Fakulta informačních technologií

Rozměr: px
Začít zobrazení ze stránky:

Download "Fakulta informačních technologií"

Transkript

1 České vysoké učení technické v Praze Fakulta informačních technologií Historie matematiky a informatiky Zlatý řez Jaroslav Hrách

2 Obsah 1 Úvod 1 2 Historie 2 3 Zlatý řez v matematice Výpočet zlatého řezu Geometrická konstrukce zlatého řezu Zlatý obdélník Zlatá (logaritmická) spirála Fibonacciho posloupnost Úloha s králíky Zlatý řez v přírodě 9 5 Zlatý řez v umění 9

3 1 Úvod Položme si několik základních otázek: Co je to krása? Existují na krásu nějaká měřítka? Dá se krása matematicky vyjádřit? Krása jako taková je veskrze abstraktní pojem, jehož vysvětlení není snadným úkolem. Krásou se zabývá filosofická disciplína zvaná estetika, pojem vymezený v 18. století. Nicméně ještě dávno předtím se těmito otázkami zabývala řada velkých myslitelů. Jednou z uspokojivých odpovědí na námi kladené otázky je bezesporu zlatý řez (alternativně také zlaté číslo či zlatý poměr). Zlatý řez je vnímán jako ideální poměr mezi dvěma úsečkami a působí tak estesticky příznívým dojmem. Nejčastěji se zlatý řez označuje řeckým písmenem φ (fí) a odpovídá hodnotě 1, Se zlatým řezem se setkáme takřka na každém rohu. V přírodě, architektuře, umění, malbě, fotografii, či třeba hudbě. Dokonce i zcela neintuitivní matematické konstrukty nás mohou zavést ke zlatému řezu. Geometrie má dva poklady: pythagorovu větu a zlatý řez. První má cenu zlata, druhý připomíná spíše drahocenný kámen. Johannes Kepler 1

4 2 Historie Zlatý řez má velmi bohatou historii, která sahá až do dávných civilizací starověkého Východu, Egypta a Babylonu. Zlatý řez, respektive poměr na něm založený, používali již Egypt ané při stavbě pyramid. Alespoň to tvrdí Rhindův papyrus, který vznikl někdy v období př. n. l. a ve kterém se píše, že v pyramidách je utajen tajemný kvocient, nazvaný seqt. Tento seqt později objevili Řekové. Zda šlo opravdu o zlatý řez, jak ho dnes známe my, je však spíše polemikou. Někteří historikové se to sice domnívají, nicméně žádná měření tuto domněnku nepotvrdila, ovšem ani nevyvrátila. Antický učenec Euklides se kolem let př. n. l. fenoménem zlatého řezu zabýval. Ve svém díle Základy uvedl následující úlohu: Rozděl úsečku na dva díly tak, aby obdélník, jehož jedna strana je celá úsečka a druhá strana je jeden z dílů, měl stejný obsah jako čtverec nad druhým dílem. Na svou dobu se jednalo nepochybně o velmi náročnou úlohu, jelikož stále ještě nebyla známa algebra. Řešením této úlohy je pak právě rozdělení úsečky v poměru zlatého řezu. Euklides se dále zabýval konstrukcí pravidelného pětiúhelníku, který opět vede na tento poměr. Euklides nebyl v antice jediný, kdo se zlatým řezem zabýval. Umělec Phidias (sochař, malíř, zlatník a architek) v 5. století př. n. l. postavil známý Parthenón na athénské Akropoli, jehož základem je zlatý obdélník a zlatý poměr nalezneme i na průčelí této stavby. Obrázek 1: Parthenón na athénské Akropoli Ve středověku byl zlatý řez považován za dílo Boha a údajně představoval dokonalost božího stvoření. V té době se o něm nic nového nezjistilo. Až teprve v období renesance (15. století) se začalo něco dít a to zejména v Itálii. Renesanční matematik Luca Pacioli navázal na Eukleidovy Základy a roku 1509 vydal pojednání O božském poměru, které bylo doplněno ilustracemi Leonarda da Vinci (ten považoval zlatý řez za ideál krásy a harmonie). Kniha obsahuje zajímavou sbírku příkladů výskytu poměru zlatého řezu v 2

