Maticové operace projekt č. 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Maticové operace projekt č. 3"

Transkript

1 Dokumentace k projektu pro předměty IZP a IUS Maticové operace projekt č Autor: Václav Uhlíř, Fakulta Informačních Technologii Vysoké Učení Technické v Brně

2 Obsah 1. Definice úvodem Zadání programu Základní výpočty Rozšířené funkce Test sudoku Křížová rotace Submatice Orba Návrh řešení Základní výpočty Součet matic Součin matic Rozšířené funkce Test sudoku Křížová rotace Submatice Orba Závěr Metriky kódu...4 i

3 1. Definice úvodem 1.1. Zadání programu Cílem tohoto projektu je vytvoření programu v jazyce C, který bude provádět výpočty a operace s maticemi. Matice budou zadávané jako pole v souboru a na začátku souboru budou definovány rozměry matice Základní výpočty Výpočet součtu matic a výpočet násobení matic jsou definovány v zadání a není potřeba hledat nebo upravovat vzorce. Program zpracuje dvě vstupní matice a vrátí jednu výslednou. Pokud matice nevyhovují zvolené operaci, vypíše program false Rozšířené funkce Test sudoku Program podle zadání provede test hodnot prvku v každém sloupci, každé řádce a v každé submatici. Pokud proběhnou všechny testy v pořádku, vrátí program true, v opačném případě vrátí false Křížová rotace Program provede rotace řádků a sloupců podle zadání a vypíše výslednou matici Submatice Program zjistí, jestli druhá zadaná matice je submaticí první. Pokud bude test úspěšný, vrátí program true Orba Program přepíše zdrojovou matici do výsledné, kde budou prvky seřazeny podle struktury orání. 1

4 2. Návrh řešení Program bude načítat matice ze souborů, kde budou jako první informace o rozměrech matice. Pokud budou rozměry nulové nebo záporné, vypíše program false. Program bude načítat počet prvků nezávisle na formátování. Pokud bude počet zadaných prvků menší než počet požadovaných, vypíše program chybu. Pokud bude zadaných prvků víc než je požadováno, program bude přebytečné prvky ignorovat Základní výpočty Součet matic Pro provedení součtu matic potřebujeme matice o stejných rozměrech. Pokud matice vyhovují, program postupně sečte dané prvky z první matice s prvky matice druhé a uloží výsledné čísla do matice třetí. Pokud se nebude shodovat počet řádků nebo sloupců matice, vypíše program false Součin matic Pro součin matic program kontroluje, jestli počet sloupců první matice odpovídá počtu řádků druhé matice. V případě rozdílnosti těchto souřadnic vypíše program false. Pokud budou souřadnice správné, vytvoří program výslednou matici o rozměrech počtů řádků z první matice a počtu sloupců z matice druhé. Matice pak bude naplněna součtem násobků prvků podle systému násobení matic Rozšířené funkce Test sudoku Aby mohla matice být systémem sudoku, musí mít rozměry N 2 xn 2. Pokud tomu matice neodpovídá, vypíše program false. Program očekává pouze hodnoty od 1 do N. Pokud některé číslo neodpovídá, program zase vrátí false. Program vrací také false, pokud se některá z hodnot v libovolném z řádků, sloupců nebo v libovolné z N submatic opakuje. Pokud matice projde všemi testy, program vypíše jako úspěšné otestování true Křížová rotace Program provede nejdříve postupnou rotaci řádků, kde první hodnota udává počet rotací. Pokud je hodnota záporná, program k ní přičte hodnotu počtu sloupců. Dále program provede rotace všech řádků a zopakuje celý potup se sloupci. Po úspěšném splnění rotací program výslednou matici vypíše Submatice Nejdříve program zkontroluje, jestli je údajná submatice menší než zadaná matice. Pokud je možnost, že druhá matice je submaticí, začne program porovnávat postupně všechny prvky z první matice s prvním prvkem z matice druhé. Pokud program narazí na shodu, spustí se cyklus pro porovnání každého dalšího prvku s prvky submatice. Pokud některý prvek neodpovídá, musí se program vrátit za první shodný prvek v aktuálním cyklu a pokračovat s testováním na shodnost s prvním prvkem submatice. Tento postup jsem zvolil z důvodu, že v submatici může být libovolné opakování posloupnosti prvků. Kdyby se stejná posloupnost objevila v matici s větším počtem 2

5 opakování, program by při běžném procházení danou submatici přehlédl. Pokud program nalezne danou submatici vypíše true. V případě, že druhá zadaná matice není submaticí první matice, program vypíše false Orba Program se bude pohybovat maticí jako orající člověk a dané hodnoty bude přepisovat do výsledné matice o stejných rozměrech jako matice vstupní. Program se maticí pohybuje šikmo nahoru (přičítáním souřadnic {-1,1}) a v opačném směru (šikmo dolů{1,-1}), za podmínek, že pokud narazí na horní nebo dolní hranu, udělá krok doprava a změní primární směr a pokud narazí na levou nebo pravou hranu, udělá krok dolů a zase změní primární směr. Pokud je program nucen udělat 2 krát po sobě krok (buď dolů a doprava nebo v opačném pořadí stává se v rohu matice), mění primární směr jenom jednou. 3. Závěr Program kompletně zpracovává zadané operace a vypočítává výsledky. Program, ale nekontroluje přetečení vstupních čísel. Kontrolu přetečení u sčítání a násobení matic jsem zapoznámkoval kvůli velké náročnosti výpočtu a předpokladu, že uživatel nebude zadávat přehnaně vysoké hodnoty. 3

6 4. Metriky kódu Počet souborů: 1 soubor Počet řádků zdrojového kódu: 687 Velikost dat před kompilací: b Velikost spustitelného souboru: b (systém Linux) 4

Matice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami.

