Přednáška č. 7. Systematická mineralogie. Vybrané minerály z třídy: Oxidů, karbonátů, sulfátů a fosfátů

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Přednáška č. 7. Systematická mineralogie. Vybrané minerály z třídy: Oxidů, karbonátů, sulfátů a fosfátů"

Transkript

1 Přednáška č. 7 Systematická mineralogie. Vybrané minerály z třídy: Oxidů, karbonátů, sulfátů a fosfátů

2 Třída oxidů Oxidy tvoří skupinu minerálů s relativně vysokou tvrdostí a hustotou a vyskytují se zpravidla jako akcesorické minerály s vysokou odolností a schopností přecházet do klastických sedimentů. Principielně jsou oxidy sloučeniny kyslíku s kovem a dělí se podle složitosti na oxidy jednoduché a komplexní. Jednoduché oxidy jsou sloučeninou kyslíku a jednoho kovu v různých poměrech (např. CaO, Cu 2 O), zatímco komplexní oxidy obsahují alespoň dva nestejné kovy v různých strukturních pozicích. Další dělení se provádí na základě přítomnosti vody ve struktuře. Vazby jsou v oxidech převážně iontové. Mezi oxidy je řada minerálů, které mají obrovský ekonomický význam pro získávání Fe, Cr, U, Sn, Ti a dalších prvků.

3 MAGNETIT Fe 3 O 4 Symetrie: kubická Forma výskytu: Běžně tvoří oktaedrické krystaly, které mohou být zdvojčatělé podle (111), agregáty hrubě zrnité. Magnetit (2 cm), Švýcarsko (zdroj Ďuďa, 1990) Fyzikální vlastnosti: T = 6, H = 5,18; barva černá, lesk kovový, vryp černý, lom lasturnatý. Je magnetický.

4 MAGNETIT Fe 3 O 4 Složení a struktura: Běžné jsou příměsi - Cr, Mg, Al nebo V, za vyšších teplot Ti. Struktura je inverzní spinelová. Vznik a výskyt: Převážně vysokoteplotní minerál, vzniká ale i za pokojových teplot. V magmatických horninách (hlavně bazických a ultrabazických) tvoří akumulace, hojný je ve skarnech. Na hydrotermálních žilách spíše vzácný, na alpských žilách běžný. Pěkné krystaly bývají v chloritických a mastkových břidlicích, vzniká i v sedimentech za nízkých teplot. Naleziště: Obří důl - Krkonoše, Vlastějovice, Měděnec, Nedvědice (skarny), Bushveldský komplex - JAR (magmatity), Sobotín (v mastkových břidlicích), Použití: ruda Fe Diagnostické znaky: magnetismus, vryp

5 Chromit FeCr 2 O 4 Kubický, řada spinelidů Je hnědočerný až černý, kovově až polokovově lesklý, neprůhledný, bez štěpnosti, má hnědý vryp; většinou je nemagnetický. Tvrdost 5, hustota 4,5 4,8 g.cm 3. Vyskytuje se v podobě zrnitých agregátů, je kusový či celistvý; jen vzácně tvoří dobře omezené xx oktaedrického typu. Výskyt: Typická akcesorie ultrabazických (peridotity, pyroxenity, dunity a z nich vzniklé serpentinity a mastkové břidlice) a méně bazických (gabra, nority) hornin; gravitační diferenciací vznikají ložiskové akumulace, někdy s Ni-rudami a platinovými kovy. Hromadí se ve zvětralinách, odkud je rovněž těžen. Použití: Nejvýznamnější ruda Cr; používá se i pro výrobu hutnických žáruvzdorných materiálů, při výrobě barev, v koželužnách apod. Poznávací znaky: Hnědočerná až černá barva, polokovový až kovový lesk, bez štěpnosti, vysoká hustota; zrna v olivinické nebo serpentinové hornině. Od podobného magnetitu lze rozlišit podle barvy vrypu a podle magnetičnosti.

