1, φ = 1+ 5 ZLATÉ ČÍSLO
|
|
- Radomír Němeček
- před 6 lety
- Počet zobrazení:
Transkript
1 φ = + 5, ZLATÉ ČÍSLO Staří Řekové znali toto číslo vzhledem k jeho spojitosti s pravidelnými pětiúhelníky a dvanáctistěny studovanými eukleidovskou geometrií. Je úzce spojené s řadou Fibonacciho čísel (kapitola 8) a objasňuje některé zvláštní vzory ve stavbě rostlin a květů. Běžně se mu říká zlaté číslo pojmenování, které zřejmě vzniklo mezi roky 86 a 835. Mnoho se mluví o jeho mystické a estetické hodnotě, ale většina těchto tvrzení je přehnaná: některá jsou výsledkem chybných měření a mnohá se nezakládají vůbec na ničem. Nicméně zlaté číslo skutečně má některé pozoruhodné matematické vlastnosti, včetně souvislosti s Fibonacciho čísly a výskytu ve světě kolem nás zvláště v geometrických obrazcích pozorovaných u rostlin. ŘECKÁ GEOMETRIE Číslo φ (řecké fí občas též značené jako τ, řecké tau ) se v matematice poprvé objevilo v Eukleidových Základech ve spojení s geometrií pravidelného pětiúhelníku. Tak, jak bylo v té době zvykem, bylo interpretováno geometricky, nikoli numericky. Jak zakrátko ukážeme, pro φ existuje přesný vzorec. Na šest desetinných míst lze zapsat φ =, a na 00 míst φ =, Charakteristická vlastnost φ se objeví, když vypočteme jeho převrácenou hodnotu /φ, což (opět na šest míst) dává = 0, φ 76
2 φ. ZLATÉ ČÍSLO Zdá se, že platí φ = + /φ. Tento vztah může být přepsán ve tvaru kvadratické rovnice φ = φ + neboli v obvyklém tvaru φ φ = 0. Vzorce pro řešení kvadratických rovnic dávají dvě řešení této rovnice: a, v desetinném zápisu,68034 a 0, Kladné řešení vezmeme jako definici φ, takže φ = + 5 a teď je skutečně pravda, že φ = + /φ přesně. SPOJITOST S PRAVIDELNÝMI PĚTIÚHELNÍKY Zlaté číslo se objevuje v geometrii pravidelného pětiúhelníku. Vezměme si pravidelný pětiúhelník s jednotkovou stranou. Nakresleme v něm pět úhlopříček, čímž vznikne pěticípá hvězda. Eukleides dokázal, že každá z diagonál má délku rovnou zlatému číslu. Přesněji řečeno Eukleides pracoval se zlatým řezem. Jde o takové rozdělení úsečky, v němž poměr delší části ku kratší je roven poměru celé úsečky k delší části. K jakému číslu tento postup vede? Přidejme čísla: řekněme, že černá úsečka je dlouhá x a tmavě šedá má délku. Pak světle šedá úsečka je dlouhá x. Takže uvedené poměry délek dávají rovnost x = x, Obr. 0: Pravidelný pětiúhelník a jeho úhlopříčky. 77
3 V. IRACIONÁLNÍ ČÍSLA x Obr. 03: Poměr zlatého řezu: Poměr délky tmavě šedé úsečky () k délce světle šedé (x ) je roven poměru černé úsečky (x) k délce tmavošedé úsečky (). x což vede na rovnici x x = 0. To je rovnice, již jsme použili k definici zlatého čísla a z níž (jelikož jde o délku) potřebujeme kladné řešení, tedy x = φ. Eukleides si povšiml, že délky úhlopříčky a strany pravidelného pětiúhelníku jsou v poměru zlatého řezu. To mu umožnilo zkonstruovat pravidelný pětiúhelník pomocí tradičních nástrojů, pravítka a kružítka (kapitola 7). Pravidelnému pětiúhelníku přikládali Řekové velkou důležitost, protože tuto podobu mají stěny jednoho z pěti pravidelných mnohostěnů, dvanáctistěnu. Vyvrcholením Základů je důkaz, že existuje přesně pět pravidelných těles (kapitola 