Matice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami. Maticové operace Definice Skalár Představme si nějakou množinu, jejíž prvky lze sčítat a násobit. Pěkným vzorem jsou čísla, která už známe od mala. Prvky takové množiny nazýváme skaláry. Matice Matice

Více

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková

Více

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a

Více

Zdroj: http://www.fit.vutbr.cz

Zdroj: http://www.fit.vutbr.cz Zdroj: http://www.fit.vutbr.cz Motivace Cílem této úlohy je zopakovat si nebo se naučit vytváření obecných řešení, která na rozdíl od ad hoc řešení umožňují zvládat složitější úlohy bez nadměrného úsilí,

Více

Elektronická dokumentace - LATEX. Maticové operace

Elektronická dokumentace - LATEX. Maticové operace Elektronická dokumentace - LATEX Maticové operace 29.listopadu 2009 Luděk Bordovský (bor0022) Fakulta elektrotechniky a informatiky VŠB-TU Ostrava Uživatelská příručka 1 Obsah 1 Úvod 3 2 Ovládání 3 3 Operace

Více

Intervalové stromy. Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme. 1. Změna jednoho čísla v posloupnosti.

Intervalové stromy. Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme. 1. Změna jednoho čísla v posloupnosti. Intervalové stromy Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme průběžně provádět tyto dvě operace: 1. Změna jednoho čísla v posloupnosti. 2. Zjištění součtu čísel

Více

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach vlož do fronty kořen opakuj, dokud není fronta prázdná 1. vyber uzel z fronty a zpracuj jej 2. vlož do fronty levého následníka

Více

P1 Formule ve sněhu. P2 Double Cola

P1 Formule ve sněhu. P2 Double Cola P1 Formule ve sněhu Jak je obecně známo, losi mají spoustu různých zálib. Není tedy velkým překvapením, že existují losi, kteří se vyžívají v matematických prapodivnostech. Jeden takový los přišel s následující

Více

předmětu MATEMATIKA B 1

předmětu MATEMATIKA B 1 Metodický list pro první soustředění kombinovaného studia předmětu MATEMATIKA B 1 Název tématického celku: Vektorový prostor Cíl: Základním cílem tohoto tematického celku je pochopit, co jsou to vektory

Více

Příloha č. 4. Obchodních podmínek Operátora trhu s elektřinou, a.s. Revize 10 leden 2009. Příloha č. 4 červenec 2009

Příloha č. 4. Obchodních podmínek Operátora trhu s elektřinou, a.s. Revize 10 leden 2009. Příloha č. 4 červenec 2009 Příloha č. 4 Obchodních podmínek Operátora trhu s elektřinou, a.s. Revize 10 leden 2009 ALGORITMUS VYHODNOCENÍ DENNÍHO TRHU Příloha č. 4 červenec 2009 Obchodní podmínky Platné od: 30.6.2009 1 OBSAH 1 OBSAH...

Více

Seminář z IVT Algoritmizace. Slovanské gymnázium Olomouc Tomáš Kühr

Seminář z IVT Algoritmizace. Slovanské gymnázium Olomouc Tomáš Kühr Seminář z IVT Algoritmizace Slovanské gymnázium Olomouc Tomáš Kühr Algoritmizace - o čem to je? Zatím jsme se zabývali především tím, jak určitý postup zapsat v konkrétním programovacím jazyce (např. C#)

Více

Soutěž družstev Booklet

Soutěž družstev Booklet Poděbrady 0 Soutěž družstev Booklet Tento materiál obsahuje kompletní seznam typů úloh, které budou použity v soutěži družstev. Cílem je, aby se hráči seznámili se zadáními a mohli prodiskutovat s kolegy,

Více

Semestrální projekt. Předmět: Programování v jazyce C. Zadání: Operace s maticemi. Uživatelský manuál. ver. 1.0

Semestrální projekt. Předmět: Programování v jazyce C. Zadání: Operace s maticemi. Uživatelský manuál. ver. 1.0 Semestrální projekt Předmět: Programování v jazyce C Zadání: Operace s maticemi Uživatelský manuál ver. 1.0 Jakub Štrouf Obor: Aplikovaná informatika Semestr: 1. Rok: 2009/2010 Obsah: 1. Úvod 1.1. Technická