5 rovinných obrazcích a tělesech. Německý malíř Albrecht Dürer ve svém spisu z roku 1528 rozvinul některé teoretické problémy nauky o proporcích. I zde se setkáváme s řadou zlatých řezů, úseček a zlatých obdélníků. Mezi holandskými mistry výtvarného umění vynikal v teorii i užití zlatého řezu Jan Vermeer (1632 až 1675). Až od 19. století se začalo užívat označení zlatý řez a zlatý poměr. V současné době ustoupila, snad trochu neprávem, teorie zlatého čísla do pozadí. Jednou z mála osobností, která se touto problematikou ve 20. století zabývala, byl Francouz Matila Ghyka, který v roce 1931 vydal v Paříži knihu Le Nombre d Or (v překladu Zlaté číslo ). Následně, v roce 1946, vyšla ve Velké Británii jeho kniha The geometry of Art and Life (v překladu Geometrie umění a života ). Autor se v obou dílech zaobírá výskytem zlatého čísla v přírodě i v architektuře, jeho vlastnostmi a využitím od starověkého Egypta přes antiku až po současnost. V dnešní době o přítomnosti zlatého čísla svědčí například pyramida v Louvre nebo budova La Géode v Paříži. Dále se se zlatým řezem můžeme setkat v mnoha odvětvích jako například planimetrie, stereometrie či třeba v plastických chirurgiích. 3

6 3 Zlatý řez v matematice Mějme úsečku nějaké délky. Rozdělme ji na dvě části a a b tak, aby byl poměr mezi celkovou délkou a+b a větší částí a stejný jako poměr větší části a a menší části b. Obrázek 2: Poměr a:b je stejný jako poměr (a+b):a. Zdroj: [6] 3.1 Výpočet zlatého řezu Pokud výše uvedené tvrzení převedeme do matematického vyjádření, dostaneme následující rovnici: a b = a + b a Tento poměr označíme symbolem φ jako zlatý řez. φ = a b Následně provedeme pár matematických úprav. Nejprve vyjádříme délku a, následně ji dosadíme do první rovnice a nakonec vykrátíme délkou b. Potom se zbavíme zlomků, převedeme členy na jednu stranu rovnice a získáme tak kvadratickou rovnici. a = bφ bφ b = bφ + b bφ φ = φ + 1 φ φ 2 = φ + 1 φ 2 φ 1 = 0 Kvadratická rovnice vede na dvě řešení, jedno kladné a jedno záporné. Jelikož jsme vypočítali poměr větší části k menší, musí vyjít poměr větší než 1, 4

7 proto je řešením rovnice pouze kladný kořen, který odpovídá iracionálnímu číslu: φ = = 1, Geometrická konstrukce zlatého řezu Pro geometrické vyjádření zlatého řezu se používá tzv. Herónova konstrukce a skládá se z několika kroků: Obrázek 3: Herónova konstrukce zlatého řezu. Zdroj: [8] 1. Sestrojíme úsečku AB, kterou chceme rozdělit zlatým řezem. 2. Z bodu B vztyčíme kolmici o délce poloviny AB. 3. Konec kolmice označíme jako bod C. 4. Sestrojíme trojúhelník ABC. 5. Sestrojíme kružnici n se středem v bodě C a poloměrem BC. 6. Průnik kružnice n a úsečky AC označíme jako bod N. 7. Sestrojíme kružnici m se středem v bodě A a poloměrem AN. 8. Průnik kružnice m a úsečky AB označíme jako bod M. 9. Délky úseček AB a AM jsou navzájem ve zlatém poměru. 5

8 3.3 Zlatý obdélník Zlatý obdélník je takový obdélník, který má delší stranu ke kratší straně v poměru zlatého řezu. Takový obdélník má mnoho zajímavých vlastností. Například při vepsání zlatého obdélníku do čtverce nám všechny vrcholy obdélníka rozdělují strany čtverce v poměru zlatého řezu. Dále pokud od zlatého obdélníku oddělíme čtverec odpovídající velikosti jedné strany, dostaneme ze zbývající části další zlatý obdélník. Obrázek 4: Zlatý obdélník. Zdroj: [6] Obrázek 5: Zlatý obdélník vepsaný ve čtverci. Zdroj: [2] 3.4 Zlatá (logaritmická) spirála U zlaté spirály využijeme zlatého obdélníku a jeho vlastnosti dělení. Pokud toto dělení provedeme několikrát, můžeme nakreslit spirálu, která protíná body vyznačující zlaté řezy jednotlivých obdélníků. Proč logaritmická? Pojmenování je odvozené od způsobu prodlužování poloměru při vzdalování spirály od středu po směru hodinových ručiček. Pro zlatou spirálu je navíc charakteristické, že se vzrůstající velikostí se nemění její tvar. 3.5 Fibonacciho posloupnost Italský matematik Leonardo Fibonacci, vlastním jménem Leonardo Pisánský, se zabýval aritmetikou a algebrou. Skrze různé matematické úlohy přinesl plno zajímavých myšlenek a umožnil zkoumání tzv. Fibonacciových čísel 6