6 Korund Al 2 O 3, trigonální Obecný korund je šedý, hnědý, namodralý, nažloutlý, méně často bílý a bezbarvý, neprůhledný až průsvitný, matný až skelně lesklý. Je neštěpný, často má odlučnost podle {0001}. Tvrdost 9, hustota 4,0 4,1 g.cm 3, bílý vryp. Často tvoří obvykle nedokonale omezené xx nebo je zrnitý; ve formě valounků se hromadí v náplavech. Odrůdy: Šedočerný až černý zrnitý korund se nazývá smirek. Průhledné barevné korundy jsou vysoce ceněny jako drahé kameny: krvavě červený rubín (malá příměs Cr), modrý safír; je i žlutý, zelený, zlatavý, fialový, růžový, čirý (leukosafír) atd. Velmi ceněné jsou asterické kameny (asterismus je způsoben orientovaně zarostlými jehlicovitými inkluzemi jiných minerálů, např. rutilu). Výskyt: Obecně vzniká v prostředí bohatém Al a chudším Si. Akcesoricky se vyskytuje v některých magmatitech (syenity, nefelinické syenity, čediče, andezity). Poměrně hojný je v Al-bohatých pegmatitech spolu s andalusitem a kyanitem. Je hojný v některých kontaktně metamorfovaných horninách (kontaktně metamorfované bauxity a terry rosy, jílovité horniny, Al-bohaté vápence a dolomity, svory, břidlice). Drahokamové odrůdy se těží hlavně z aluvií. Použití: Jako abrazivum (dnes obvykle syntetický korund); drahokamové odrůdy ve šperkařství; syntetické krystaly korundu se využívají v laserové technice. Poznávací znaky: Tvar xx, odlučnost, nejčastěji šedomodrá barva, vysoká tvrdost.

7 Třída karbonátů Základem struktury karbonátů jsou aniontové skupiny (CO 3 ) -2, které mezi sebou navzájem nesdílí kyslíkové atomy. Vazba mezi uhlíkem a kyslíky je poměrně pevná, ne však tolik jako v CO 2. Důležité bezvodé karbonáty spadají do tří strukturních skupin: řada kalcitu, řada aragonitu a řada dolomitu.

8 Třída karbonátů obdobné sloučeniny: nitráty (dusičnany, NO3 ) sulfity (siřičitany, SO32 ) cca 210 minerálů, tj. 6 % všech dnes známých minerálů (údaj k r. 2002) Většina karbonátů je v čisté formě bezbarvá, časté je ale zbarvení dané přítomností poruch krystalové mřížky, chromoforů nebo mikroskopických inkluzí jiných minerálů. Karbonáty Cu jsou nejačastěji zelené nebo modré, Mn růžové, Co růžové nebo červené, U žluté. Tvrdost běžných karbonátů je 3 4,5 Mohsovy škály, hustota běžných karbonátů se pohybuje v rozmezí 2,5 4 g.cm 3. Přítomnost iontových vazeb ve strukturách se projevuje dokonalou štěpností, často se skelným leskem na štěpných plochách. Největší množství karbonátů Ca vzniká sedimentací tělních opor organizmů, zejména ve vodním prostředí. Tímto způsobem vznikají mocná souvrství vápenců. Z ložisek vápenců mohou metasomatickými pochody vznikat dolomity a magnezity. Metamorfózou vápenců a dolomitů vznikají mramory a dolomitické mramory. Odhaduje se, že vápence, dolomity a mramory tvoří cca 2 3 % zemské kůry. Karbonáty jsou dále běžnou složkou hydrotermálních žil (kalcit, dolomit, siderit atd.). Karbonáty těžkých kovů vznikají v oxidační zóně sulfidických ložisek (malachit, azurit, smithsonit, cerusit atd.), magnezit je častým produktem zvětrávání ultrabazických hornin. Aragonit vzniká nejčastěji jako chemogenní sediment srážením z nízkoteplotních roztoků (krasy, vřídla atd.). Kalcit a dolomit mohou vznikat rovněž magmaticky jako součást karbonatitů.

9 Třída karbonátů Karbonáty patří k významným nerostným surovinám. Jsou využívány vedle dalších průmyslových odvětví zejména jako stavební a ozdobné materiály (vápence, dolomity, mramory, travertiny), slouží k výrobě cementů (vápence, mramory, dolomity) a vápna (vápence), v hutnictví se používají jako struskotvorné přísady (vápence, dolomity). Siderit je rudou Fe, rodochrozit Mn, smithsonit Zn, cerusit Pb, azurit a malachit Cu. Magnezit a v menší míře dolomit se využívají v hutnictví (žárovzdorné vyzdívky pecí) a složí jako ruda Mg. Bastnäsit a parisit jsou významným zdrojem prvků vzácných zemin.