Více

13. Třídící algoritmy a násobení matic

13. Třídící algoritmy a násobení matic 13. Třídící algoritmy a násobení matic Minulou přednášku jsme probírali QuickSort, jeden z historicky prvních třídících algoritmů, které překonaly kvadratickou složitost aspoň v průměrném případě. Proč

Více

1) Vypočítej 2001+2002+2003+2004+2005= A) 10 015 B) 2015 C) 5010 D) 10 150

1) Vypočítej 2001+2002+2003+2004+2005= A) 10 015 B) 2015 C) 5010 D) 10 150 Varianta B 1) Vypočítej 2001+2002+2003+2004+2005= A) 10 015 B) 2015 C) 5010 D) 10 150 10 A 5 20 170 2) Vyber číslo, které se ve výpočtu skrývá za A:. A) 70 B) 56 C) 44 D) 36 3) Součet všech číslic deseticiferného

Více

3. Matice a determinanty

3. Matice a determinanty . Matice a determinanty Teorie matic a determinantů představuje úvod do lineární algebry. Nejrozsáhlejší aplikace mají matice a determinanty při řešení systémů lineárních rovnic. Pojem determinantu zavedl

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14.června

Více

Architektura počítače

Architektura počítače Architektura počítače Výpočetní systém HIERARCHICKÁ STRUKTURA Úroveň aplikačních programů Úroveň obecných funkčních programů Úroveň vyšších programovacích jazyků a prostředí Úroveň základních programovacích

Více

IB108 Sada 1, Příklad 1 Vypracovali: Tomáš Krajča (255676), Martin Milata (256615)

IB108 Sada 1, Příklad 1 Vypracovali: Tomáš Krajča (255676), Martin Milata (256615) IB108 Sada 1, Příklad 1 ( ) Složitost třídícího algoritmu 1/-Sort je v O n log O (n.71 ). Necht n = j i (velikost pole, které je vstupním parametrem funkce 1/-Sort). Lehce spočítáme, že velikost pole předávaná

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

5 Rekurze a zásobník. Rekurzivní volání metody

5 Rekurze a zásobník. Rekurzivní volání metody 5 Rekurze a zásobník Při volání metody z metody main() se do zásobníku uloží aktivační záznam obsahující - parametry - návratovou adresu, tedy adresu, kde bude program pokračovat v metodě main () po skončení

Více

Základní škola Moravský Beroun, okres Olomouc

Základní škola Moravský Beroun, okres Olomouc Charakteristika vyučovacího předmětu matematika Vyučovací předmět má časovou dotaci čtyři hodiny týdně v prvním ročníku, pět hodin týdně ve druhém až pátém ročníku, pět hodin týdně v šestém ročníku a čtyři

Více

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice. [] Definice determinantu BI-LIN, determinant, 9, P Olšák [2] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A 0 pro singulární matici, det A 0 pro regulární matici používá

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5.

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5. Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5. Očekávané výstupy z RVP ZV Ročníkové výstupy Učivo Průřezová témata a přesahy Číslo a početní operace využívá při

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 5, 5.1 a 5.2 8/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 5, 5.1 a 5.2 8/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2014 5, 5.1 a 5.2 8/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 18 0:40 Algoritmus Algoritmem by se dal nazvat

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1 1. Porovnejte mezi sebou normy zadaných vektorů p =(1,-3), q =(2,-2,2), r =(0,1,2,2). (A) p

Více

Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím.

Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím. Regulární matice Věnujeme dále pozornost zejména čtvercovým maticím. Věta. Pro každou čtvercovou matici A = (a ij ) řádu n nad tělesem (T, +, ) jsou následující podmínky ekvivalentní: (i) Řádky matice

Více

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC 22 SČÍTÁNÍ A NÁSOBENÍ MATIC V této kapitole se dozvíte: jak je definováno sčítání matic a jaké má základní vlastnosti jak je definováno násobení matic číslem a jaké má základní vlastnosti zda a proč se

Více

1 z 7 18.6.2012 8:14. 1. otázka. Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem čísla 25? 2. otázka

1 z 7 18.6.2012 8:14. 1. otázka. Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem čísla 25? 2. otázka Stonožka 9 - M 2011 - náhled testu http://ib.scio.cz/test?t=ceow8rrhgtr79v2xq7/zcppky1fbxbzulq... 1 z 7 18.6.2012 8:14 1. otázka Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem

Více

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Jiří Kolafa Vektory. Vektorový prostor Vektor je často zaveden jako n-tice čísel, (v,..., v n ), v i R (pro reálný vektorový prostor);

Více

Euklidovský prostor Stručnější verze

Euklidovský prostor Stručnější verze [1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)

Více

Logické operace. Datový typ bool. Relační operátory. Logické operátory. IAJCE Přednáška č. 3. může nabýt hodnot: o true o false

Logické operace. Datový typ bool. Relační operátory. Logické operátory. IAJCE Přednáška č. 3. může nabýt hodnot: o true o false Logické operace Datový typ bool může nabýt hodnot: o true o false Relační operátory pravda, 1, nepravda, 0, hodnoty všech primitivních datových typů (int, double ) jsou uspořádané lze je porovnávat binární

