice : Říkáme, že téměř všechny grafy mají vlastnost Q, pokud platí, že

3 3 lim n P [G má vlastnost Q] = 1. G je graf, který je prvkem nějakého pravděpodobnostního prostoru. Příklady vlastností: 1. Témeř všechny grafy jsou souvislé 2. Téměř všechny grafy mají průměr 2 3. Téměř všechny grafy nejsou planární Graf je reprezentován binárním řetězcem, tedy nad abecedou {0,1} délky ( ) n 2. Každý graf je reprezentován binárním řetězcem. Pokud náhodně vygenerujeme náhodný binární řetězec dostaneme i náhodný graf. Kolmogorovský náhodný graf je reprezentován nestlačitelným(málo stlačitelným) řetězcem. Málo stlačitelný řetězec je náhodně generovaný řetězec, tedy řetězec bez často se opakujících stejných podřetězců. Věta : (Horní odhad pro rozsah směrovacích tabulek v Kolmogorovských náhodných grafech) Směrovač pro optimální směrovací schéma na Kolmogorovských O( log n ) - náhodných grafech řádu n, potřebuje uchovávat nanejvýš 6n bitů směrovací informace. maximálně o tolik je řetězec stlačitelný. Celkově směrovací tabulka vyžaduje 6n 2 bitů. Věta : (Dolní odhad) Každý směrovač pro optimální směrovací schéma na Kolmogorovských o(n) - náhodných grafech potřebuje uchovávat alespoň n/2 - o(n) bitů směrovací informace. Celkové pamět ové nároky vyžadují n 2 /2 - o(n 2 ) bitů informace.

4 4 NETCHANGE ALGORITMUS Popis algoritmu Tajibnapis Netchange algoritmus je dán jako algoritmus 4.8 a 4.9. Postupy algoritmu budou nejdříve podloženy neformálním popisem operací algoritmu, a následně bude formálně dokázána správnost algoritmu. Výběr souseda, kterému budou doručeny balíky pro určení v, je založen na odhadech vzdálenosti každého uzlu k v. Preferovaný soused je vždy sousedem s nejnižším odhadem této vzdálenosti. var Neigh u : set of nodes ; (* sousedé u *) D u : array of 0..N ; (* D u [v] odhaduje d(u, v) *) Nb u : array of nodes ; (* Nb u [v] je soused preferovaný před v *) ndis u : array of 0..N ; (* ndis u [w, v] odhaduje d(w, v) *) Inicializace: begin forall w Neigh u, v V do ndis u [w, v] := N ; forall v V do begin D u [v] := N ; Nb u [v] := udef ; D u [u] := 0 ; Nb u [u] := local ; forall w Neigh u do s mydist, u, 0 to w Postup náhrady(v): begin if v = u then begin D u [v] := 0 ; Nb u [v] := local else begin (* Odhadnout vzdálenost k v *) d := 1 + min{ndis u [w, v] : w Neigh u } ; if d < N then begin D u [v] := d ; Nb u [v] := w with 1 + ndis u [w, v] = d else begin D u [v] := N ; Nb u [v] := udef ; if D u [v] se změní then forall x Neigh u do s mydist, v, D u [v] to x Algoritmus 4.8 NETCHANGE ALGORITMUS (Část první, pro uzel u). Uzel provádí odhad D u [v] of d(u, v) a odhaduje ndis u [w, v] of d(w, v) pro každého souseda w of u. Odhad D u [v] je vypočítán z odhadů ndis u [w, v], a odhady

