Netradiční úlohy o reálných číslech
|
|
- Adam Kříž
- před 8 lety
- Počet zobrazení:
Transkript
1 Netradiční úlohy o reálných číslech Jaroslav Beránek Abstract. This article is aimed to introducing of real numbers and solving of exercises related to real numbers. After the introductory notes there follow arithmetic and geometric models of real numbers complemented with ten solved exercises. These deal with various aspects of real number theory, eg. decimal expansion of real numbers, decomposition of rational and irrational numbers on number scale and surds. The article is concluded by a short historical note about algebraic and transcendental numbers. Úvod V tomto příspěvku se budeme zabývat některými didaktickými aspekty zavádění reálných, zejména iracionálních čísel. Nejprve se v krátkosti obecně zmíníme o zavádění reálných čísel ve školské matematice, dále na řadě příkladů ukážeme možnosti, jak reálná čísla přiblížit studentům. Úlohy využívající vlastnosti racionálních a iracionálních čísel se poměrně často vyskytují v matematických soutěžích a studentům jejich řešení mnohdy činí značné obtíže. V závěru se dotkneme rovněž algebraických a transcendentních čísel. I když daná tématika přísluší již do osnov matematiky na středních školách, otázky týkající se iracionálních čísel nejsou zcela jasné ani mnoha studentům škol vysokých. To je problémem zejména u studentů učitelství matematiky, kteří budou své znalosti přenášet dále na své žáky. Také proto byl zařazen tento příspěvek. Zavádění reálných čísel na školách, reálná čísla a jejich modely Již na střední škole se setkají studenti s důkazem, že číslo nelze vyjádřit ve tvaru zlomku, tzn. že kromě čísel racionálních existují ještě čísla iracionální, přičemž iracionálními čísly jsou téměř všechny odmocniny, hodnoty goniometrických funkcí, logaritmů atd. Studentům však většinou chybí názorná geometrická představa; velmi těžko odlišují pojmy mezera a skok na číselné ose. Tyto pojmy, známé již ze starověké matematiky, jsou přitom ke správnému pochopení reálných čísel nezbytné. Nyní uvedeme dva modely reálných čísel, aritmetický a geometrický. S oběma se setká již žák základní školy. Aritmetickým modelem je pro něj množina všech čísel, geometrickým modelem číselná osa. Izomorfismus obou modelů umožňuje nerozlišovat mezi číslem a jeho obrazem na číselné ose. Aritmetický model je častější, geometrický model je přitom názornější a pro zavádění reálných čísel na školách vhodnější podrobnosti viz []). Množina R je: uspořádaná, tj. pro každá dvě x, y R nastane právě jeden z případů x < y, x = y, x > y; hustá, tj. x, y R, x < y, z R : x < z < y; archimédovská, tj. x, y R, 0 < x < y, n N : xn ) y < xn; spojitá, tj. každá neprázdná shora ohraničená množina M R má supremum.
2 V geometrickém modelu lze předchozí čtyři tvrzení formulovat názorněji: Jsou-li X, Y dva body na ose o, nastává právě jeden z případů: X = Y, X leží vlevo od Y, Y leží vlevo od X. Mezi každými dvěma různými body existuje bod. Jestliže B je vnitřním bodem úsečky AX a jestliže na polopřímce AX sestrojíme posloupnost bodů B = B, B, B 3,... tak, že postupně nanášíme úsečku AB tedy úsečka AB n je n-násobek úsečky AB), pak po jistém počtu kroků překročíme bod X bod X bude prvkem jisté úsečky B k B k ). Na číselné ose nejsou skoky díry). Aritmetický model množiny R je méně přehledný, lze v něm však uskutečňovat všechny aritmetické operace a dobře rozlišovat mezi racionálním a iracionálním číslem. Netradiční úlohy o racionálních a iracionálních číslech V této části nyní uvedeme několik úloh, které se ve školní výuce objevují zřídka, avšak pro pochopení vlastností reálných čísel jsou velmi užitečné. Podobné úlohy se vyskytují i v různých matematických