9 Obrázek 6: Spirála v obdélnících. Zdroj: [3] a vznik Fibonacciho posloupnosti. Fibonacciho posloupností se rozumí nekonečná řada, kde každé číslo je součtem dvou předchozích. Fibonacciho posloupnost je definována následovně: F 1 = 1 F 2 = 1 F n = F n 1 + F n Úloha s králíky Fibonacci objevil vztah zlatého řezu na úloze s králíky, jejíž zadání zní: Kolik párů králíků se během jednoho roku narodí z jednoho páru, jestliže každý pár dá měsíčně přírůstek jeden pár, jenž bude schopen plodit po dvou měsících, když přitom žádný pár nezahyne? Posloupnost Fibonacciho čísel odpovídá řadě: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,... Obrázek 7: Grafické znázornění úlohy s králíky. Zdroj: [7] 7

10 Pokud spočítáme několik poměrů dvou za sebou jdoucích členů Fibonacciho posloupnosti, můžeme si všimnou, že konvergují k hodnotě zlatého řezu: 1/1 = 1 2/1 = 2 3/2 = 1,5 5/3 = 1, /5 = 1,6 13/8 = 1,625 21/13 = 1, Z tohoto zjištění potom lze dokázat, že platí: φ = lim n F n F n 1 8

11 4 Zlatý řez v přírodě V přírodě se se zlatým řezem můžeme setkat téměř kdekoliv. Nejvýraznější je v tomto případě logaritmická spirála, kterou můžeme vidět například u skořápky loděnky, či u schránek plžů. Tvar odpovídající spirále je k nalezení i na řadě neživých částí živých tvorů jako jsou vlasy, nehty, zobáky, zuby, rohy, parohy, konkrétně třeba kly slonů. Obrázek 8: Schránka plže. Zdroj: [6] U rostlin je velmi zajímavá struktura rozmístění semen u semenících květin (například u slunečnice), semen šišek, kaktusů či uspořádání listů některých květin. V kontextu již zmiňované Fibonacciho posloupnosti se zde objevuje fylotaxe, což je biologický termín pro postavení listů na stoncích rostliny. 5 Zlatý řez v umění Jelikož se nám jeví zlatý řez jako něco estetického, či subjektivněji krásného, je hojně využíván v mnoha odvětvích lidského působení. Výraznou roli hraje v oblasti umění, kdy byl již v dávné minulosti využíván v malbě. Již Leonardo da Vinci využil zlatý řez ve svém slavném obraze Mona Lisa a v mnoha dalších obrazech. Od obrazů je jen malý krok k fotografii, kde se v profesionální sféře bere zlatý řez jako samozřejmost, kterou by měl znát každý fotograf. Další výraznou oblastí je architektura. Proporce ve zlatém poměru můžeme nalézt téměř ve všech významných stavbách po celém světě. Často se používají základny ve tvaru zlatého obdélníku, dveře a okna se rozmist ují podle zlatého poměru. 9

12 Obrázek 9: Mona Lisa a zlatý řez. Zdroj: [9] Zlatý řez hraje roli dokonce i v oblasti hudby. Kupříkladu konstrukce houslí obsahuje zlatý řez. U piána zase nalezneme Fibonacciho čísla. 10