5 5 ndis u [w, v] obdržíme přes komunikaci se sousedy. Výpočet odhadů D u [v] pokračuje následovně. Jestliže u = v potom d(u, v) = 0 takže D u [v] je v tomto případě nastaven na 0. Jestliže u v, nejkratší cesta z u do v (pokud taková cesta existuje ) se skládá z průchodu od u k sousedovi, sloučenému s nejkratší cestou od tohoto souseda k v a tedy d(u, v) = 1 + min w Neigh u d(w, v). Z předcházející rovnice, uzel u v odhaduje d(u, v) aplikováním této definice na odhadované hodnoty d(w, v), nalezených v tabulkách jako ndis u [w, v]. Když existuje N uzlů, minimálně se měnící cesta má délku nejvýše N 1. Uzel může tušit, že neexistuje žádná cesta, pokud je vypočítaná vzdálenost N a víc; hodnota N je užita v tabulce. Algoritmus vyžaduje uzel, aby měl odhad vzdálenosti svých sousedů k v. Ty jsou obdrřeny od těchto uzlů, protože je přenášejí ve zprávách typu mydist,... Pokud uzel u počítá hodnotu d jako odhad své vzdálenosti k v(d u [v] = d), je poslána tato informace všem sousedům ve zprávě mydist, v, d. Po obdržení zprávy mydist, v, d od souseda w, u přiděluje ndis u [w, v] hodnotu d.jako výsledek změny v ndis u [w, v] se odhad d(u, v) může změnit a proto je odhad nahrazen pokaždé, když se tabulka změní. Pokud se odhad opravdu změní k d je samozřejmě přenesen k sousedům, kteří užívají zprávy mydist, v, d. Zpracování zprávy mydist, v, d od souseda w: { mydist, v, d stojí v čele Q wv } begin receive mydist, v, d from w ndis u [w, v] := d ; Recompute(v) Při výpadku průchodu uw: begin receive fail, w ; Neigh u := Neigh u \{w} ; forall v V do Recompute (v) Při oparavě průchodu uw: begin receive repair, w ; Neigh u := Neigh u {w} ; forall v V do begin ndis u [w, v] := N ; s mydist, v, D u [v] to w Algoritmus 4.9 NETCHANGE ALGORITMUS (Část 2, pro uzel u).

6 6 Algoritmus reaguje na na výpadky a opravy průchodů tím, že pozmění místní tabulky a pošle zprávu mydist,.. pokud se odhady vzdálenosti změní. Předpokládáme, že oznámení o tom, že uzly se dostávají nad průchodem nahoru a dolů, je ve formě zpráv fail,. a repair,.. Průchod mezi uzly u 1 a u 2 je modelován dvěmi řadami Q u1,u 2 pro zprávy od u 1 k u 2 a Q u2,u 1 pro zprávy od u 2 k u 1. Když průchod vypadne, jsou tyto řady přestěhovány z konfigurace a uzly na obou koncích průchodu obdrží zprávu fail,.. Jestliže průchod mezi u 1 a u 2 vypadne, u 1 obdrží zprávu fail, u 2 a u 2 získá zprávu fail, u 1. Když je průchod opravován (nebo je k síti přidán nový) jsou ke konfiguraci přidány dvě prázdné řady a dva uzly spojené průchodem obdrží zprávu fail,.. Jestliže průchod mezi u 1 a u 2 nastane, u 1 obdrží repair, u 2 a u 2 obdrží repair, u 1. Reakce algoritmu na výpadky a opravy je následuící. Když vypadne průchod mezi u a w, w se přemístí z Neigh u a naopak. Odhad vzdálenosti pro každé určení je nahrazen, a samozřejmě, poslán všem zbývajícím sousedům, pokud byl změněn. Je to tento případ, pokud předtím vedla nejlepší cesta přes vypadený průchod a neexistuje žádný jiný soused w s ndis u [w, v] = ndis u [w, v]. Když je průchod opravován (nebo je přidán nový), w se přidá k Neigh u, ale u nemá dosud žádný odhad vzdálenosti d(w, v) (a naopak). Nový soused w je ihned informován o D u [v] pro všechna určení v (posláním zprávy mydist, v, D u [v] ). Dokud u neobdrží podobné zprávy z w, u používá N jako odhad pro d(w, v), tzn., nastavuje ndis u [w, v] na N. Věta : Pokud po končném kroku topologických změn, topologie sítě zůstává konstantní(neměnná) algorimus NETCHANGE dosáhne stabilní konfiguraci po konečném počtu kroků.