Více

Vícekriteriální hodnocení variant metody

Vícekriteriální hodnocení variant metody Katedra aplikované matematiky a informatiky Jihočeská Univerzita v Českých Budějovicích, Ekonomická fakulta 2010 Metody vícekriteriální hodnocení variant (VHV) Jak jsme již zmiňovali, VHV obecně neposkytuje

Více

Návod pro zadávání zápisů o utkání do BLMFis

Návod pro zadávání zápisů o utkání do BLMFis Návod pro zadávání zápisů o utkání do BLMFis Přihlášení do BLMFisu Každý registrovaný uživatel (zástupce družstva) již získal (nebo bude zasláno) uživatelské jméno a heslo. Tímto jménem a heslem provede

Více

Zadání projektů z BPC2 pro letní semestr 2007/2008

Zadání projektů z BPC2 pro letní semestr 2007/2008 Zadání projektů z BPC2 pro letní semestr 2007/2008 Několik poznámek na úvod Projekt může být i konzolová aplikace. Záleží však na typu zadání, ne každé v konzolové aplikace vyřešit lze. Mezi studenty jsou

Více

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Matice študenti MFF 15. augusta 2008 1 12 Matice Požadavky Matice a jejich hodnost Operace s maticemi a jejich vlastnosti Inversní matice Regulární matice,

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

Téma: Arkanoid. X36SOJ Strojově orientované jazyky Semestrální práce. Vypracoval: Marek Handl Datum: červen 2006

Téma: Arkanoid. X36SOJ Strojově orientované jazyky Semestrální práce. Vypracoval: Marek Handl Datum: červen 2006 Vypracoval: Marek Handl Datum: červen 2006 X36SOJ Strojově orientované jazyky Semestrální práce Téma: Arkanoid Úvod Program je verzí klasické hry Arkanoid. Na herní ploše jsou rozloženy kostičky, které

Více

přirozený algoritmus seřadí prvky 1,3,2,8,9,7 a prvky 4,5,6 nechává Metody řazení se dělí:

přirozený algoritmus seřadí prvky 1,3,2,8,9,7 a prvky 4,5,6 nechává Metody řazení se dělí: Metody řazení ve vnitřní a vnější paměti. Algoritmy řazení výběrem, vkládáním a zaměňováním. Heapsort, Shell-sort, Radix-sort, Quicksort. Řazení sekvenčních souborů. Řazení souborů s přímým přístupem.

Více

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry. Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít

Více

Microsoft Office. Excel vyhledávací funkce

Microsoft Office. Excel vyhledávací funkce Microsoft Office Excel vyhledávací funkce Karel Dvořák 2011 Vyhledávání v tabulkách Vzhledem ke skutečnosti, že Excel je na mnoha pracovištích používán i jako nástroj pro správu jednoduchých databází,

Více

Instrukční sada pro používání ControlLogix a CompactLogix výňatek

Instrukční sada pro používání ControlLogix a CompactLogix výňatek Instrukční sada pro používání ControlLogix a CompactLogix výňatek V této části uvedeme několik instrukcí potřebných pro řešení laboratorních úloh v předmětu BPGA. Uvádíme jenom část instrukcí, v případě

Více

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti

Více

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11 Gymnázium, Brno Matice Závěrečná maturitní práce Jakub Juránek 4.A Školní rok 2010/11 Konzultant: Mgr. Aleš Kobza Ph.D. Brno, 2011 Prohlášení Prohlašuji, že jsem předloženou práci zpracoval samostatně

Více

Předávání údajů do Informačního systému výzkumu a vývoje ve formátu XML

Předávání údajů do Informačního systému výzkumu a vývoje ve formátu XML Předávání údajů do Informačního systému výzkumu a vývoje ve formátu XML Struktury dat pro rok 2007 InfoScience Praha, s.r.o. Verze 1.1 10.11.2006 1 Obsah OBSAH...2 ÚVOD...4 ZPŮSOB ZÁPISU DEFINICE STRUKTUR

Více

StatSoft Odkud tak asi je?

StatSoft Odkud tak asi je? StatSoft Odkud tak asi je? Ukážeme si, jak bychom mohli vypočítat pravděpodobnosti, na které jsme se ptali v minulém newsletteru Úkolem bylo zjistit, z kterého kraje nejpravděpodobněji pochází náš výherce

Více

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116.

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. Cykly a pole Tato část sbírky je tvořena dalšími úlohami na práci s cykly. Na rozdíl od předchozího oddílu se zde již v řešeních úloh objevuje více cyklů, ať už prováděných po sobě nebo vnořených do sebe.

Více

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie, Komplexní čísla Třída: 3. ročník Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor Volné rovnoběžné promítání Zobrazí ve volném rovnoběžném

Více

Přehled učiva matematiky 7. ročník ZŠ

Přehled učiva matematiky 7. ročník ZŠ Přehled učiva matematiky 7. ročník ZŠ I. ARITMETIKA 1. Zlomky a racionální čísla Jestliže rozdělíme něco (= celek) na několik stejných dílů, nazývá se každá část celku zlomkem. Zlomek tři čtvrtiny = tři

Více

Kontrolní hlášení. Pokladna

Kontrolní hlášení. Pokladna Kontrolní hlášení V číselníku kódů DPH je nejprve potřeba nastavit druh sazby DPH, pozice č. 1 platná od 1.1.2011 se potom použije pro vlastní výběr kódů DPH do jednotlivých částí kontrolního hlášení.