13 Reference [1] Janoušek, I. Estetika. 2015, přednáška z předmětu Základy gnozeologie na FIT CVUT. [2] Nagyová, Iveta. Zlatý řez. [online]. [cit ]. Dostupné z: http: //mujweb.cz/zlaty.rez/diplomka.html [3] Jozefík, Tomáš. Zlatý řez v matematice, přírodních vědách a umění. Odborná maturitní práce. Dostupné z: soubory/jozefik.pdf [4] Chmelíková, Vlasta. Zlatý řez. Bakalářská práce. Dostupné z: kdm.karlin.mff.cuni.cz/diplomky/chmelikovabp/zlaty_rez.pdf [5] Kotková, Kateřina. Zlatý řez. Diplomová práce. Dostupné z: is.muni.cz/th/128853/pedf_m/dipl.prace_kotkova.pdf [6] Wikipedia.org Golden ratio. [online]. [cit ]. Dostupné z: [7] Wikipedia.org Fibonacci number. [online]. [cit ]. Dostupné z: [8] Hordějčuk, Vojta Zlatý řez. [online]. [cit ]. Dostupné z: http: //voho.eu/wiki/zlaty-rez/ [9] Neff, Ondřej Zlatý řez. [online]. [cit ]. Dostupné z: digineff.cz/art/pojmy/zlat-ez.html 11

KINÉSIS GRAFÓ. Píšu pohyb. doc.mgr. Jiří Myslík, FAMU

KINÉSIS GRAFÓ. Píšu pohyb. doc.mgr. Jiří Myslík, FAMU KINÉSIS GRAFÓ Píšu pohyb doc.mgr. Jiří Myslík, FAMU VZNIK KINEMATOGRAFIE Stínové obrazy Jeskynní kresby Camera obscura Chemické účinky světla Stroboskop Laterna magica Kouzelný buben Vynález fotografie

Více

M - Pythagorova věta, Eukleidovy věty

M - Pythagorova věta, Eukleidovy věty M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací

Více

Zejména v renesanci se pěstuje a udržuje mínění, že nejkrásnější jsou útvary, v nichž lze

Zejména v renesanci se pěstuje a udržuje mínění, že nejkrásnější jsou útvary, v nichž lze Zdálo by se, že v oblasti lidské činnosti matematika a umění stojí na protilehlých pólech, ba že se někdy až vylučují. Ale i v matematice je kus umění. Matematik Sobolev napsal: "Skutečným matematikem

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

CVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 22 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Kontroloři Státní zemědělské a potravinářské inspekce

Více

Matice v matice a Fibonacciova posloupnost

Matice v matice a Fibonacciova posloupnost Letní škola matematiky a fyziky 18 1 Matice v matice a Fibonacciova posloupnost Hana Turčinová 1 Matice bez šroubů Slovo matice je v českém jazyce takzvané homonymum - má různé významy Běžný smrtelník

Více

Každá kružnice má střed, označuje se S. Všechny body kružnice mají od středu S stejnou vzdálenost, říká se jí poloměr kružnice a označujeme ho r.

Každá kružnice má střed, označuje se S. Všechny body kružnice mají od středu S stejnou vzdálenost, říká se jí poloměr kružnice a označujeme ho r. Každá kružnice má střed, označuje se S. Všechny body kružnice mají od středu S stejnou vzdálenost, říká se jí poloměr kružnice a označujeme ho r. Kružnice k je množina všech bodů v rovině, které mají od

Více

Jihočeská univerzita v Českých Budějovicích Fakulta Pedagogická Katedra Matematiky. Bakalářská práce. Zlatý řez okolo nás

Jihočeská univerzita v Českých Budějovicích Fakulta Pedagogická Katedra Matematiky. Bakalářská práce. Zlatý řez okolo nás Jihočeská univerzita v Českých Budějovicích Fakulta Pedagogická Katedra Matematiky Bakalářská práce Zlatý řez okolo nás Vypracoval: Čadková Andrea Vedoucí práce: Prof. RNDr. Pavel Pech, CSc. České Budějovice

Více

37. PARABOLA V ANALYTICKÉ GEOMETRII

37. PARABOLA V ANALYTICKÉ GEOMETRII 37.. Napiš rovnici paraboly, která má osu rovnoběžnou s osou y a prochází body A 0; 60, B 4; 8, C 8;36. 0m p60n 4m p8n 8m p36n m p pn 0 6 8 6 mm p pn 64 6 7 3 mm p pn 6 8m64 p 3 64 6m9 p Je-li osa rovnoběžná

Více

1, φ = 1+ 5 ZLATÉ ČÍSLO

1, φ = 1+ 5 ZLATÉ ČÍSLO φ = + 5,68 034 ZLATÉ ČÍSLO Staří Řekové znali toto číslo vzhledem k jeho spojitosti s pravidelnými pětiúhelníky a dvanáctistěny studovanými eukleidovskou geometrií. Je úzce spojené s řadou Fibonacciho