7 7 Problém dohody na nespolehlivých sítích V sítích budeme uvažovat 2 typy chyb: a) CRASH b) BYZANTINE FAILURE (Byzantské chyby) ad a) Budeme uvažovat, že chybný je procesor. Zastaví svou aktivitu a bude se chovat jako nepřítomný v dané síti. ad b) Bude se chovat libovolně. Může se jevit jako protihráč, nepřítel. Je daný jeden generál a několik důstojníků. Všichni si můžou posílat zprávy mezi sebou. Komunikační sítí je kompletní graf. Generál nebo důstojníci můžou být loajální nebo byzantinští (crash nebo posílají zprávy, aby škodili loajálním důstojníkům). Cílem je, aby se v konečném čase loajální shodli na stejné hodnotě. Používají se dva algoritmy podle typu zpráv: a) podepsané zprávy b) anonymní zprávy Mějme kompletní graf K n, p 0 necht je generál p 1,.., p n 1 - jsou důstojníci. Věta : Existuje algoritmus odolný vůči t byzantským chybám, který používá podepsané zprávy a řeší úlohu o shodě. Přičemž musí platit, že t n 2. ALGORITMUS SM(t ) Pozn. V i = i množina zpráv, které si pamatuje i -tý procesor v {0,1} zpráva m : p zpráva m z podpisem p 1. Generál v 0 pošle zprávu v : 0 všen důstojníkům. 2. Pro i if (p i přijme zprávu v : 0) then v i = {v}; s v : 0 : i to ostatním důstojníkům if (p i přijme zprávu v : 0 : j 1..j k ) then v i = {v} V i ; if (k < t) then s v : 0 : j 1 :.. : j k : i to ostatním důstojníkům různým od j 1..j k 3. if (V i obsahuje jedinou hodnotu) then pak tuto hodnotu vrat na výstup else vrat NIL Algoritmus je synchronní a k označuje počet kol. Věta : Algoritmus končí výpočet po t + 1 kolech a používá (n 1)(n 2)..(n t 1) zpráv.

- znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku

- znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku Znaky - standardní typ char var Z, W: char; - znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku - v TP (často i jinde) se používá kódová

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Počítačové sítě IP směrování (routing)

Počítačové sítě IP směrování (routing) Počítačové sítě IP směrování (routing) IP sítě jsou propojeny směrovači (routery) funkcionalita směrovačů pokrývá 3. vrstvu RM OSI ~ vrstvu IP architektury TCP/IP (L3) směrovače provádějí přepojování datagramů

Více

Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy

Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy Volné stromy Úvod do programování Souvislý, acyklický, neorientovaný graf nazýváme volným stromem (free tree). Často vynecháváme adjektivum volný, a říkáme jen, že daný graf je strom. Michal Krátký 1,Jiří

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 Pravděpodobnostní plánování zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 12. prosince 2005 1 Co už umíme a co ne? Jak řešit složitější případy? Definice konfiguračního

Více

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy.

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Poznámka:Slovem okružní myslíme,žecestakončívestejném městě,

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno 12 Délka výpočtu algoritmu Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno neméně důležité hledisko k posouzení vhodnosti algoritmu k řešení zadané úlohy. Jedná se o čas,

Více

Algoritmy I, složitost

Algoritmy I, složitost A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??