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

5. Maticová algebra, typy matic, inverzní matice, determinant.

5. Maticová algebra, typy matic, inverzní matice, determinant. 5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.

Více

Správné vytvoření a otevření textového souboru pro čtení a zápis představuje

Správné vytvoření a otevření textového souboru pro čtení a zápis představuje f1(&pole[4]); funkci f1 předáváme hodnotu 4. prvku adresu 4. prvku adresu 5. prvku hodnotu 5. prvku symbolická konstanta pro konec souboru je eof EOF FEOF feof Správné vytvoření a otevření textového souboru

Více

Vyučovací předmět: Matematika. Charakteristika vyučovacího předmětu

Vyučovací předmět: Matematika. Charakteristika vyučovacího předmětu Vyučovací předmět: Matematika Školní vzdělávací program pro základní vzdělávání Základní školy a mateřské školy Dobrovice Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení předmětu

Více

PÁR SLOV NA ÚVOD. vlastní údaje o odečtu vodoměrů a poměrových měřičů (to pouze v případě, že jste si je zaznamenali v době odečtů pracovníky VUSTE)

PÁR SLOV NA ÚVOD. vlastní údaje o odečtu vodoměrů a poměrových měřičů (to pouze v případě, že jste si je zaznamenali v době odečtů pracovníky VUSTE) Společenství vlastníků jednotek v budově Jilmová 2682, 2683, 2684, 2685 Praha 3 Jilmová 2682/4, 130 00 Praha 3, IČ: 27081478, zapsané v rejstříku společenství vlastníků jednotek Městského soudu v Praze

Více

Po obrazovce přejede formule, před kterou se budou postupně objevovat písmena slova formule.

Po obrazovce přejede formule, před kterou se budou postupně objevovat písmena slova formule. Formule Po obrazovce přejede formule, před kterou se budou postupně objevovat písmena slova formule. Objeví se Baltíkův domeček s cestou, Baltík otevře dveře a přejde po cestě do další scény. V další scéně

Více

Studentská tvůrčí a odborná činnost STOČ 2015

Studentská tvůrčí a odborná činnost STOČ 2015 Studentská tvůrčí a odborná činnost STOČ 2015 NÁVRH A REALIZACE ALGORITMU PRO SYSTÉM LIMITNÍHO OZAŘOVÁNÍ David OCZKA Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky

Více

Metody operačního výzkumu cvičení

Metody operačního výzkumu cvičení Opakování vektorové algebry domácí úkol ) Pojem vektorového prostoru praktická aplikace - je tvořen všemi vektory dané dimenze - operace s vektory (součin, sčítání, násobení vektoru skalární hodnotou)

Více

Pravidla. schválená výborem sekce vodní turistiky ČSK na schůzi dne 22. ledna 2013.

Pravidla. schválená výborem sekce vodní turistiky ČSK na schůzi dne 22. ledna 2013. Pravidla schválená výborem sekce vodní turistiky ČSK na schůzi dne 22. ledna 2013. 1. Základní ustanovení 1.1. Tato pravidla jsou závazná pro závody vodáků Pyranha cup - Český pohár vodáků (dále jen PC

Více

nesvadba@ngstranky.cz

nesvadba@ngstranky.cz V jednoduchých uvozovkách echo retezec ; V dvojitých uvozovkách echo retezec ; Syntaxe heredoc $text =

Více

Celostátní kolo soutěže Baltík 2010, kategorie A a B

Celostátní kolo soutěže Baltík 2010, kategorie A a B Pokyny: 1. Kategorie A řeší jen úlohy 1, 2, 3 a kategorie B jen úlohy 2, 3, 4! 2. Řešení úloh ukládejte do složky, která se nachází na pracovní ploše počítače. Její název je stejný, jako je kód, který

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury 1 / 34 Obsah přednášky Základní řídící struktury posloupnost příkazů podmínka cyklus s podmínkou na začátku cyklus s podmínkou na konci cyklus s pevným počtem opakování Jednoduchá

Více

Úvodní opakování, kladná a záporná čísla, dělitelnost, osová a středová souměrnost

Úvodní opakování, kladná a záporná čísla, dělitelnost, osová a středová souměrnost Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika (MAT) Úvodní opakování, kladná a záporná, dělitelnost, osová a středová souměrnost Prima 4 hodiny týdně Učebna s PC a dataprojektorem (interaktivní

Více

Jarníkův algoritmus. Obsah. Popis

Jarníkův algoritmus. Obsah. Popis 1 z 6 28/05/2015 11:44 Jarníkův algoritmus Z Wikipedie, otevřené encyklopedie Jarníkův algoritmus (v zahraničí známý jako Primův algoritmus) je v teorii grafů algoritmus hledající minimální kostru ohodnoceného