Více

Zlatý řez v matematice, přírodních vědách a umění

Zlatý řez v matematice, přírodních vědách a umění Waldorfské lyceum, Křejpského 1501, 149 00 Praha 4 Zlatý řez v matematice, přírodních vědách a umění Odborná maturitní práce 2013/2014 Autor práce: Tomáš Jozefík Vedoucí práce: Pavel Kraemer Poděkování:

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y]. Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1

Více

Matematika PRŮŘEZOVÁ TÉMATA

Matematika PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí

Více

Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l

Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l Baudhayana (kolem 800 př.n.l) Pythagoras ze Sámu (asi 580 př.n.l asi 500 př.n.l) Motivace: Tato věta mě zaujala, protože se o ní

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 64. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dán trojúhelník ABC s tupým úhlem při vrcholu C. Osa o 1 úsečky AC protíná stranu AB v bodě K, osa o 2 úsečky BC protíná stranu AB

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. TROJÚHELNÍK PYTHAGOROVA VĚTA TROJÚHELNÍK Geodetické výpočty I. trojúhelník je geometrický rovinný útvar určený třemi

Více

CVIČNÝ TEST 29. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 29. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 29 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Smrk má vysokou klíčivost, jen 5 % semen nevyklíčí.

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Fibonacciho čísla na střední škole

Fibonacciho čísla na střední škole Fibonacciho čísla na střední škole Martina Jarošová Abstract In this contribution we introduce some interesting facts about Fibonacci nunbers We will prove some identities using different proof methods

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L

Více

3.2 OBJEMY A POVRCHY TĚLES

3.2 OBJEMY A POVRCHY TĚLES . OBJEMY A POVRCHY TĚLES Krychle, kvádr, hranol Dochované matematické texty ze starého Egypta obsahují několik úloh na výpočet objemu čtverhranných obilnic tvaru krychle; lze předpokládat, že stejným způsobem

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Rhindův papyrus (XV. dynastie, kolem 1560 př.kr., opis

Rhindův papyrus (XV. dynastie, kolem 1560 př.kr., opis STAROVĚKÝ EGYPT Prameny nápisy na kamenech papyry Rhindův papyrus (XV. dynastie, kolem 1560 př.kr., opis staršího spisu období 1853 až 1809 př. Kr.) Moskevký papyrus (XIII. dynastie, asi 1797 až 1634 př.kr.,

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:

Více

Šablona klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

Šablona klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Základní škola Vimperk, Smetanova 405, okres Prachatice OPVK Šablona klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT INFORMATIKA V 6. ROČNÍKU Název sady: Využití multimediální techniky

Více

p ACD = 90, AC = 7,5 cm, CD = 12,5 cm

p ACD = 90, AC = 7,5 cm, CD = 12,5 cm Úloha Je dán pravoúhlý trojúhelník ACD s pravým úhlem při vrcholu C, AC = 7,5 cm, CD =,5 cm. Na přímce CD určete bod B tak, aby AB = BD Řešení: Úlohu vyřešíme nejprve geometrickou konstrukcí. a) Z rozboru

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných

Více

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 37 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na staré hliněné desce je namalován čtverec

Více

CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,

Více

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28. INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška

Více

Pythagorova věta

Pythagorova věta .8.19 Pythagorova věta Předpoklady: 00801 Pedagogická poznámka: Z následujícího příkladu rýsuje každý žák pouze jeden bod podle toho, v jakém sedí oddělení. Př. 1: Narýsuj pravoúhlý trojúhelník: a) ABC:

Více

1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další

1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další Kapitola 1 Planimetrie a stereometrie Doplňky ke středoškolské látce 1.1 Základní pojmy prostorové geometrie 1.1.1 Axiomy Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další

Více

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27 Řetězové zlomky HL Academy - Chata Lopata 2012 13.2. 18.2.2012 Emu (Brkos 2012) Řetězové zlomky 13.2. 18.2.2012 1 / 27 Obsah 1 Úvod 2 Základní pojmy 3 Konečné řetězové zlomky Sblížené zlomky Euklidův algoritmus

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Matematika - Historie - 1

Matematika - Historie - 1 Matematika - Historie - 1 Vybrali jsme zajímavé jevy z historie matematiky a sestavili z nich jeden test. Doufáme, že se podaří splnit hned několik cílů. Test vás potěší, překvapí a poučí. Odpovědi hledejte