Více

Profilová část maturitní zkoušky 2013/2014

Profilová část maturitní zkoušky 2013/2014 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA

Více

Automatická segmentace slov s pomocí nástroje Affisix. Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz

Automatická segmentace slov s pomocí nástroje Affisix. Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz Automatická segmentace slov s pomocí nástroje Affisix Michal Hrušecký, Jaroslava Hlaváčová Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz Motivace Při zpracování přirozeného jazyka nikdy nemůžeme mít

Více

Kapitola 7 TESTOVÁNÍ LAKTÁTOVÉHO PRAHU. Definice laktátového prahu

Kapitola 7 TESTOVÁNÍ LAKTÁTOVÉHO PRAHU. Definice laktátového prahu Kapitola 7 TESTOVÁNÍ LAKTÁTOVÉHO PRAHU Definice laktátového prahu Laktátový práh je definován jako maximální setrvalý stav. Je to bod, od kterého se bude s rostoucí intenzitou laktát nepřetržitě zvyšovat.

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky a mezioborových inženýrských studií Komprese měřených dat v 0.1 Liberec 2007 Viktor Bubla Obsah 1 Proč komprimace? 2 2 Filosofie základních komprimačních

Více

Aplikace multifraktální geometrie na finančních trzích

Aplikace multifraktální geometrie na finančních trzích Aplikace multifraktální geometrie na finančních trzích 5. studentské kolokvium a letní škola matematické fyziky Stará Lesná Fakulta jaderná a fyzikálně inženýrská ČVUT, Praha 1. 9. 2011 Úvod náhodné procesy

Více

FFUK Uživatelský manuál pro administraci webu Obsah

FFUK Uživatelský manuál pro administraci webu Obsah FFUK Uživatelský manuál pro administraci webu Obsah FFUK Uživatelský manuál pro administraci webu... 1 1 Úvod... 2 2 Po přihlášení... 2 3 Základní nastavení webu... 2 4 Menu... 2 5 Bloky... 5 6 Správa

Více

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP Kódy pro odstranění redundance, pro zabezpečení proti chybám Demonstrační cvičení 5 INP Princip kódování, pojmy Tady potřebujeme informaci zabezpečit, utajit apod. zpráva 000 111 000 0 1 0... kodér dekodér

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Rozhodovací stromy Doc. RNDr. Iveta Mrázová, CSc.

Více

Kapitola 7: Návrh relačních databází. Nástrahy relačního návrhu. Příklad. Rozklad (dekompozice)

Kapitola 7: Návrh relačních databází. Nástrahy relačního návrhu. Příklad. Rozklad (dekompozice) - 7.1 - Kapitola 7: Návrh relačních databází Nástrahy návrhu relačních databází Dekompozice (rozklad) Normalizace použitím funkčních závislostí Nástrahy relačního návrhu Návrh relačních databází vyžaduje

Více

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace Význam triangulace trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy příklad triangulace Definice Triangulace nad množinou bodů v rovině představuje takové planární

Více

Způsoby realizace této funkce:

Způsoby realizace této funkce: KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Druhá skupina zadání projektů do předmětu Algoritmy II, letní semestr 2014/2015

Druhá skupina zadání projektů do předmětu Algoritmy II, letní semestr 2014/2015 Druhá skupina zadání projektů do předmětu Algoritmy II, letní semestr 2014/2015 doc. Mgr. Jiří Dvorský, Ph.D. 6. dubna 2015 Verze zadání 6. dubna 2015 První verze 1 1 Sledování elektroměrů V panelovém

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 md at robotika.cz, zbynek.winkler at mff.cuni.cz http://robotika.cz/guide/umor07/cs 27. listopadu 2007 1 Mapa světa Exaktní plánování 2 3 Plánování s otáčením Mapa světa - příklad Obsah Mapa světa Exaktní

Více

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Seminář pro učitele středních a vysokých škol, Plzeň, 30. března 2012 jsou všude Některé oblasti využití: CD přehrávače mobilní

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Knihovna SolarMonitorLib

Knihovna SolarMonitorLib Knihovna SolarMonitorLib TXV 003 84.01 první vydání listopad 2013 změny vyhrazeny 1 TXV 003 84.01 Historie změn Datum Vydání Popis změn Listopad 2013 1 První vydání, popis odpovídá SolarMonitorLib_v10