10 KALCIT CaCO 3 Forma výskytu: U kalcitu bylo popsáno přes 500 krystalových tvarů a 1500 spojek těchto tvarů. Mezi nejběžnější patří: sloupcovité krystaly, klenec, skalenoedr. Agregáty kalcitu jsou kusové, zrnité, stébelnaté, tvoří oolity, konkrece a krápníky. Kalcitová drůza, Nižná slaná (zdroj Herčko, 1984)

11 KALCIT CaCO 3 Fyzikální vlastnosti: T = 3; H = 2,71; barva je bílá, šedá, žlutá, hnědavá, růžová nebo je bezbarvý, lesk skelný, dokonale štěpný podle klence. Složení a struktura: Ca může být izomorfně zastupováno Fe, Mn nebo Mg (dokonalá izomorfní mísitelnost je za vyšších teplot). Krystaly kalcitu horní řada: klenec pozitivní a negativní, prostřední řada: různé spojky klenců, dolní řada zleva skalenoedr, spojka skalenoedru a klence a spojka dvou skalenoedrů (zdroj Ježek, 1932)

12 KALCIT CaCO 3 Vznik a výskyt: Velmi rozšířený minerál, vznikající během mnoha nejrůznějších procesů. Může vznikat v magmatickém cyklu - je součástí karbonatitů, je velmi častou hlušinovou výplní hydrotermálních žil nejrůznějších typů, vzniká na termálních pramenech, vzniká přímým srážením z mořské vody, je tedy podstatnou součástí sedimentů (vápence, slínovce) a při metamorfóze je součástí mramorů. Často fosilizuje organické zbytky. Velmi časté je nahrazování kalcitu jinými minerály (pseudomorfózy) např. křemenem, limonitem a naopak - kalcit tvoří pseudomorfózy po aragonitu, barytu, fluoritu a dalších. Naleziště: Příbram, Stříbro (krystaly na rudních žilách), Černý důl v Krkonoších, Štramberk (krystaly ve vápencích) a mnoho dalších. Použití: výroba cementu, čiré krystaly se používají jako nikoly Diagnostické znaky: štěpnost

13 MAGNEZIT MgCO 3 Symetrie: hexagonální Forma výskytu: Vzácně tvoří krystaly, agregáty jsou hrubě až jemně zrnité, křídovité, zemité nebo hrubě vláknité. Fyzikální vlastnosti: T = 3,5-5; H = 3-3,2; barva bílá, žlutavá, hnědavá nebo i bezbarvý, lesk skelný až matný, štěpnost dokonalá podle klence. Složení a struktura: Existuje neomezená mísitelnost se sideritem (FeCO 3 ). Izostrukturní s kalcitem. Vznik a výskyt: Tvoří hydrotermálně metasomatická tělesa v karbonatických horninách, vzniká při autometamorfóze v hadcích a ultrabazických horninách. Vznikat může i metamorfně. Naleziště: Věžná, Nová Ves u Oslavan (hadce), Hnúšťa, Jelšava - Slovensko (metasomatická ložiska) Použití: zdroj Mg pro chemický průmysl Diagnostické znaky: barva, agregace, štěpnost

14 SIDERIT FeCO 3 Symetrie: hexagonální Forma výskytu: Krystaly klencové nebo tence až tlustě tabulkovité. Agregáty kusové hrubozrnné a ve formě konkrecí. Fyzikální vlastnosti: T = 3,5-4; H = 3,96; barva žlutá, světle i tmavě hnědá, černá, lesk skelný, vryp nažloutle bílý, dokonale štěpný podle klence. Složení a struktura: Neomezeně mísitelný s magnesitem a rodochrozitem (MnCO 3 ). Izostrukturní s kalcitem. Vznik a výskyt: Je středně nebo nízkoteplotním minerálem. Velký význam má na hydrotermálních žilných ložiscích, kde může tvořit převážnou část hlušiny, tvoří ložiska v karbonatických horninových komplexech, tvoří sedimentární ložiska v bitumenózních a jílových břidlicích nebo se nachází na oceánských ložiscích Fe. Naleziště: Příbram, Kutná Hora, Freiberg - Sasko (hlušina na hydrotermálních žilách), Rudňany, Rožňava (slovenské siderit-sulfidické žíly), Zdice, Nučice (oceánské oolitické rudy) Použití: zřídka jako surovina Fe Diagnostické znaky: štěpnost, barva

15 ARAGONIT CaCO 3 Symetrie: rombická Forma výskytu: Sloupcovité krystaly (někdy zploštělé podle (010)), jehlicovité krystaly podle osy c. Dvojčatí podle (110) často i cyklicky tak, že vzniká pseudohexagonální symetrie. Agregáty stébelnaté, paprsčité, vřídlovcovité, keříčkovité nebo krápníkovité. Fyzikální vlastnosti: T = 3,5-4; H = 2,94; barva bílá, šedá, žlutá, nazelenalá nebo je bezbarvý, lesk skelný až mastný, štěpnost podle (010) málo zřetelná.