Více

VYHLÁŠKA o způsobu stanovení pokrytí signálem zemského rozhlasového vysílání šířeného ve vybraných kmitočtových pásmech Vymezení pojmů

VYHLÁŠKA o způsobu stanovení pokrytí signálem zemského rozhlasového vysílání šířeného ve vybraných kmitočtových pásmech Vymezení pojmů Strana 164 Sbírka zákonů č.22 / 2011 22 VYHLÁŠKA ze dne 27. ledna 2011 o způsobu stanovení pokrytí signálem zemského rozhlasového vysílání šířeného ve vybraných kmitočtových pásmech Český telekomunikační

Více

Svolávací systém Uživatelský manuál

Svolávací systém Uživatelský manuál Uživatelský manuál TTC TELEKOMUNIKACE, s.r.o. Třebohostická 987/5 100 00 Praha 10 tel.: 234 052 111 fax.: 234 052 999 e-mail: ttc@ttc.cz http://www.ttc-telekomunikace.cz Datum vydání: 14. srpna 2013 Číslo

Více

Stravenky Exit. 1. Spuštění modulu Stravenky Exit

Stravenky Exit. 1. Spuštění modulu Stravenky Exit Stravenky Exit 1. Spuštění modulu Stravenky Exit 2. Popis prostředí a ovládacích prvků modulu Stravenky Exit 2.1. Rozbalovací seznamy 2.2. Hlavní záložky 2.2.1 Záložka "Seznam" 2.2.1.1 Záložka "Exit" 2.2.1.2

Více

ETAG 022 ŘÍDICÍ POKYN PRO EVROPSKÁ TECHNICKÁ SCHVÁLENÍ. Sestavy pro vodotěsné povrchové úpravy podlah a/nebo stěn v mokrých prostorech

ETAG 022 ŘÍDICÍ POKYN PRO EVROPSKÁ TECHNICKÁ SCHVÁLENÍ. Sestavy pro vodotěsné povrchové úpravy podlah a/nebo stěn v mokrých prostorech Evropská organizace pro technická schválení European Organisation for Technical Approvals Europäische Organisation für Technische Zulassungen Organisation Européenne pour l Agrément Technique ETAG 022

Více

Ministerstvo školství, mládeže a tělovýchovy č. j.: MSMT-13449/2016-1. V Praze dne 3. června 2016

Ministerstvo školství, mládeže a tělovýchovy č. j.: MSMT-13449/2016-1. V Praze dne 3. června 2016 Ministerstvo školství, mládeže a tělovýchovy č. j.: MSMT-13449/2016-1 V Praze dne 3. června 2016 Vyhlášení rozvojového programu Ministerstva školství, mládeže a tělovýchovy na rok 2016 na podporu organizace

Více

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ. Matematika 3. RNDr. Břetislav Fajmon, PhD. Autoři textu:

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ. Matematika 3. RNDr. Břetislav Fajmon, PhD. Autoři textu: FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Matematika 3 Garant předmětu: RNDr. Břetislav Fajmon, PhD Autoři textu: Mgr. Irena Růžičková RNDr. Břetislav Fajmon, PhD

Více

Tabulka. Datová struktura, která umožňuje vkládat a později vybírat informace podle identifikačního klíče. Mohou být:

Tabulka. Datová struktura, která umožňuje vkládat a později vybírat informace podle identifikačního klíče. Mohou být: ADT Tabulka Datová struktura, která umožňuje vkládat a později vybírat informace podle identifikačního klíče. Mohou být: pevně definované (LUT Look Up Table) s proměnným počtem položek Konvence: Tabulka

Více

Matematické symboly a značky

Matematické symboly a značky Matematické symboly a značky Z Wikipedie, otevřené encyklopedie Matematický symbol je libovolný znak, používaný v. Může to být znaménko pro označení operace s množinami, jejich prvky, čísly či jinými objekty,

Více

Výukový materiál zpracovaný v rámci projektu

Výukový materiál zpracovaný v rámci projektu Výukový materiál zpracovaný v rámci projektu Registrační číslo projektu: CZ.1.07/1.4.00/21.3712 Škola adresa: Základní škola T. G. Masaryka Ivančice, Na Brněnce 1, okres Brno-venkov, příspěvková organizace

Více

ČÁST PÁTÁ NĚKTERÁ PRAVIDLA PRO OMEZENÍ RIZIK HLAVA I PRAVIDLA ANGAŽOVANOSTI. Díl 1. Angažovanost investičního portfolia

ČÁST PÁTÁ NĚKTERÁ PRAVIDLA PRO OMEZENÍ RIZIK HLAVA I PRAVIDLA ANGAŽOVANOSTI. Díl 1. Angažovanost investičního portfolia ČÁST PÁTÁ NĚKTERÁ PRAVIDLA PRO OMEZENÍ RIZIK HLAVA I PRAVIDLA ANGAŽOVANOSTI Díl 1 Angažovanost investičního portfolia 180 Vymezení angažovanosti investičního portfolia (1) Angažovaností investičního portfolia