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

3. Optimalizace pomocí nástroje Řešitel

3. Optimalizace pomocí nástroje Řešitel 3. Optimalizace pomocí nástroje Řešitel Rovnováha mechanické soustavy Uvažujme dvě různé nehmotné lineární pružiny P 1 a P 2 připevněné na pevné horizontální tyči splývající s osou x podle obrázku: (0,0)

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů. Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana

Více

ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094

ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094 10 ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094 Matematicko-fyzikální fakulta Univerzita Karlova v Praze 1 ROZHODOVÁNÍ TEORIÍ POMOCÍ SAT ŘEŠIČE (SMT)

Více

2N EasyRoute UMTS datová a hlasová brána

2N EasyRoute UMTS datová a hlasová brána 2N EasyRoute UMTS datová a hlasová brána Jak na to? Verze Směrování www.2n.cz 1. Směrování V tomto dokumentu si ukážeme jak jednoduše ve 2N EasyRoute směrovat hovory, aby odcházely do námi požadovaných

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k,

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k, Řešení 1. série Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy h = 1 2 v d, h = 1 2 s k, kde h je počet hran, v je počet vrcholů, d je stupeň vrcholu, s je počet stěn a k je počet úhlů

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit Teorie grafů zadání úloh letní semestr 2008/2009 Poslední aktualizace: 19. května 2009 Obsah Úloha číslo 1 5 Úloha číslo 2 6 Úloha číslo 3 7 Úloha číslo 4 8 Úloha číslo 5 9 Úloha číslo 6 10 Úloha číslo

Více

Datové typy a struktury

Datové typy a struktury atové typy a struktury Jednoduché datové typy oolean = logická hodnota (true / false) K uložení stačí 1 bit často celé slovo (1 byte) haracter = znak Pro 8-bitový SII kód stačí 1 byte (256 možností) Pro

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Teorie síťových modelů a síťové plánování

Teorie síťových modelů a síťové plánování KSI PEF ČZU Teorie síťových modelů a síťové plánování Část přednášky doc. Jaroslava Švasty z předmětu systémové analýzy a modelování. Zápis obsahuje základní vymezení projektu, časového plánování a popis

Více

Komunikace v průmyslové organizaci

Komunikace v průmyslové organizaci Komunikace v průmyslové organizaci doc. Ing. František Steiner, Ph.D. Obsah 1. Funkce komunikace v organizaci. Model základního komunikačního procesu. Komunikační toky v organizaci. Komunikační bariéry

Více

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/ hlavac 1/31 PLÁN PŘEDNÁŠKY

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Princes of Florence - Pro Ludo

Princes of Florence - Pro Ludo Princes of Florence - Pro Ludo Die Fürsten von Florenz Pravidla pro rozšíření (Pro Ludo) Pravidla pro 2 hráče Při hře 2 hráčů použijte následující pravidla: Peníze do začátku: 2500 Florinů Základní cena

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

Projekt programu Inženýrská Informatika 2

Projekt programu Inženýrská Informatika 2 Projekt programu Inženýrská Informatika 2 Realizace grafu v jazyce Java Ústav počítačové a řídicí techniky, VŠCHT Praha Řešitel: Jan Hornof (ININ 258) Vedoucí: doc. Ing. Jaromír Kukal, Ph.D. 1. Obsah 1.

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

MATEMATIKA A 3 Metodický list č. 1

MATEMATIKA A 3 Metodický list č. 1 Metodický list č. 1 Název tématického celku: Úvod do problematiky diskrétní matematiky Cíl: Cílem tohoto tématického celku je vymezení oblasti diskrétní matematiky a příprava na další výklad kurzu. Jedná

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Ě ť ž Š ú ť Š ť ú ž ž ú ž Ý ž ž ž ú ť Č ň Ú ň ť ť ť ú ť ž ž ť ú ú ť ú ž ž ť ť ť ú ž ž ť ť ž ž ť ž ž ž ú ž Ý ú ú ť ú ú ž ť ž ž ž ž ž ž ú Č ž ú ň ú ú ť ú ú Ý ú ť ú ž Ř ť ú ú ť Š Č Č ň Ú Č Š ú ť Č ť ď ž ň

Více

Vysvětlete funkci a popište parametry jednotlivých komponent počítače a periferních zařízení.