5). FIBONACCIHO ČÍSLA Zlaté číslo je úzce spojeno s Fibonacciho čísly, která zavedl v roce 0 Leonardo z Pisy (kapitola 8). Připomeňme, že posloupnost těchto čísel začíná následovně:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33. Každé z čísel počínaje třetím je rovno součtu dvou předcházejících čísel: + + =, + = 3, + 3 = 5, = 8 atd. Podíl dvou po sobě následujících Fibonacciho čísel se postupně stále více blíží zlatému číslu: =, 3 =,653, =, 34 =,690, 3 =,5, =,676, 5 3 =,6666, =,68, 8 5 =,6, =,679, =,65, 44 =,68 78
4 φ. ZLATÉ ČÍSLO a tuto vlastnost lze dokázat z pravidla, podle něhož tato posloupnost vzniká, a z kvadratické rovnice pro φ. Platí to i naopak, Fibonacciho čísla můžeme vyjádřit pomocí zlatého čísla (kapitola 8): F n = φn ( φ) n. 5 ZLATÝ ŘEZ U ROSTLIN Je to už přes 000 let, co si lidé povšimli, jak běžná jsou v říši rostlin čísla, jež nyní známe jako Fibonacciho. Kupříkladu mnoho květin, zvláště příbuzných se sedmikráskami, má počet korunních lístků roven některému z Fibonacciho čísel. Měsíčky mají typicky 3 korunních lístků, astry. Mnoho sedmikrásek má 34 korunních lístků, a když ne, tak 55 nebo 89. Slunečnice jich mají obvykle 55, 89 nebo 44. Ostatní čísla se vyskytují vzácněji: kupříkladu fuchsie mají 4 korunní lístky. Tyto výjimky se často shodují s Lucasovými čísly 4, 7,, 8 a 9, která vznikají stejně jako Fibonacciho čísla, když prvními dvěma čísly jsou a 3. Několik příkladů je uvedeno níže. Stejná čísla se vyskytují i u jiných částí rostlin. Ananas má na povrchu přibližně šestiúhelníkovou strukturu; tyto šestiúhelníky jsou jednotlivé plody, které splynou během růstu. Spojují se do dvou do sebe zapadajících skupin spirál. Jedna skupina se otáčí proti směru pohybu hodinových ručiček a obsahuje osm spirál; druhá skupina se otáčí po směru pohybu hodinových ručiček a obsahuje 3 spirál. Lze rozeznat i třetí skupinu pěti spirál otáčejících se po směru pohybu ručiček v tupějším úhlu Obr. 04: Vlevo: Tři skupiny spirál na povrchu ananasu. Vpravo: Skupina 3 spirál točících se proti směru otáčení hodinových ručiček na borové šišce
5 V. IRACIONÁLNÍ ČÍSLA Obr. 05: Fibonacciho spirály v květním lůžku slunečnice. Vlevo: Uspořádání semen. Vpravo: Spirály patřící k dvěma odlišným skupinám: točícím se po směru otáčení hodinových ručiček (světle šedá) a proti směru (tmavě šedá). Šupiny borových šišek tvoří podobné spirály. Totéž lze říct o semenech v lůžku zralé slunečnice s tím rozdílem, že tentokrát spirály leží v rovině. Klíčem ke geometrii slunečnicových spirál je zlaté číslo, které pak vysvětluje přítomnost Fibonacciho čísel. Když rozdělíme plný úhel 360 na dva oblouky v poměru zlatého řezu, to jest tak, aby úhel u většího oblouku byl φ-násobkem úhlu u menšího oblouku, pak menší z úhlů je /( + φ) násobkem plného úhlu. Tento úhel zvaný zlatý úhel je přibližně 37,5. V roce 868 si německý botanik Wilhelm Hofmeister všiml, jak se mění během růstu stonek rostliny, a položil základy ke všemu následnému studiu tohoto problému. V podstatě je vývin určen chováním rostoucí špičky a závisí na malém shluku buněk známých jako primordia; z těch nakonec vzniknou semena. Hofmeister zjistil, že tyto buňky leží