soutěžích. Řešení všech úloh je uvedeno vzhledem k rozsahu příspěvku poměrně stručně, kromě úlohy využívající úpravy surdických čísel. Úloha []: Nalezněte dvojciferná přirozená čísla p, q tak, aby platilo ) p q < ε, ) p kde ε je je postupně rovno a) 0,; b) 0,0; c) 0,00; dále určete p, q tak, aby q =. Řešení experimentem): Např. a) p = 57, q = 40; b) p = 7, q = 5; c) p = 99, q = 70. V poslední části úlohy je odpověď negativní, tj. taková čísla p, q neexistují. Poznamenejme, že při řešení je možno volit postupně sblížené zlomky konvergující k číslu. Na tuto teorii zde však není dost místa. Úloha []: Je dáno číslo, Napište alespoň jednu možnost pokračování desetinného rozvoje tohoto čísla tak, aby toto číslo nebylo periodické. Řešení: Např., Úloha 3 []: Na jednotkové kružnici je rozmístěno n bodů tak, že délka kruhového oblouku mezi každými dvěma sousedními body je stejná tvoří tedy vrcholy pravidelného n-úhelníka). Jestliže se bude počet těchto bodů blížit nekonečnu, může se stát, že některé body splynou? Řešení: Žádné dva body nemohou splynout, neboť π je číslo iracionální a velikost vnitřního úhlu, která se rovná π, se sice s rostoucím n limitně blíží k nule, nikdy jí n však nedosáhne. Následující úloha je velmi vhodná jednak pro procvičení úpravy výrazů s odmocninami, jednak proto, aby si studenti uvědomili, že ne každý výraz obsahující odmocniny musí být číslem iracionálním.
3 Úloha 4 []: Určete, které z daných čísel je iracionální: a) + 3, b), c) 3 + 3, d) e) Řešení: a), b), d) jsou iracionální, c), e) Řešení této úlohy vyžaduje krátký komentář. Surdické výrazy jsou reálná čísla tvaru a+ b, kde a, b jsou nezáporná racionální čísla, b není druhou mocninou žádného racionálního čísla. O těchto výrazech se studenti při výuce matematiky na školách nedozvědí prakticky nic; přitom se jedná o velmi starou problematiku vzorce pro úpravu surdických výrazů znal již ve. století indický matematik Bháskara. Pro úpravu surdických výrazů platí následující vztahy: předpokládáme, že a > b 0). a + b ± a b = a ± ) a b a ± a + a b = b a a ± b Pomocí uvedených dvou vztahů se některé výrazy s odmocninami snadno upraví, např. v úloze 4 výraz Zde a = 3, b = 8, podle prvního ze vzorců je výsledek roven. Takto lze upravovat i odmocniny z vyšších čísel, např = 5 7, = 5 + 6, x + y + xy + x + y xy = x. Nyní se budeme věnovat úpravám výrazu a X = 3 3 a + b b. Pokud 3 a b je racionální číslo, pak lze po umocnění výrazu X na třetí a úpravě psát X 3 = b 3 3 a b X, což je rovnice, ze které lze hodnota výrazu X určit. Např. v úloze 4 ve výrazu je a = 5, b =. Rovnice je potom tvaru X 3 = 4 3X, odkud je jeden kořen X = ihned patrný včetně toho, že další reálná řešení tato rovnice nemá. Dodejme ještě, že obdobný rozbor lze provést i v případě, kdy ve výrazu X je mezi odmocninami znaménko plus podrobnosti viz [3]). Úloha 5 []: Rozhodněte o platnosti těchto tvrzení: Množinu R Q označíme I) a, b I : a + b I) a b I) a, b I : a + b I) a b I) a, b R : ab Q a + b Q a + b Q a 3 + b 3 Q a 4 + b 4 Q Řešení: Hypotéza neplatí, protipříkladem je např. a =, b =. Hypotéza platí. Důkaz lze vést sporem. Připusťme, že existují dvě iracionální čísla a, b, jejichž součet i rozdíl je číslo racionální. Označme tento součet s, rozdíl pak r; podle předpokladu s, r Q, s = a + b, r = a b. Ze znalosti operací s racionálními čísly však platí, že také čísla a = 0,5 s + r), b = 0,5 s r) jsou racionální, což je spor s předpokladem. Hypotéza 3 platí, stačí si uvědomit, že a + b = a + b) ab, a 3 + b 3 = a + b) 3 3ab a + b), a 4 + b 4 = a + b) 4 4ab a + b) + ab). Úloha 6 [6]: Rozhodněte, zda existuje kladné iracionální číslo α takové, že α α je racionální. Řešení: Využijeme znalostí z matematické analýzy. Uvažujme reálnou funkci f x) = x x. Tato funkce je spojitá na intervalu,. Protože f ) =, f ) = 4, existuje reálné číslo α, ) s vlastností f α) = α α =. Nyní stačí dokázat, že α je iracionální. Postupujeme sporem. Nechť α = p je racionální číslo. Potom platí q 3