Vysvětlete funkci a popište parametry jednotlivých komponent počítače a periferních zařízení. 1 Struktura osobního počítače Zakreslete základní schéma počítače podle Johna von Neumanna. Popište základní strukturu osobního počítače. Vysvětlete funkci a popište parametry jednotlivých komponent počítače

Více

Tiskové sestavy. Zdroj záznamu pro tiskovou sestavu. Průvodce sestavou. Použití databází

Tiskové sestavy. Zdroj záznamu pro tiskovou sestavu. Průvodce sestavou. Použití databází Tiskové sestavy Tiskové sestavy se v aplikaci Access používají na finální tisk informací z databáze. Tisknout se dají všechny objekty, které jsme si vytvořili, ale tiskové sestavy slouží k tisku záznamů

Více

Hotline Helios Tel.: 800 129 734 E-mail: helios@ikomplet.cz Pokročilé ovládání IS Helios Orange

Hotline Helios Tel.: 800 129 734 E-mail: helios@ikomplet.cz Pokročilé ovládání IS Helios Orange Hotline Helios Tel.: 800 129 734 E-mail: helios@ikomplet.cz Pokročilé ovládání IS Helios Orange 2013 BüroKomplet, s.r.o. Obsah 1 Kontingenční tabulky... 3 1.1 Vytvoření nové kontingenční tabulky... 3 2

Více

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut.

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut. 1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl:

Více

Seminární práce do předmětu: Bezpečnost informačních systémů. téma: IPsec. Vypracoval: Libor Stránský

Seminární práce do předmětu: Bezpečnost informačních systémů. téma: IPsec. Vypracoval: Libor Stránský Seminární práce do předmětu: Bezpečnost informačních systémů téma: IPsec Vypracoval: Libor Stránský Co je to IPsec? Jedná se o skupinu protokolů zabezpečujících komunikaci na úrovni protokolu IP (jak už

Více

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí Matematické přístupy k pojištění automobilů Silvie Kafková 3. 6. září 2013, Podlesí Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3 Motivace Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3

Více

Bezepečnost IS v organizaci

Bezepečnost IS v organizaci Bezepečnost IS v organizaci analýza rizik Zabezpečení informačního systému je nutné provést tímto postupem: Zjistit zranitelná místa, hlavně to, jak se dají využít a kdo toho může zneužít a pravděpodobnost

Více

LAN adaptér. Návod k použití

LAN adaptér. Návod k použití LAN adaptér Návod k použití Popis adaptéru Adaptér je určen k propojení loggeru řady S/Rxxxx a PC počítače pomocí sítě Ethernet. V případě vzniku alarmu na loggeru umí LAN adaptér vyslat informační e-mail

Více

1. Základy teorie přenosu informací

1. Základy teorie přenosu informací 1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Komunikace mezi uživateli: možnost posílání dat na velké vzdálenosti

Komunikace mezi uživateli: možnost posílání dat na velké vzdálenosti 1 očítačová síť Je skupina počítačů (uzlů), popřípadě periferií, které jsou vzájemně propojeny tak, aby mohly mezi sebou komunikovat. 1.1 Důvody vytváření sítí Sdílení zdrojů: HW (hardwarové zdroje): V/V

Více

5 Minimální kostry, Hladový algoritmus

5 Minimální kostry, Hladový algoritmus 5 Minimální kostry, Hladový algoritmus Kromě teoretických hrátek mají kostry grafů (Oddíl 4.4) následující důležité praktické použití: Dříve jsme uvažovali spojení v grafech cestami jdoucími z jednoho

Více

GoClever Map 2.5 manuál

GoClever Map 2.5 manuál GoClever Map 2.5 manuál Obsah 1. Na dotyku záleží... 4 2. Navádění k lokaci... 5 3. Navigační okno... 7 3.1. Změna nastavení systému navigačního okna... 7 4. Hlavní vlastnosti GoClever Map 2.5... 8 5.