Více

Přijímací zkouška na MFF UK v Praze

Přijímací zkouška na MFF UK v Praze Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 017, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé

Více

Magická krása pravidelného pětiúhelníka

Magická krása pravidelného pětiúhelníka MUNDUS SYMBOLICUS 25 (2017) Magická krása pravidelného pětiúhelníka J. Nečas Abstract. The article presents various interesting relations in a regular pentagon and then expresses the values of goniometric

Více

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2 6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje

Více

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

Geometrie a zlatý řez

Geometrie a zlatý řez Geometrie a zlatý řez Pythagorova věta Podívejme se na několik geometrických důkazů Pythagorovy věty využívajících různých druhů myšlení. Úvaha o začátku vyučování, je nutná a prospěšná rytmická část na

Více

Rozpis výstupů zima 2008 Geometrie

Rozpis výstupů zima 2008 Geometrie Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Umění vidět v matematice

Umění vidět v matematice Umění vidět v matematice Mgr. Jiří Kulička, Ph.D. Dopravní Fakulta Jana Pernera Katedra Informatiky v dopravě Oddělení aplikované matematiky jiri.kulicka@upce.cz Toto není univerzitní přednáška zjednodušení

Více

Vlasta Moravcová. Matematicko-fyzikální fakulta & Nad Ohradou 23 Univerzita Karlova v Praze Praha 3. Letní škola geometrie 2018,

Vlasta Moravcová. Matematicko-fyzikální fakulta & Nad Ohradou 23 Univerzita Karlova v Praze Praha 3. Letní škola geometrie 2018, KONSTRUKČNÍ ÚLOHY Katedra didaktiky matematiky Gymnázium Na Pražačce Matematicko-fyzikální fakulta & Nad Ohradou 23 Univerzita Karlova v Praze Praha 3 Letní škola geometrie 2018, 4. července 2018, Česká

Více

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1. Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd.

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd. MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro nástavbové studium (hodinová dotace: varianta A 4 až 5 celkových týd. hodin, varianta B 6 celkových týd. hodin) Schválilo

Více

CVIČNÝ TEST 12. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21

CVIČNÝ TEST 12. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 CVIČNÝ TEST 12 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písmena A, B, C a D vyjadřují každé jednu z číslic

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Co vedlo ke zkoumání řezů kuželové plochy?

Co vedlo ke zkoumání řezů kuželové plochy? Různé přístupy ke kuželosečkám Zdeněk Halas KDM MFF UK Parabola dle Apollónia Elipsa a hyperbola dle Apollónia Konstrukce elipsy proužková součtová Obsah elipsy Zdeněk Halas (KDM MFF UK) 1 / 35 Zdeněk

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta ZLATÝ ŘEZ BAKALÁŘSKÁ PRÁCE. Mgr. Kateřina ŠTIKOVÁ

Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta ZLATÝ ŘEZ BAKALÁŘSKÁ PRÁCE. Mgr. Kateřina ŠTIKOVÁ Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta ZLATÝ ŘEZ BAKALÁŘSKÁ PRÁCE Mgr. Kateřina ŠTIKOVÁ České Budějovice, duben 007 Poděkování Děkuji RNDr. Pavlu Leischnerovi, Ph.D. za jeho odbornou

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje

Více

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Užití stejnolehlosti v konstrukčních úlohách

Užití stejnolehlosti v konstrukčních úlohách Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz

Více

Fibonacciho posloupnost

Fibonacciho posloupnost UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA Katedra matematické analýzy a aplikací matematiky BAKALÁŘSKÁ PRÁCE Fibonacciho posloupnost Vedoucí bakalářské práce: RNDr. Martina Pavlačková, Ph.D.

Více

Otázky z kapitoly Posloupnosti

Otázky z kapitoly Posloupnosti Otázky z kapitoly Posloupnosti 8. září 08 Obsah Aritmetická posloupnost (8 otázek). Obtížnost (0 otázek)........................................ Obtížnost (0 otázek).......................................