4 ) p p q q p ) p ) p =, tzn. q = q. Na pravé straně je celé číslo, proto také číslo q musí být celé. Odtud plyne, že zlomek p musí vyjadřovat celé číslo. V intervalu, ) však q žádné celé číslo neleží. Číslo α tedy musí být iracionální. Zajímavý je i jednodušší problém nalezení dvou různých iracionálních čísel α, β takových, že α β je racionální. Zde stačí volit např. α = ), β =. Potom α β =. Úloha 7 [4]: Dokažte, že číslo A = 0, píšeme za sebou všechna přirozená čísla) je iracionální. Řešení: Má-li racionální číslo nekonečný desetinný rozvoj, musí být tento rozvoj periodický. Předpokládejme, že rozvoj čísla A má periodu délky n. V čísle A však určitě existuje posloupnost alespoň n devítek za sebou, tzn. perioda je tvořena samými devítkami. Podobnou úvahu lze však provést pro osmičky, sedmičky atd., což je spor. Číslo A je tedy iracionální. Úloha 8 [4]: Dokažte, že číslo je iracionální. Řešení: Postupujeme opět sporem. Nechť = r, kde r je racionální číslo. Nyní tuto rovnici upravíme dvojím umocněním). Po úpravě dostaneme r 4 0r 4 = 8r 30. Po vydělení poslední rovnice číslem 8r dostaneme s využitím předpokladu r Q spor, protože číslo 30 určitě není racionální. Úloha 9 [5]: Rozhodněte, zda číslo je racionální nebo iracionální. Řešení: Zadanou nekonečnou řadu rozdělíme na nekonečně mnoho řad: n=0 0, n n= 0, n n= 0 n,... Tyto řady jsou geometrické a mají pouze kladné členy. Jejich součty jsou podle známého vzorce postupně 0, 0, 0,... Rovněž všechny tyto součty tvoří geometrickou řadu se součtem 00. Zadané číslo je tedy racionální Poznamenejme, že otázka této úlohy je zajímavá tím, že sčítáme nekonečnou řadu. V teorii nekonečných řad je běžná situace, že součtem nekonečně mnoha racionálních čísel je číslo iracionální, např. n! = e. Úloha 0 [5]: Dokažte, že rovnice n= x ) 000 x = 0 má dva různé reálné iracionální kořeny. Řešení: Je zřejmé, že postačí zabývat se determinantem této rovnice. Dokážeme-li, že determinant je přirozené číslo, které není druhou mocninou jiného přirozeného čísla, jsme hotovi snadno se sporem dokáže, že n je pro n N buďto číslo přirozené nebo iracionální). Podle známého vzorce je D = ) Provedeme odhad pro číslo D tak, že je uzavřeme mezi dva po sobě jdoucí čtverce přirozených čísel. Platí ) < < ) p 4
5 Pravá nerovnost je zřejmá, levou lze dokázat snadno rozepsáním závorky vlevo a úpravou. Z této nerovnosti plyne, že hodnota diskriminantu je rovna přirozenému číslu, které není druhou mocninou žádného přirozeného čísla. Proto je D iracionální a zadaná kvadratická rovnice má dva různé iracionální kořeny. O algebraických a transcendentních číslech Reálná čísla je možno rozdělit do dvou skupin: algebraická čísla jsou kořeny nějaké algebraické rovnice s racionálními koeficienty; transcendentní čísla nejsou kořenem žádné algebraické rovnice s racionálními koeficienty. Po dlouhou dobu se předpokládalo, že všechna iracionální čísla jsou algebraická. Teprve až v roce 844 dokázal francouzský matematik J. Liouville, že existují transcendentní čísla a že je jich dokonce nekonečně mnoho. V roce 874 německý matematik G. Cantor pomocí metody, která dodnes nese jeho jméno Cantorova diagonální metoda), dokázal, že množina racionálních čísel Q je spočetná, a tedy také množina všech polynomů s racionálními koeficienty je spočetná. Proto je spočetná i množina všech kořenů všech těchto rovnic, tj. množina algebraických čísel. Již dříve ale bylo známo, že množina R všech reálných čísel je nespočetná má mohutnost kontinua). Proto