na spirále. Každá je oddělena od předchozí zlatým úhlem A, takže n-té semeno leží odkloněno o úhel na. Přitom vzdálenost od středu je úměrná odmocnině z n. Toto pozorování vysvětluje uspořádání semen v květním lůžku slunečnice. Vzniká tak, že semena se postupně ukládají v úhlech, které jsou celistvými násobky zlatého úhlu, přičemž jejich vzdálenost od středu je úměrná odmocnině z pořadového čísla semena. Když označíme zlatý úhel A, pak jsou semena ukládána v úhlech a jejich vzdálenosti jsou úměrné A, A, 3A, 4A, 5A, 6A,,, 3, 4, 5, 6,. 80
6 φ. ZLATÉ ČÍSLO Obr. 06: Rozmístění semen v úhlech 37, 37,5 a 38. Jenom zlatý úhel umožňuje kompaktní uspořádání bez mezer. U květin, jako jsou sedmikrásky, se korunní lístky vytvářejí na konci spirál, takže Fibonacciho čísla počtu spirál vedou k Fibonacciho číslům pro počet korunních plátků. Ale proč se Fibonacciho čísla objevují ve spirálách? Kvůli zlatému úhlu. Helmut Vogel studoval v roce 979 geometrii slunečnicových semen a vysvětlil, proč se v ní vyskytuje zlatý úhel. Zkoumal, jak by vypadalo lůžko slunečnice, kdyby se semena ukládala po stejné spirále, ale s úhlem nepatrně odlišným od zlatého úhlu 37,5. Pouze zlatý úhel vede k tomu, že semena jsou těsně jedno vedle druhého, nejsou mezi nimi ani mezery, ani se nepřekrývají. Tím se vysvětlilo, že zlatý úhel je opravdu výjimečný, že nejde jenom o náhodný výskyt. Nicméně úplné vysvětlení je ještě hlubší. Jak buňky rostou a pohybují se, působí silově na sousední buňky. V roce 99 studovali Stéphane Douady a Yves Couder mechanické poměry v takovýchto systémech jak experimentálně, tak pomocí počítačových simulací. Zjistili, že úhly mezi po sobě jdoucími semeny jsou aproximací zlatého úhlu v podobě Fibonacciho zlomků. Jejich teorie také vysvětluje překvapující výskyt počtu korunních plátků, které nejsou Fibonacciho čísly, jako jsou čtyři plátky u fuchsie. Tyto výjimky souhlasí s řadou Lucasových čísel:, 3, 4, 7,, 8, 9, 47, 76, 3,. Vzorec generující Lucasova čísla má tvar L n = φ n + ( φ) n, což je velice podobné výše uvedenému vzorci pro Fibonacciho čísla. 8
7 V. IRACIONÁLNÍ ČÍSLA Čtyři korunní plátky fuchsie jsou jedním příkladem Lucasova čísla. Některé kaktusy mají 4 spirály v jednom směru a 7 v druhém, nebo v jednom směru a 8 v druhém. Echinokaktusy mají 9 žeber. Skupiny o 47 a 76 spirálách byly nalezeny u slunečnic. Jednou z hlavních oblastí aplikované matematiky je teorie pružnosti, která studuje, jak se materiály, na něž působí síly, ohýbají nebo praskají. Tato teorie kupříkladu objasňuje, jak se chovají kovové nosníky nebo desky v budovách či mostech. V roce 004 Patrick Shipman a Alan Newell aplikovali teorii pružnosti na model rostoucí rostliny se zvláštním zřetelem na kaktusy. Modelovali vytvoření květního primordia jako prasknutí špičky výhonku a ukázali, že to vede ke vzniku současně se šířících vln. Složení těchto vln má různou podobu, kterou určují dva faktory: vlnočet (počet vln na jednotku délky) a směr vln. Nejdůležitějším případem je interference tří vln, přičemž vlnočet jedné z vln je součtem vlnočtů dvou zbývajících vln. Spirály na ananasu jsou příkladem vlnočty jsou 5, 8 a 3. Jejich teorie