Více

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021 Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,

Více

GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE

GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE Pravidelná tělesa Cheb, 2006 Lukáš Louda,7.B 0 Prohlášení Prohlašuji, že jsem seminární práci na téma: Pravidelná tělesa vypracoval zcela sám za použití pramenů uvedených

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace

Více

Seznam pomůcek na hodinu technického kreslení

Seznam pomůcek na hodinu technického kreslení Seznam pomůcek na hodinu technického kreslení Sešit bez linek, formát A4 Psací potřeby propiska nebo pero, mikrotužky 2B, H Pravítko s ryskou Rovné pravítko Úhloměr Kružítko Šablona písma 3,5 mm Šablona

Více

Magické čtverce. Tomáš Roskovec. Úvod

Magické čtverce. Tomáš Roskovec. Úvod Magické čtverce Tomáš Roskovec Úvod Magické čtverce patří k dávným matematickým hrátkám, které i přes dvoutisíciletou historii dodnes nejsou zcela prozkoumány. Během přednášky se budeme zabývat nejprve

Více

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů.

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů. Úvod V této knize předkládáme čtenáři základní matematické a fyzikální vzorce v přívětivé a snadno použitelné podobě. Využití čísel a symbolů k modelování, předpovídání a ovládání reality je mocnou zbraní

Více

LOGARITMICKÁ SPIRÁLA. spirála, růstová spirála, Bernoulliho spirála nebo spira mirabilis. POPIS SPIRÁLY. Polární rovnice logaritmické spirály je:

LOGARITMICKÁ SPIRÁLA. spirála, růstová spirála, Bernoulliho spirála nebo spira mirabilis. POPIS SPIRÁLY. Polární rovnice logaritmické spirály je: LOGARITMICKÁ SPIRÁLA HISTORIE První, kdo se zabýval problematikou logaritmické spirály a zkoumal jí, byl René Descartes (1596-1650) přibližně kolem roku 1638. Nezávisle na něm zkoumal křivku také Evangelista

Více

A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2.

A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2. PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2. ČÁST MAT. OT 2. OT. Č.. 15: SHODNÁS HODNÁ ZOBRAZENÍ V ROVINĚ, PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY PODOBNOST KDE LÁTKU NAJDETE Kapitola Základy planimetrie

Více

} Vyzkoušej všechny povolené možnosti.

} Vyzkoušej všechny povolené možnosti. VZOROVÉ ŘEŠENÍ 1 2 2, 5 = 0, 5 2, 5 = 1, 25 1 2 = 0, 5 } 1, 25 0, 5 = 0, 75 256: 2 100 0, 029 = 128 2, 9 = 125, 1 1,44 (0,1)2 0,01 10 = 120 1 1,2 3600 = 0,01 3600 = 0,01 10 0, 001 3600 = 120 3, 6 = 116,

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

DĚJINY MATEMATIKY tematické okruhy ke zkoušce

DĚJINY MATEMATIKY tematické okruhy ke zkoušce DĚJINY MATEMATIKY tematické okruhy ke zkoušce ZIMNÍ SEMESTR Pythagorejská matematika: Pýthagorova věta. Formulace. Školský důkaz, Eukleidův důkaz. Pýthagorejské trojice. Definice, popis všech pýthagorejských

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Historie matematiky a informatiky

Historie matematiky a informatiky Historie matematiky a informatiky 2018 Doc. RNDr. Alena Šolcová, Ph.D. Katedra aplikované matematiky FIT ČVUT v Praze 22. 2. 2018 Alena Šolcová, FIT ČVUT v Praze 1 Pýthagorás ze Samu, 6. stol. př. n. l.

Více

MATEMATIKA. Diofantovské rovnice 2. stupně

MATEMATIKA. Diofantovské rovnice 2. stupně MATEMATIKA Diofantovské rovnice 2. stupně LADISLAVA FRANCOVÁ JITKA KÜHNOVÁ Přírodovědecká fakulta, Univerzita Hradec Králové V tomto článku se budeme zabývat některými případy diofantovských rovnic 2.

Více

Limita ve vlastním bodě

Limita ve vlastním bodě Výpočty it Definice (a případné věty) jsou z knihy [] příklady z [] [] a []. Počítám u zkoušky dvacátou itu hlavu mám dávno už do čista vymytu papír se značkami skvěje z čela mi pot v proudech leje než

Více

Přírodovědecká fakulta Masarykovy univerzity. na trigonometrii pravoúhlého a obecného trojúhelníku

Přírodovědecká fakulta Masarykovy univerzity. na trigonometrii pravoúhlého a obecného trojúhelníku Přírodovědecká fakulta Masarykovy univerzity Řešení složitějších úloh na trigonometrii pravoúhlého a obecného trojúhelníku Bakalářská práce BRNO. května 006 Barbora Kamencová Prohlašuji, že jsem svou bakalářskou