musí existovat v množině R jistá nespočetná podmnožina, tvořená právě transcendentními čísly. Není obtížným problémem zkonstruovat transcendentní číslo. Metoda pochází od Liouvilla a využívá jisté posloupnosti řetězových zlomků je popsána v []). Mnohem větší problém je ukázat, že dané číslo je transcendentní. Tento problém patří k nejobtížnějším v teorii čísel. Až v roce 873 Hermite dokázal transcendentnost čísla e, v roce 88 Lindemann transcendentnost čísla π. Důkazem transcendentnosti čísla π byl řešen historický problém tzv. kvadratury kruhu, tj. zda lze pravítkem a kružítkem sestrojit čtverec, který má stejný obsah jako daný kruh. Je známo, že pomocí pravítka a kružítka lze sestrojit pouze kořeny algebraických rovnic s racionálními koeficienty algebraická čísla). Protože ale číslo π a tedy i π) je transcendentní, nemůže být takový čtverec eukleidovskou konstrukcí sestrojen. Na mezinárodním matematickém kongresu v roce 900 Hilbert formuloval problém, zda jsou transcendentní čísla tvaru α β, kde čísla α, β jsou algebraická čísla, přičemž číslo β je iracionální a samozřejmě α není rovno žádnému z čísel 0, ). Tento problém vyřešili Gelfand a Schneider až v roce 934, kdy dokázali, že všechna čísla uvedeného tvaru jsou skutečně transcendentní takovým číslem je např. číslo ). Podrobnosti lze nalézt v [] a [7]. Závěr V tomto příspěvku jsme poukázali na některé problémy při osvojování racionálních a iracionálních čísel studenty středních a vysokých škol a předložili jsme rovněž několik úloh pro zpestření a zkvalitnění výuky při zavádění tělesa všech reálných čísel ve školské matematice. Hlavním cílem tohoto příspěvku je přispět k tomu, aby studenti znali racionální a iracionální čísla, uměli s nimi počítat, vhodně si je vyjádřit a alespoň populární formou dokázali rozlišit mezi čísly algebraickými a transcendentními. 5
6 Literatura [] HALAŠ, R. Teorie čísel.. vyd. Olomouc : Univerzita Palackého, s. ISBN [] HEJNÝ, M. a kol. Teória vyučovania matematiky.. vyd. Bratislava : Slovenské pedagogické nakladatelstvo, s. r9u. ISBN [3] PŠENIČKA, J. Surdické výrazy. Rozhledy matematicko-fyzikální, ), č. 4, s [4] Iracionální čísla. Zadání. série úloh pražského korespondenčního semináře KAM MFF UK Praha, ročník [online]. Praha : Pražský korespondenční seminář [cit. 5. dubna 007]. Dostupné na www: < [5] Racionální a iracionální čísla. Zadání. série úloh pražského korespondenčního semináře KAM MFF UK Praha, ročník [online]. Praha : Pražský korespondenční seminář [cit. 5. dubna 007]. Dostupné na www: < [6] Racionální a iracionální čísla. Zadání. série úloh pražského korespondenčního semináře KAM MFF UK Praha, ročník [online]. Praha : Pražský korespondenční seminář [cit. 5. dubna 007]. Dostupné na www: < [7] ŠALÁT, T. Reálne čísla.. vyd. Bratislava : Alfa, s. Knižnica Epsilon. r8u. Adresa autora: doc. RNDr. Jaroslav Beránek, CSc. Katedra matematiky Pedagogická fakulta MU Poříčí 3, BRNO Česká republika <beranek@ped.muni.cz> 6
Základy teorie množin
1 Základy teorie množin Z minula: 1. Cantorovu větu (x P(x)) 2. základní vlastnosti disjunktního sjednocení, kartézského součinu a množinové mocniny (z hlediska relací, ) 3. vztah P(a) a 2 4. větu (2 a
Základy aritmetiky a algebry II
Osnova předmětu Základy aritmetiky a algebry II 1. Lineární rovnice, řešení v tělesech Q, R, C, Z p, počet řešení v okruhu Z n, n N \ P. Grafické řešení, lineární nerovnice. 2. Kvadratická rovnice. Didaktický
Matematika 2 Úvod ZS09. KMA, PřF UP Olomouc. Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25
Matematika 2 Úvod Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25 Studijní materiály web předmětu: aix-slx.upol.cz/ fiser St. Trávníček: Matematická analýza kag.upol.cz/travnicek/1-matan.