Více

Deset přednášek z teorie statistického a strukturního rozpoznávání

Deset přednášek z teorie statistického a strukturního rozpoznávání Monografie Deset přednášek teorie statistického a strukturního roponávání Michail I. Schlesinger, Václav Hlaváč Praha 1999 Vydavatelství ČVUT 1. přednáška Bayesovská úloha statistického rohodování 1.1

Více

POČÍTAČOVÉ SÍTĚ ZÁKLADNÍ INFORMACE

POČÍTAČOVÉ SÍTĚ ZÁKLADNÍ INFORMACE POČÍTAČOVÉ SÍTĚ ZÁKLADNÍ INFORMACE 2005 OBSAH SOŠS a SOU Kadaň Školení SIPVZ Počítačové sítě POÈÍTAÈOVÉ SÍTÌ...3 TOPOLOGIE SÍTÍ...3 SBÌRNICE (BUS)...3 HVÌZDA (STAR)...4 KRUH (RING)...4 TYPY KABELÙ PRO

Více

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý

Více

Měření součinitele smykového tření dynamickou metodou

Měření součinitele smykového tření dynamickou metodou Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce

Více

Lineární algebra nad obecným Z m, lineární kódy

Lineární algebra nad obecným Z m, lineární kódy Lineární algebra nad obecným Z m, lineární kódy Jiří Velebil: X01DML 19. listopadu 2010: Lineární algebra a kódy 1/19 Minule: soustavy lineárních rovnic nad Z p, p prvočíslo, stejně jako nad R. Dále nad

Více

Ohodnocené orientované grafy

Ohodnocené orientované grafy Ohodnocené orientované grafy Definice Buď G graf Funkce w : H( G) (, ) se nazývá (hranové) ohodnocení grafu G; graf se zadaným ohodnocením se nazývá ohodnocený graf Definice Nechť G je orientovaný graf

Více

Mikrotik RouterOS: Řízení datových toků

Mikrotik RouterOS: Řízení datových toků Mikrotik RouterOS: Řízení datových toků Obsah Platné verze Úvod Queues Mechanismy omezování Rozdíl mezi simple queues a queue tree a případy jejich použití Nastavení queue types Nastavení simple queues

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu Autor Jazyk Téma sady didaktických materiálů Téma didaktického materiálu Vyučovací předmět Cílová skupina (ročník) Úroveň

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

Administrativní pokyny pro aplikaci Madridské dohody o mezinárodním zápisu známek a Protokolu k této dohodě. (ve znění platném k 1.

Administrativní pokyny pro aplikaci Madridské dohody o mezinárodním zápisu známek a Protokolu k této dohodě. (ve znění platném k 1. Administrativní pokyny pro aplikaci Madridské dohody o mezinárodním zápisu známek a Protokolu k této dohodě (ve znění platném k 1. lednu 2008) OBSAH První část: Definice Kapitola 1: Zkrácené výrazy,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1

Více

Automatizované řešení úloh s omezeními

Automatizované řešení úloh s omezeními Automatizované řešení úloh s omezeními Martin Kot Katedra informatiky, FEI, Vysoká škola báňská Technická universita Ostrava 17. listopadu 15, Ostrava-Poruba 708 33 Česká republika 25. října 2012 M. Kot