Více

Matematika pro studenty ekonomie

Matematika pro studenty ekonomie w w w g r a d a c z vydání upravené a doplněné vydání Armstrong Grada Publishing as U Průhonu 7 Praha 7 tel: + fax: + e-mail: obchod@gradacz wwwgradacz Matematika pro studenty ekonomie MATEMATIKA PRO STUDENTY

Více

Tabulkové processory MS Excel (OpenOffice Calc)

Tabulkové processory MS Excel (OpenOffice Calc) Maturitní téma: Tabulkové processory MS Excel (OpenOffice Calc) Charakteristika tabulkového editoru Tabulkový editor (sprematuritníadsheet) se používá všude tam, kde je třeba zpracovávat data uspořádaná

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava

Více

ECOSOC. Mezinárodní zadlužení

ECOSOC. Mezinárodní zadlužení . ECOSOC Mezinárodní zadlužení http://www.nybooks.com/articles/archives/2013/jun/06/howcase-austerity-has-crumbled/?pagination= false http://www.ft.com/intl/cms/s/0/60b7a4ec-ab58-11e2-8c63-00144feabdc0.html#axzz2gsigbase

Více

ŘEŠENÍ KVADRATICKÝCH A ZLOMKOVÝCH NEROVNIC V ŠESTI BODECH

ŘEŠENÍ KVADRATICKÝCH A ZLOMKOVÝCH NEROVNIC V ŠESTI BODECH (Tento text je součástí výkladu k definičním oborům, tam najdete další příklady a pokud chcete část tohoto textu někde použít, můžete čerpat ze stažené kompletní verze definičních oborů ve formátu.doc.)

Více

ALGORITMIZACE PROGRAMOVÁNÍ VT3/VT4

ALGORITMIZACE PROGRAMOVÁNÍ VT3/VT4 1 ALGORITMIZACE PROGRAMOVÁNÍ VT3/VT4 Mgr. Martin ŠTOREK LITERATURA ALGORITMIZACE Ing. Jana Pšenčíková ComputerMedia http://www.computermedia.cz/ 2 1 ALGORITMUS Algoritmus je přesný postup, který je potřeba

Více

Kód. Proměnné. #include using namespace std; int main(void) { cout << "Hello world!" << endl; cin.get(); return 0; }

Kód. Proměnné. #include <iostream> using namespace std; int main(void) { cout << Hello world! << endl; cin.get(); return 0; } Jazyk C++ Jazyk C++ je nástupcem jazyka C. C++ obsahuje skoro celý jazyk C, ale navíc přidává vysokoúrovňové vlastnosti vyšších jazyků. Z toho plyne, že (skoro) každý platný program v C je také platným

Více

AUTORSKÉ PROHLÁŠENÍ. Souhlasím s umístěním závěrečné práce na webu ČUDK a s jejím využitím pro studijní účely. Kroměříž, duben 2007.

AUTORSKÉ PROHLÁŠENÍ. Souhlasím s umístěním závěrečné práce na webu ČUDK a s jejím využitím pro studijní účely. Kroměříž, duben 2007. ČESKÁ UNIE DENTO KARATE-DO KONEXE A NAČASOVÁNÍ TECHNIK ÚDERŮ Závěrečná práce školení trenérů III. třídy Vypracoval: Halaška Miroslav Kroměříž 2007 AUTORSKÉ PROHLÁŠENÍ Prohlašuji, že jsem závěrečnou práci

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

Zásoby_Evidenční výroba Návod pro uživatele +1367

Zásoby_Evidenční výroba Návod pro uživatele +1367 Zásoby_Evidenční výroba Návod pro uživatele +1367 21.8.2015 Major Bohuslav, Ing. Datum tisku 21.9.2015 2 Zásoby_Evidenční výroba Za soby_evidenč ní vy roba Obsah Úvod... 3 Blokové schéma... 3 Volba kategorií...

Více

Skořepina v SolidWorks

Skořepina v SolidWorks Tvorba tenkostěnné součásti v SolidWorks Skořepina v SolidWorks Ing. Richard Němec, 2012 1. Zadání Vymodelujte v SolidWorks tenkostěnnou součást (skořepinu) víčko anténního zesilovače a uložte do souboru

Více

5.3. Matematika a její aplikace

5.3. Matematika a její aplikace 5.3. Matematika a její aplikace Vzdělávací oblast je realizována v předmětu Matematika. 5.3.1. Charakteristika vzdělávací oblasti Vzdělávací oblast Matematika a její aplikace je v základním vzdělávání

Více

UŽIVATELSKÁ PŘÍRUČKA PRO IZR NA PORTÁLU FARMÁŘE - HLÁŠENÍ POHYBŮ A OBJEDNÁVKY UZ

UŽIVATELSKÁ PŘÍRUČKA PRO IZR NA PORTÁLU FARMÁŘE - HLÁŠENÍ POHYBŮ A OBJEDNÁVKY UZ UŽIVATELSKÁ PŘÍRUČKA PRO IZR NA PORTÁLU FARMÁŘE - HLÁŠENÍ POHYBŮ A OBJEDNÁVKY UZ Autor: Aquasoft, spol. s r. o. Projekt: Integrovaný zemědělský registr Poslední aktualizace: 5.12.2014 Jméno souboru: IZR-PFHLAS_142205