VYBRANÉ KAPITOLY Z ALGEBRY. Jaroslav Beránek
VYBRANÉ KAPITOLY Z ALGEBRY Jaroslav Beránek Brno 2011 Obsah 1. Přirozená čísla... 4 2. Celá čísla... 9 3. Racionální čísla... 13 4. Reálná čísla... 17 5. Komplexní čísla... 24 6. Cyklické grupy... 27 7.
p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že
KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška sedmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Čísla a číselné obory 2 Princip indukce 3 Vybrané
Těleso racionálních funkcí
Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso
3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům
RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny K nejvýznamnějším patří množina reálných čísel, obsahující jako podmnožiny množiny přirozených, celých, racionálních a iracionálních
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L
ČÍSELNÉ OBORY. Jaroslav Beránek
ČÍSELNÉ OBORY Jaroslav Beránek 0. Úvod Tento text je určen pro studenty pedagogického asistentství matematiky pro základní školy. Jedná se o přehledný studijní materiál doplňující základní studijní literaturu
1 Lineární prostory a podprostory
Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C
Matematika 1 Jiˇr ı Fiˇser 19. z aˇr ı 2016 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 19. z aˇr ı / 19
Matematika 1 Jiří Fišer 19. září 2016 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 19. září 2016 1 / 19 Zimní semestr KMA MAT1 1 Úprava algebraických výrazů. Číselné obory. 2 Kombinatorika, základy teorie
1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:
Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky
Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar
Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné
Zimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva
KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2
6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje
POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad
1.3. Cíle Cílem kapitoly je seznámení čtenáře s axiomy číselných oborů a jejich podmnožin (intervalů) a zavedení nových pojmů, které nejsou náplní středoškolských osnov. Průvodce studiem Vývoj matematiky
Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.
Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné
Úlohy krajského kola kategorie A
64. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dán trojúhelník ABC s tupým úhlem při vrcholu C. Osa o 1 úsečky AC protíná stranu AB v bodě K, osa o 2 úsečky BC protíná stranu AB
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální
Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,
E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................
Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky
Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.
Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.
POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
PŘEDNÁŠKA 2 POSLOUPNOSTI
PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému
pro každé i. Proto je takových čísel m právě N ai 1 +. k k p
KOMENTÁŘE ÚLOH 43. ROČNÍKU MO, KATEGORIE A 1. Přirozené číslo m > 1 nazveme k násobným dělitelem přirozeného čísla n, pokud platí rovnost n = m k q, kde q je celé číslo, které není násobkem čísla m. Určete,
Zavedení a vlastnosti reálných čísel
Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu
55. ročník matematické olympiády
. ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
Bakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,
1. V oboru celých čísel řešte soustavu rovnic (4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, kde (n) k značí násobek čísla k nejbližší číslu n. (P. Černek) Řešení. Z první rovnice dané soustavy plyne, že číslo
Zajímavé matematické úlohy
Poděkování. Tento článek vznikl v rámci projektu SVV 2014-260105. Výzkum byl podpořen Grantovou agenturou Univerzity Karlovy v Praze (projekt č. 1250213). L i t e r a t u r a [1] Hejný, M. a kol.: Teória
Úlohy krajského kola kategorie A
62. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dáno 21 různých celých čísel takových, že součet libovolných jedenácti z nich je větší než součet deseti ostatních čísel. a) Dokažte,
Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.