Více

Nejčastější dotazy k pravidlům fakturace

Nejčastější dotazy k pravidlům fakturace GENERÁLNÍ FINANČNÍ ŘEDITELSTVÍ Lazarská 15/7, 117 22 Praha 1 Sekce metodiky a výkonu daní Odbor nepřímých daní V Praze Nejčastější dotazy k pravidlům fakturace Otázka č. 1) Zákon o DPH ( 34) hovoří o povinnosti

Více

2 Strukturované datové typy 2 2.1 Pole... 2 2.2 Záznam... 3 2.3 Množina... 4

2 Strukturované datové typy 2 2.1 Pole... 2 2.2 Záznam... 3 2.3 Množina... 4 Obsah Obsah 1 Jednoduché datové typy 1 2 Strukturované datové typy 2 2.1 Pole.................................. 2 2.2 Záznam................................ 3 2.3 Množina................................

Více

JEDNODUCHÁ A PRAKTICKÁ METODA ODHADU PRACNOSTI PROJEKTU (S UTILITOU KE STAŽENÍ ZDARMA)

JEDNODUCHÁ A PRAKTICKÁ METODA ODHADU PRACNOSTI PROJEKTU (S UTILITOU KE STAŽENÍ ZDARMA) JEDNODUCHÁ A PRAKTICKÁ METODA ODHADU PRACNOSTI PROJEKTU (S UTILITOU KE STAŽENÍ ZDARMA) 2. část autor: RNDr. Ilja Kraval, červenec 2010 http://www.objects.cz ÚVOD V minulém článku bylo pojednáno o složitosti

Více

Dokumentace k semestrální práci z předmětu PT

Dokumentace k semestrální práci z předmětu PT Dokumentace k semestrální práci z předmětu PT Vypracovali: Eva Turnerová (A08B0176P) Martin Dlouhý (A08B0268P) Zadání Zadání: Firma Mistr Paleta, syn a vnuci rozváží palety po celé České republice. Počet

Více

5 Informace o aspiračních úrovních kritérií

5 Informace o aspiračních úrovních kritérií 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Matematika a její aplikace Matematika 1. období 3. ročník

Matematika a její aplikace Matematika 1. období 3. ročník Vzdělávací oblast : Vyučovací předmět : Období ročník : Matematika a její aplikace Matematika 1. období 3. ročník Počet hodin : 165 Učební texty : H. Staudková : Matematika č. 7 (Alter) R. Blažková : Matematika

Více

Úrokové sazby na mezibankovním trhu a předpovědní schopnost tohoto trhu

Úrokové sazby na mezibankovním trhu a předpovědní schopnost tohoto trhu Úrokové sazby na mezibankovním trhu a předpovědní schopnost tohoto trhu KMA/MAB.5.00 Lenka Skalová A08N085P leninkaskalova@centrum.cz Obsah Obsah... Zadání... Zdroj dat... Peněžní trh.... Definice peněžního

Více

Lineární diskriminační funkce. Perceptronový algoritmus.

Lineární diskriminační funkce. Perceptronový algoritmus. Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace

Více

Jak nastavit Email2SMS a SMS2Email na bráně 2N VoiceBlue Next

Jak nastavit Email2SMS a SMS2Email na bráně 2N VoiceBlue Next Jak nastavit Email2SMS a SMS2Email na bráně 2NVoiceBlue Next V tomto FAQ naleznete veškeré potřebné kroky ke správnému nastavení Email2SMS a SMS2Email funkcí v bráně 2N VoiceBlue Next. V první části tohoto

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

Tabulka. Často jde nejenom o dynamickou množinu, ale i statickou množinu. Matematické tabulky statická množina

Tabulka. Často jde nejenom o dynamickou množinu, ale i statickou množinu. Matematické tabulky statická množina Tabulka Často jde nejenom o dynamickou množinu, ale i statickou množinu Matematické tabulky statická množina x cos x 0,0 1,000 0,1 0,995 0,2 0,980 0,3 0,955 0,4 0,921 0,5 0,878 0,6 0,825 0,7 0,765 0,8

Více