Více

Metodika. Architecture First. Rudolf Pecinovský rudolf@pecinovsky.cz

Metodika. Architecture First. Rudolf Pecinovský rudolf@pecinovsky.cz Copyright Rudolf Pecinovský, Soubor: 2014_Comm_PrW_Architecture First Methodology.doc, verze 1.00.2413, uloženo po 9.6.2014 14:43 1 z 39 Metodika Architecture First Rudolf Pecinovský rudolf@pecinovsky.cz

Více

A) IF předmět před Baltíkem

A) IF předmět před Baltíkem PODMÍNKY možná řešení příkladů Podmínka je logický výraz, tedy výraz, o němž můžeme v dané chvíli říci, že platí (má pravdivostní hodnotu 1, Ano) nebo neplatí (má pravdivostní hodnotu 0, Ne). Rozhodování

Více

ZADÁVACÍ DOKUMENTACE

ZADÁVACÍ DOKUMENTACE ZADÁVACÍ DOKUMENTACE Veřejný zadavatel Statutární město Děčín Statutární zástupce: Mgr. Marie Blažková, primátorka města Sídlo: Mírové náměstí 1175/5, 405 38 Děčín IV IČ: 00261238 DIČ: CZ00261238 nezapsáno

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení šablony/označení sady VY_32_INOVACE_04_M3 M 3

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení šablony/označení sady VY_32_INOVACE_04_M3 M 3 Záznamový arch Název školy: Základní škola a Mateřská škola Brno, Bosonožské nám. 44, příspěvková organizace Číslo projektu: CZ.1.07/1.4.00/21.2499 Číslo a název šablony klíčové aktivity: III/2 Inovace

Více

TECHNICKÝ POPIS A POKYNY PRO ÚDRŽBU T ATE 78522 T ATE 78522

TECHNICKÝ POPIS A POKYNY PRO ÚDRŽBU T ATE 78522 T ATE 78522 automatizační technika Wolkerova 14 350 02 Cheb tel: 354 435 070 fax: 354 438 402 tel ČD: 972 443 321 e-mail: ate@atecheb.cz IČ: 48360473 DIČ: CZ48360473 ATE, s.r.o. Strana 1 Celkem stránek: 6 Indikátorová

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic 7 Matice. Determinant Soustavy lineárních rovnic 7.1 Matice Definice 1. Matice typu (m, n) jesoustavam n reálných čísel uspořádaných do m řádků a n sloupců a 11, a 12, a 13,..., a 1n a 21, a 22, a 23,...,

Více

POLYMERTEST Tř.T.Bati 299, 764 22 Zlín

POLYMERTEST Tř.T.Bati 299, 764 22 Zlín Přístroj pro stanovení odolnosti textilií proti pronikání vody dle ČSN EN 20811 1. Účel zkoušky: Zařízení je určeno pro stanovení odolnosti textilií proti pronikání vody při působení tlaku vody. V průběhu

Více

SEZNÁMENÍ S PROGRAMEM

SEZNÁMENÍ S PROGRAMEM SEZNÁMENÍ S PROGRAMEM Základní informace pro každého Následující popis je určen pro stručné a rychlé seznámení s programem a jeho ovládáním. Detailnější vysvětlení funkcí programu naleznete v českém i

Více

POPIS PROSTŘEDÍ PROGRAMU GIMP 2. Barvy 2. Okno obrázku 4 ZÁKLADNÍ ÚPRAVA FOTOGRAFIÍ V GRAFICKÉM EDITORU 6. Změna velikosti fotografie 6

POPIS PROSTŘEDÍ PROGRAMU GIMP 2. Barvy 2. Okno obrázku 4 ZÁKLADNÍ ÚPRAVA FOTOGRAFIÍ V GRAFICKÉM EDITORU 6. Změna velikosti fotografie 6 Obsah POPIS PROSTŘEDÍ PROGRAMU GIMP 2 Barvy 2 Okno obrázku 4 ZÁKLADNÍ ÚPRAVA FOTOGRAFIÍ V GRAFICKÉM EDITORU 6 Změna velikosti fotografie 6 Ořezání obrázku 7 TRANSFORMACE 9 Rotace 9 Překlopení 11 Perspektiva

Více

Sestavy dlaždic. Příprava dlaždic pro definici sestavy

Sestavy dlaždic. Příprava dlaždic pro definici sestavy Sestavy dlaždic Sestava dlaždic je předem připravené a na disk uložené uspořádání dlaždic, které lze pokládat buďto jednotlivě nebo na celou určenou plochu. Jedna sestava dlaždic může obsahovat dlaždice

Více

5. Optické počítače. 5.1 Optická propojení

5. Optické počítače. 5.1 Optická propojení 5. Optické počítače Cíl kapitoly Cílem kapitoly je pochopit funkci optických počítačů. Proto tato kapitola doplňuje poznatky z předešlých kapitol k objasnění funkcí optických počítačů Klíčové pojmy Optické

Více