U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek
Nerovnice, grafy, monotonie a spojitost
Nerovnice, grafy, monotonie a spojitost text pro studenty Fakulty přírodovědně-humanitní a pedagogické TU v Liberci vzniklý za podpory fondu F Martina Šimůnková 29. prosince 2016 1 Úvod Na druhém stupni
Základy matematické analýzy
Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Číselné posloupnosti
Číselné posloupnosti Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 43 Pojem posloupnosti Každé zobrazení N do R nazýváme číselná posloupnost. 1 a 1, 2 a 2, 3 a
KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
Definice (Racionální mocnina). Buď,. Nechť, kde a a čísla jsou nesoudělná. Pak: 1. je-li a sudé, (nebo) 2. je-li liché, klademe
Úvodní opakování. Mocnina a logaritmus Definice ( -tá mocnina). Pro každé klademe a dále pro každé, definujeme indukcí Dále pro všechna klademe a pro Později budeme dokazovat následující větu: Věta (O
Doporučené příklady k Teorii množin, LS 2018/2019
Doporučené příklady k Teorii množin, LS 2018/2019 1. přednáška, 21. 2. 2019 1. Napište množina x je prázdná (přesněji množina x nemá žádné prvky ) formulí základního jazyka teorie množin. 2. Dokažte ((x
Zavedení a vlastnosti reálných čísel
Zavedení a vlastnosti reálných čísel Seznámíme se podrobněji s reálnými čísly a číselnou osou. Reálná čísla jsou základním kamenem matematické analýzy. Sestrojení reálných čísel není jednoduché. Konstrukce
Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.
Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými
Limita a spojitost funkce
Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném
i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice
I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných
pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A
Přijímací zkouška na MFF UK pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé úlohy
ALGEBRA. 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = , b =
ALGEBRA 1 Úkol na 13. 11. 2018 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = 353 623, b = 244 571. 2. Připomeňte si, že pro ε = cos 2π 3 + i sin
Lineární algebra : Lineární prostor
Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární
NAIVNÍ TEORIE MNOŽIN, okruh č. 5
NAIVNÍ TEORIE MNOŽIN, okruh č. 5 Definování množiny a jejích prvků Množina je souhrn nějakých věcí. Patří-li věc do množiny X, říkáme, že v ní leží, že je jejím prvkem nebo že množina X tuto věc obsahuje.
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ
DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti
HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27
Řetězové zlomky HL Academy - Chata Lopata 2012 13.2. 18.2.2012 Emu (Brkos 2012) Řetězové zlomky 13.2. 18.2.2012 1 / 27 Obsah 1 Úvod 2 Základní pojmy 3 Konečné řetězové zlomky Sblížené zlomky Euklidův algoritmus
Matematika 1. Jiří Fišer. 21. září Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1, MT1 21. září / 53
Matematika 1 Jiří Fišer 21. září 2010 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1, MT1 21. září 2010 1/ 53 Zimní semestr KMA MAT1, MT1 1 Úprava algebraických výrazů. Číselné obory. 2 Kombinatorika, základy
Limita a spojitost funkce a zobrazení jedné reálné proměnné
Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé
1 Kardinální čísla. množin. Tvrzení: Necht X Cn. Pak: 1. X Cn a je to nejmenší prvek třídy X v uspořádání (Cn, ),
Pracovní text k přednášce Logika a teorie množin 4.1.2007 1 1 Kardinální čísla 2 Ukázali jsme, že ordinální čísla reprezentují typy dobrých uspořádání Základy teorie množin Z minula: 1. Věta o ordinálních
Lineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
Přednáška 6, 7. listopadu 2014
Přednáška 6, 7. listopadu 204 Část 3: nekonečné řady Základní definice. Nekonečná řada, krátce řada, je posloupnost reálných čísel (a n ) R uvedená v zápisu a n = a + a 2 + a 3 +..., spolu s metodou přiřazující
Posloupnosti a jejich limity
KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
----- Studijní obory. z matematiky. z matematiky. * Aplikovaná matematika * Matematické metody v ekonomice
Minimum Maximum Minimum Maximum Studijní obory z matematiky z matematiky z matematiky z matematiky * Aplikovaná matematika * Matematické metody v ekonomice * Obecná matematika Navazující magisterský studijní
Matematická analýza III.