vystopovala Fibonacciho čísla přímo v matematickém popisu vln. A jak to vypadá z hlediska biochemie? Vytváření květního primordia je vyvoláno hormonem zvaným auxin. Podobná vlnová pole vznikají i v rozdělení koncentrace auxinu. Úplné vysvětlení Fibonacciho čísel a zlatého úhlu v životě rostlin tedy vyžaduje souhru mezi biochemií, mechanickými silami mezi buňkami a geometrií. Auxin vyvolá růst primordia. Primordia na sebe silově působí. Geometrie zásadním způsobem ovlivňuje biochemii tím, že vyvolá produkci dalšího auxinu na určitých místech. Existuje tedy složitý systém zpětných vazeb mezi biochemií, mechanikou a geometrií. 8
Zlatý řez nejen v matematice
Zlatý řez nejen v matematice Zlaté číslo a jeho vlastnosti In: Vlasta Chmelíková author): Zlatý řez nejen v matematice Czech) Praha: Katedra didaktiky matematiky MFF UK, 009 pp 7 Persistent URL: http://dmlcz/dmlcz/40079
2.8.6 Čísla iracionální, čísla reálná
.8.6 Čísla iracionální, čísla reálná Předpoklady: 0080 Př. : Doplň tabulku (všechny sloupce je možné vypočítat bez kalkulačky). 00 x 0 0,0004 00 900,69 6 8 x 0,09 0, x 0 0,0004 00 x 0 0,0 0 6 6 900 0 00
GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE
GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE Pravidelná tělesa Cheb, 2006 Lukáš Louda,7.B 0 Prohlášení Prohlašuji, že jsem seminární práci na téma: Pravidelná tělesa vypracoval zcela sám za použití pramenů uvedených
Ludolfovo číslo přepočítá z diskrétního do Euklidova prostoru - 1
Ludolfovo číslo přepočítá z diskrétního do Euklidova prostoru - 1 Bohumír Tichánek 7 Práce zdůvodňuje způsob využití Ludolfova čísla při převodu bodu, a to z diskrétního do Euklidova prostoru. Tím se bod
1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:
Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky
CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 37 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na staré hliněné desce je namalován čtverec
Křivky kolem nás. Webinář. 20. dubna 2016
Křivky kolem nás Webinář 20. dubna 2016 Přístup k funkcím Funkce (zobrazení) Předpis, který přiřazuje jedné hodnotě x hodnotu y = f (x). Je to množina F uspořádaných dvojic (x, y) takových, že pokud (x,
n =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram
4.5 Mnohoúhelníky Obrázek 28: Tangram Mnohoúhelník můžeme charakterizovat jako část roviny ohraničenou uzavřenou lomenou čarou (tj. čarou, která se skládá z na sebe navazujících úseček). Již víme, že rozlišujeme
(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
MATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
Fibonacciho čísla na střední škole
Fibonacciho čísla na střední škole Martina Jarošová Abstract In this contribution we introduce some interesting facts about Fibonacci nunbers We will prove some identities using different proof methods
STEREOMETRIE. Bod, přímka, rovina, prostor. Mgr. Jakub Němec. VY_32_INOVACE_M3r0101
STEREOMETRIE Bod, přímka, rovina, prostor Mgr. Jakub Němec VY_32_INOVACE_M3r0101 STEREOMETRIE jinak také prostorová geometrie (Na rozdíl od planimetrie, kde leží body a přímky v jedné rovině. Ve stereometrii
v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.
Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =
M - Pythagorova věta, Eukleidovy věty
M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
DĚJINY MATEMATIKY tematické okruhy ke zkoušce
DĚJINY MATEMATIKY tematické okruhy ke zkoušce ZIMNÍ SEMESTR Pythagorejská matematika: Pýthagorova věta. Formulace. Školský důkaz, Eukleidův důkaz. Pýthagorejské trojice. Definice, popis všech pýthagorejských
Obecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u.
Vektory, operace s vektory Ž3 Orientovaná úsečka Mějme dvojici bodů, (na přímce, v rovině nebo prostoru), které spojíme a vznikne tak úsečka. Pokud budeme rozlišovat, zda je spojíme od k nebo od k, říkáme,
13. přednáška 13. ledna k B(z k) = lim. A(z) = M(z) m 1. z m.
13. přednáška 13. ledna 2010 Důkaz. M = n=0 a nz n a N = n=0 b nz n tedy buďte dvě mocninné řady, které se jako funkce shodují svými hodnotami na nějaké prosté posloupnosti bodů z k C konvergující k nule.
Zlatý řez nejen v matematice
Zlatý řez nejen v matematice Zlatý řez v přírodě In: Vlasta Chmelíková (author): Zlatý řez nejen v matematice (Czech) Praha: Katedra didaktiky matematiky MFF UK, 2009 pp 127 132 Persistent URL: http://dmlcz/dmlcz/400799
Diagnostika regrese pomocí grafu 7krát jinak
StatSoft Diagnostika regrese pomocí grafu 7krát jinak V tomto článečku si uděláme exkurzi do teorie regresní analýzy a detailně se podíváme na jeden jediný diagnostický graf. Jedná se o graf Předpovědi
CVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 22 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Kontroloři Státní zemědělské a potravinářské inspekce
Maturitní témata profilová část
Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,
Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.
Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými
1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další
Kapitola 1 Planimetrie a stereometrie Doplňky ke středoškolské látce 1.1 Základní pojmy prostorové geometrie 1.1.1 Axiomy Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L
CVIČNÝ TEST 12. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 12 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písmena A, B, C a D vyjadřují každé jednu z číslic
Základy aritmetiky a algebry II
Osnova předmětu Základy aritmetiky a algebry II 1. Lineární rovnice, řešení v tělesech Q, R, C, Z p, počet řešení v okruhu Z n, n N \ P. Grafické řešení, lineární nerovnice. 2. Kvadratická rovnice. Didaktický
Nápovědy k numerickému myšlení TSP MU
Nápovědy k numerickému myšlení TSP MU Numerické myšlení 2011/var. 01 26. Ciferné součty čísel v každém z kruhů mají tutéž hodnotu. Pozor, hledáme číslo, které se nehodí na místo otazníku. Jedná se o dvě
Definice (Racionální mocnina). Buď,. Nechť, kde a a čísla jsou nesoudělná. Pak: 1. je-li a sudé, (nebo) 2. je-li liché, klademe
Úvodní opakování. Mocnina a logaritmus Definice ( -tá mocnina). Pro každé klademe a dále pro každé, definujeme indukcí Dále pro všechna klademe a pro Později budeme dokazovat následující větu: Věta (O
1 Lineární prostory a podprostory
Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C
Matematická analýza I
Matematická analýza I Cvičení 1 (4. 10. 2016) Definice absolutní hodnoty. Řešení nerovnic s absolutními hodnotami. Geometrická interpretace řešení nerovnice x + 1 < 3. Komplexní čísla a operace s nimi,
3.2 OBJEMY A POVRCHY TĚLES
. OBJEMY A POVRCHY TĚLES Krychle, kvádr, hranol Dochované matematické texty ze starého Egypta obsahují několik úloh na výpočet objemu čtverhranných obilnic tvaru krychle; lze předpokládat, že stejným způsobem
Vzorce. StatSoft. Vzorce. Kde všude se dá zadat vzorec
StatSoft Vzorce Jistě se Vám již stalo, že data, která máte přímo k dispozici, sama o sobě nestačí potřebujete je nějak upravit, vypočítat z nich nějaké další proměnné, provést nějaké transformace, Jinak
Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:
PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se
Úlohy klauzurní části školního kola kategorie A
6. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A. V oboru reálných čísel řešte soustavu rovnic y + 3x = 4x 3, x + 3y = 4y 3. 2. V rovině uvažujme lichoběžník ABCD se základnami
5. Náhodná veličina. 2. Házíme hrací kostkou dokud nepadne šestka. Náhodná veličina nabývá hodnot z posloupnosti {1, 2, 3,...}.