Více

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b 008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly

Více

TEMATICKÝ PLÁN. září říjen

TEMATICKÝ PLÁN. září říjen TEMATICKÝ PLÁN Předmět: MATEMATIKA Literatura: Matematika doc. RNDr. Oldřich Odvárko, DrSc., doc. RNDr. Jiří Kadleček, CSc Matematicko fyzikální tabulky pro základní školy UČIVO - ARITMETIKA: 1. Rozšířené

Více

Problematika zlatého řezu a jeho výskyt okolo nás

Problematika zlatého řezu a jeho výskyt okolo nás Jihočeská univerzita v Českých Budějovicích Fakulta pedagogická Katedra matematiky Bakalářská práce Problematika zlatého řezu a jeho výskyt okolo nás Vypracoval: Lenka Belejová Vedoucí práce: prof. RNDr.

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

n =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram

n =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram 4.5 Mnohoúhelníky Obrázek 28: Tangram Mnohoúhelník můžeme charakterizovat jako část roviny ohraničenou uzavřenou lomenou čarou (tj. čarou, která se skládá z na sebe navazujících úseček). Již víme, že rozlišujeme

Více

Základy aritmetiky a algebry II

Základy aritmetiky a algebry II Osnova předmětu Základy aritmetiky a algebry II 1. Lineární rovnice, řešení v tělesech Q, R, C, Z p, počet řešení v okruhu Z n, n N \ P. Grafické řešení, lineární nerovnice. 2. Kvadratická rovnice. Didaktický

Více

Posloupnosti a řady. a n+1 = a n + 4, a 1 = 5 a n+1 = a n + 5, a 1 = 5. a n+1 = a n+1 = n + 1 n a n, a 1 = 1 2

Posloupnosti a řady. a n+1 = a n + 4, a 1 = 5 a n+1 = a n + 5, a 1 = 5. a n+1 = a n+1 = n + 1 n a n, a 1 = 1 2 Vlastnosti posloupností 90000680 (level ): Je dána posloupnost (an + b), ve které platí, že a = a a 4 = 8. Potom: Posloupnosti a řady 900006807 (level ): Které z čísel 5, 5, 8, 47 není členem posloupnosti

Více

Ludolfovo číslo přepočítá z diskrétního do Euklidova prostoru - 1

Ludolfovo číslo přepočítá z diskrétního do Euklidova prostoru - 1 Ludolfovo číslo přepočítá z diskrétního do Euklidova prostoru - 1 Bohumír Tichánek 7 Práce zdůvodňuje způsob využití Ludolfova čísla při převodu bodu, a to z diskrétního do Euklidova prostoru. Tím se bod

Více

Vlastnosti pravděpodobnosti, geometrická pravděpodobnost

Vlastnosti pravděpodobnosti, geometrická pravděpodobnost Vlastnosti pravděpodobnosti, geometrická pravděpodobnost 1. Přátelé Igor a Dano si domluví schůzku mezi 9.00 a 10.00. Jejich příchody na dané místo jsou náhodné v rámci smluveného časového intervalu. Každý

Více

Zlatý řez nejen v matematice

Zlatý řez nejen v matematice Zlatý řez nejen v matematice Zlaté číslo a jeho vlastnosti In: Vlasta Chmelíková author): Zlatý řez nejen v matematice Czech) Praha: Katedra didaktiky matematiky MFF UK, 009 pp 7 Persistent URL: http://dmlcz/dmlcz/40079

Více

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179

Více

Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30

Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30 Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30 2) Vypočtěte velikost úhlu : a) 150 10 b) 149 22 c) 151

Více

Historie matematiky a informatiky Doc. RNDr. Alena Šolcová, Ph.D. Katedra aplikované matematiky FIT ČVUT v Praze

Historie matematiky a informatiky Doc. RNDr. Alena Šolcová, Ph.D. Katedra aplikované matematiky FIT ČVUT v Praze Historie matematiky a informatiky 1 2017 Doc. RNDr. Alena Šolcová, Ph.D. Katedra aplikované matematiky FIT ČVUT v Praze Program našeho předmětu 2+1 1. 23. února 2017 - Úvod + C1 2. 2. března 3. 9. března

Více

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Název předmětu: Vyrovnávací kurz z matematiky Zabezpečující ústav: Ústav

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více