1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
Cvičení z Lineární algebry 1
Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice
Přijímací zkouška na MFF UK v Praze
Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 2016, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé
CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné
CZ 1.07/1.1.32/02.0006
PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI
MATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
GONIOMETRICKÉ FUNKCE
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol GONIOMETRICKÉ
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo
Požadavky k opravným zkouškám z matematiky školní rok 2013-2014
Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
61. ročník matematické olympiády III. kolo kategorie A. Hradec Králové, března 2012
61. ročník matematické olympiády III. kolo kategorie Hradec Králové, 5. 8. března 01 MO 1. Najděte všechna celá čísla n, pro něž je n 4 3n + 9 prvočíslo. (leš Kobza) Řešení. Zadaný výraz lze jednoduchou
Maturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
Riemannův určitý integrál
Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami
FUNKCE A JEJICH VLASTNOSTI
PŘEDNÁŠKA 3 FUNKCE A JEJICH VLASTNOSTI Pojem zobrazení a funkce Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic
TEMATICKÝ PLÁN VÝUKY
TEMATICKÝ PLÁN VÝUKY Studijní obor: 23-41 - M/01 Strojírenství Zaměření: Předmět: Matematika Ročník: 1. Počet hodin 4 Počet hodin celkem: 136 týdně: Tento plán vychází z Rámcového vzdělávacího programu
1. série. Iracionální čísla. Téma: Datumodeslání: Dokažte, že 0, (píšeme za sebou všechna přirozená čísla) je iracionální.
Téma: Datumodeslání: 1. série Iracionální čísla ¾½º Ò ½ ½º ÐÓ Ó µ Dokažte, že 0,12345678910111213... (píšeme za sebou všechna přirozená čísla) je iracionální. ¾º ÐÓ Ó µ Dokažte,že 2+ 3+ 4+ 5jeiracionálníčíslo.
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
13. přednáška 13. ledna k B(z k) = lim. A(z) = M(z) m 1. z m.
13. přednáška 13. ledna 2010 Důkaz. M = n=0 a nz n a N = n=0 b nz n tedy buďte dvě mocninné řady, které se jako funkce shodují svými hodnotami na nějaké prosté posloupnosti bodů z k C konvergující k nule.
Funkce pro studijní obory
Variace 1 Funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,
Přednáška 11, 12. prosince Část 5: derivace funkce
Přednáška 11, 12. prosince 2014 Závěrem pasáže o spojitých funkcích zmíníme jejich podtřídu, lipschitzovské funkce, nazvané podle německého matematika Rudolfa Lipschitze (1832 1903). Fukce f : M R je lipschitzovská,
Internetová matematická olympiáda listopadu 2008
Internetová matematická olympiáda - 5. listopadu 008 ŘEŠENÍ ÚLOH 1. Obrazec na Obrázku 1 je složen z 44 čtverců o straně 6 mm. Bodem A veďte jedinou přímku, která daný obrazec rozdělí na dva obrazce o
Funkce a lineární funkce pro studijní obory
Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce
Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků
Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy
Modelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
M - Pythagorova věta, Eukleidovy věty
M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
Maturitní témata z matematiky
Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy
CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,
Úlohy domácí části I. kola kategorie C
63. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Určete, jaké nejmenší hodnoty může nabýt výraz V = (a b) + (b c) + (c a), splňují-li reálná čísla a, b, c dvojici podmínek a +
ROVNICE, NEROVNICE A JEJICH SOUSTAVY
Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ ÚLOH ROVNICE, NEROVNICE A JEJICH SOUSTAVY CIFRIK C. Úloha 1 [kvadratická rovnice s kořeny y_1=x_1^2+x_2^2, y_2=x_1^3+x_2^3]
Úlohy klauzurní části školního kola kategorie A
62. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A 1. V obdélníku ABCD o stranách AB = 9, BC = 8 leží vzájemně se dotýkající kružnice k 1 (S 1, r 1 ) a k 2 (S 2, r 2 ) tak,
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
Goniometrické rovnice
Goniometrické rovnice Funkce Existují čtyři goniometrické funkce sinus, kosinus, tangens a kotangens. Výraz číslo, ze kterého je daná funkce v obecném tvaru je to x se nazývá argument. Argument může u
Základy aritmetiky a algebry II
Osnova předmětu Základy aritmetiky a algebry II. Kvadratická rovnice. Odvození vzorce pro kořeny: klasické doplnění na čtverec, mezopotámské řešení na základě Viétových vzorců, odvození Viétových vzorců.
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................
1 Extrémy funkcí - slovní úlohy
1 Extrémy funkcí - slovní úlohy Příklad 1.1. Součet dvou kladných reálných čísel je a. Určete 1. Minimální hodnotu součtu jejich n-tých mocnin.. Maximální hodnotu součinu jejich n-tých mocnin. Řešení.
Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].
Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1