5. Náhodná veličina Poznámka: Pro popis náhodného pokusu jsme zavedli pojem jevového pole S jako množiny všech možných výsledků a pravděpodobnost náhodných jevů P jako míru výskytů jednotlivých výsledků.
P E N R O S E O V A T E S E L A C E
P E N R O S E O V A T E S E L A C E Dominik Rejthar FA CVUT Semestrální práce Deskriptivní geometrie 2017/2018 Obsah 4 Teselace obecně 5 Penroseova teselace 8 Geometrický postup 13 Příklad použití Penroseovy
Fibonacciho posloupnost
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA Katedra matematické analýzy a aplikací matematiky BAKALÁŘSKÁ PRÁCE Fibonacciho posloupnost Vedoucí bakalářské práce: RNDr. Martina Pavlačková, Ph.D.
CVIČNÝ TEST 29. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 29 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Smrk má vysokou klíčivost, jen 5 % semen nevyklíčí.
55. ročník matematické olympiády
. ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:
Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021
Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,
Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje
Zimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva
VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A
VEKTORY Vektorem se rozumí množina všech orientovaných úseček, které mají stejnou velikost, směr a orientaci, což vidíme na obr. 1. Jedna konkrétní orientovaná úsečka se nazývá umístění vektoru na obr.
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
Pythagorova věta
.8.19 Pythagorova věta Předpoklady: 00801 Pedagogická poznámka: Z následujícího příkladu rýsuje každý žák pouze jeden bod podle toho, v jakém sedí oddělení. Př. 1: Narýsuj pravoúhlý trojúhelník: a) ABC:
Zavedení a vlastnosti reálných čísel
Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu
Úvod do řešení lineárních rovnic a jejich soustav
Úvod do řešení lineárních rovnic a jejich soustav Rovnice je zápis rovnosti dvou výrazů, ve kterém máme najít neznámé číslo (neznámou). Po jeho dosazení do rovnice musí platit rovnost. Existuje-li takové
KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2
6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje
Matematika kr sy. 5. kapitola. V hoda pr ce s grupami
5. kapitola Matematika kr sy V hoda pr ce s grupami Původním úkolem geometrie byl popis různých objektů a vztahů, pozorovaných v okolním světě. Zrakem vnímáme nejen struktury tvaru objektů, všímáme si
Maturitní témata z matematiky
Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy
Fakulta informačních technologií
České vysoké učení technické v Praze Fakulta informačních technologií Historie matematiky a informatiky Zlatý řez Jaroslav Hrách Obsah 1 Úvod 1 2 Historie 2 3 Zlatý řez v matematice 4 3.1 Výpočet zlatého
10 Funkce více proměnných
M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y
V tomto článku popíšeme zajímavou úlohu (inspirovanou reálnou situací),
L i t e r a t u r a [1] Calábek, P. Švrček, J.: Úvod do řešení funkcionálních rovnic. MFI, roč. 10 (2000/01), č. 3. [2] Engel, A.: Problem-Solving Strategies. Springer-Verlag, New York, Inc., 1998. [3]
15. KubickÈ rovnice a rovnice vyööìho stupnï
15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných
Matematická analýza III.
2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom
HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27
Řetězové zlomky HL Academy - Chata Lopata 2012 13.2. 18.2.2012 Emu (Brkos 2012) Řetězové zlomky 13.2. 18.2.2012 1 / 27 Obsah 1 Úvod 2 Základní pojmy 3 Konečné řetězové zlomky Sblížené zlomky Euklidův algoritmus
Teorie tkaní. Modely vazného bodu. M. Bílek
Teorie tkaní Modely vazného bodu M. Bílek 2016 Základní strukturální jednotkou tkaniny je vazný bod, tj. oblast v okolí jednoho zakřížení osnovní a útkové nitě. Proces tkaní tedy spočívá v tvorbě vazných
Simona Fišnarová (MENDELU) Den pí / 10
14. březen: Den π Simona Fišnarová (MENDELU) Den pí 14.3. 2017 1 / 10 Proč 14. březen? Den π se slaví po celém světě 14. března. Datum vzniklo použitím prvních tří cifer v zápisu konstanty π: 3, 141592653...
ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0
Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t
Přednáška 11, 12. prosince Část 5: derivace funkce
Přednáška 11, 12. prosince 2014 Závěrem pasáže o spojitých funkcích zmíníme jejich podtřídu, lipschitzovské funkce, nazvané podle německého matematika Rudolfa Lipschitze (1832 1903). Fukce f : M R je lipschitzovská,
CVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 48 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán konvexní čtyřúhelník, jehož vnitřní
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
Derivace goniometrických funkcí
Derivace goniometrických funkcí Shrnutí Jakub Michálek, Tomáš Kučera Odvodí se základní vztahy pro derivace funkcí sinus a cosinus za pomoci věty o třech itách, odvodí se také několik typických it pomocí
CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu
Derivace funkce Otázky
funkce je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako směrnici tečny grafu
M - Příprava na 3. čtvrtletní písemnou práci
M - Příprava na 3. čtvrtletní písemnou práci Určeno pro třídu ODK VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
Přednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce
Přednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce Zápisem f : M R rozumíme, že je dána funkce definovaná na neprázdné množině M R reálných čísel, což je množina dvojic f =
Úlohy krajského kola kategorie C
67. ročník matematické olympiády Úlohy krajského kola kategorie C 1. Najděte nejmenší přirozené číslo končící čtyřčíslím 2018, které je násobkem čísla 2017. 2. Pro celá čísla x, y, z platí x 2 + y z =
Značení krystalografických rovin a směrů
Značení krystalografických rovin a směrů (studijní text k předmětu SLO/ZNM1) Připravila: Hana Šebestová 1 Potřeba označování krystalografických rovin a směrů vyplývá z anizotropie (směrové závislosti)
Úlohy krajského kola kategorie A
64. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dán trojúhelník ABC s tupým úhlem při vrcholu C. Osa o 1 úsečky AC protíná stranu AB v bodě K, osa o 2 úsečky BC protíná stranu AB
15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu
15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu 1. Definice elektrického proudu 2. Jednoduchý elektrický obvod a) Ohmův zákon pro část elektrického obvodu b) Elektrický spotřebič
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31
Syntetická geometrie II
Mnohoúhelníky Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Čtyřúhelníky Definice (Čtyřúhelník) Jsou dány čtyři body A, B, C, D v rovině, z nichž žádné tři nejsou kolineární. Čtyřúhelník ABCD
Křivky a plochy technické praxe
Kapitola 7 Křivky a plochy technické praxe V technické praxi se setkáváme s tím, že potřebujeme křivky a plochy, které se dají libovolně upravovat a zároveň je jejich matematické vyjádření jednoduché.
Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů
Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů Jaroslav Zhouf, PedF UK, Praha Úvod Pascalův trojúhelník je schéma přirozených čísel, která má své využití např. v binomické
Matematika 2 Úvod ZS09. KMA, PřF UP Olomouc. Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25
Matematika 2 Úvod Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25 Studijní materiály web předmětu: aix-slx.upol.cz/ fiser St. Trávníček: Matematická analýza kag.upol.cz/travnicek/1-matan.
Derivace funkce DERIVACE A SPOJITOST DERIVACE A KONSTRUKCE FUNKCÍ. Aritmetické operace
Derivace funkce Derivace je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako
Pracovní list: Opakování učiva sedmého ročníku. Fyzikální veličiny. Fyzikální jednotky. Fyzikální zákony. Vzorce pro výpočty 100 200.
Pracovní list: Opakování učiva sedmého ročníku 1. Odpovězte na otázky: Fyzikální veličiny Fyzikální jednotky Fyzikální zákony Měřidla Vysvětli pojmy Převody jednotek Vzorce pro výpočty Slavné osobnosti
Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.
U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Lukáš Havrlant Univerzita Palackého 10. ledna 2014 Primární zdroj Jiří Adámek: Foundations of Coding. Strany 137 160. Na webu ke stažení, heslo:
Každá kružnice má střed, označuje se S. Všechny body kružnice mají od středu S stejnou vzdálenost, říká se jí poloměr kružnice a označujeme ho r.
Každá kružnice má střed, označuje se S. Všechny body kružnice mají od středu S stejnou vzdálenost, říká se jí poloměr kružnice a označujeme ho r. Kružnice k je množina všech bodů v rovině, které mají od
Kinematická geometrie
Gymnázium Christiana Dopplera Kinematická geometrie Autor: Vojtěch Šimeček Třída: 4.C Školní rok: 2011/2012 Zadavatel: Mgr. Ondřej Machů Ročníkovou práci jsem zhotovil samostatně, pouze s pomocí zdrojů
i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice
I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných
MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
Netradiční úlohy o reálných číslech
Netradiční úlohy o reálných číslech Jaroslav Beránek Abstract. This article is aimed to introducing of real numbers and solving of exercises related to real numbers. After the introductory notes there
Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy
Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky
Programování v jazyku LOGO - úvod
Programování v jazyku LOGO - úvod Programovací jazyk LOGO je určen pro výuku algoritmizace především pro děti školou povinné. Programovací jazyk pracuje v grafickém prostředí, přičemž jednou z jeho podstatných
7.1.3 Vzdálenost bodů
7.. Vzdálenost bodů Předpoklady: 70 Př. : Urči vzdálenost bodů A [ ;] a B [ 5;] obecný vzorec pro vzdálenost bodů A[ a ; a ] a [ ; ]. Na základě řešení příkladu se pokus sestavit B b b. y A[;] B[5;] Z
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 2. Homomorfismy V souvislosti se strukturami se v moderní matematice studují i zobrazení,
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo
Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l
Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l Baudhayana (kolem 800 př.n.l) Pythagoras ze Sámu (asi 580 př.n.l asi 500 př.n.l) Motivace: Tato věta mě zaujala, protože se o ní
Těleso racionálních funkcí
Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso
Základy matematické analýzy
Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního
LOGARITMICKÁ SPIRÁLA. spirála, růstová spirála, Bernoulliho spirála nebo spira mirabilis. POPIS SPIRÁLY. Polární rovnice logaritmické spirály je:
LOGARITMICKÁ SPIRÁLA HISTORIE První, kdo se zabýval problematikou logaritmické spirály a zkoumal jí, byl René Descartes (1596-1650) přibližně kolem roku 1638. Nezávisle na něm zkoumal křivku také Evangelista
NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB
Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 12. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Nejdůleţitější konstrukční prvek pro ohyb je nosník.