16 ARAGONIT CaCO 3 Složení a struktura: Omezeně může na pozici Ca vstupovat Sr a Pb. Třením v achátové misce může kalcit přecházet na aragonit - ten je stabilnější za vyšších tlaků. Vznik a výskyt: Vzniká za nízkých teplot v připovrchových podmínkách. Objevuje se v pozdních fázích na něktrých hydrotermálních žilách, vzniká během supergenních pochodů na mnoha ložiscích, je běžný produkt vylučování z horkých pramenů (vřídlovec), zvětráváním Ca minerálů v bazaltech nebo se tvoří v jílových sedimentech. Naleziště: Hřídelec u Nové Paky, Hořenec u Bíliny (v bazaltech), Příbram, Špania Dolina (supergenní zóna ložiska) Diagnostické znaky: štěpnost, hustota

17 DOLOMIT CaMg(CO 3 ) 2 Symetrie: hexagonální Forma výskytu: Krystaly klencové, sedlovitě prohnuté, zrnité agregáty. Fyzikální vlastnosti: T = 3,5; H = 2,85; barva šedá, červená nebo hnědá, lesk perleťový nebo skelný, dokonale štěpný podle klence. Složení a struktura: Poměr Ca : Mg kolísá okolo 1 : 1. Struktura popsána výše.

18 DOLOMIT CaMg(CO 3 ) 2 Vznik a výskyt: Je častým hydrotermálně žilným a metasomatickým nerostem, tvoří hlušinu na rudních žilách, je hlavním minerálem obrovských horninových komplexů (dolomity), vzniká v mocných vrstvách během sedimantárního procesu, méně častý je na pegmatitech a alpských žilách. Naleziště: Kutná Hora, Příbram (na rudních žilách), Dolomity (Itálie) Použití: stavební kámen Diagnostické znaky: rozpustnost v horké HCl, tvar krystalů

19 MALACHIT Cu 2 CO 3 (OH) 2 Symetrie: monoklinická Forma výskytu: Krystaly sloupcovité nebo jehlicovité, zpravidla zdvojčatělé podle (100). Agregáty ledvinité s vrstevnatou stavbou, krápníky, povlaky nebo výplně. Fyzikální vlastnosti: T = 3,5-4; H = 3,9-4,03; barva v různých odstínech zelené, někdy až do černa. Lesk podle formy výskytu skelný až zemitý, dokonale štěpný podle báze, vryp zelený. Řez kolomorfním agregátem malachitu, Zair (zdroj Ďuďa, 1990)

20 MALACHIT Cu 2 CO 3 (OH) 2 Složení a struktura: Základem struktury jsou koordinační oktaedry CuO 2 (OH) 4 a CuO 4 (OH) 2. Ty jsou hranami propojeny do řetězců ve směru osy c. Jednotlivé řetězce jsou pak prostorově provázány pomocí skupin CO Vznik a výskyt: Běžný produkt oxidace Cu rud v gosanech nejrůznějších typů ložisek. Naleziště: Tsumeb (Namíbie), Špania Dolina (Slovensko), Nová Ves u Rýmařova, Borovec u Štěpánova, Ludvíkov u Vrbna Diagnostické znaky: barva, agregace

21 AZURIT Cu 3 (CO 3 ) 2 (OH) 2 Symetrie: monoklinická, oddělení monoklinicky prizmatické Forma výskytu: Sloupcovité nebo tabulkovité krystaly, agregáty práškovité nebo kůrovité. Fyzikální vlastnosti: T = 3,5-4; H = 3,77; barva modrá až černě modrá, vryp modrý. Lesk na krystalech vyšší než na agregátech, štěpnost (100) dokonalá. Azuritový povlak, Piesky (zdroj Herčko, 1984)

22 AZURIT Cu 3 (CO 3 ) 2 (OH) 2 Složení a struktura: Ionty Cu jsou v koordinaci se dvěma kyslíky a dvěma hydroxylovými skupinami. Tyto "tetragonální" skupiny jsou propojeny do řetězců podél osy b, které jsou provázány skupinami CO 3. Každá OH skupina je sdílena třemi ionty Cu a každý kyslík z CO 3 skupiny je vázán na jeden atom Cu. Vznik a výskyt: Běžný produkt oxidace Cu sulfidických rud, doprovázející malachit. Naleziště: Špania Dolina, Tsumeb (Namíbie) Diagnostické znaky: barva, štěpnost

23 Třída sulfátů Základem struktury sulfátů je malý kationt síry v tetraedrické koordinaci s kyslíky - aniontová skupina (SO4)-2.

24 Třída sulfátů obdobné sloučeniny: chromáty, molybdáty, wolframáty cca 330 minerálů, tj. 8 % všech dnes známých minerálů (údaje k r. 2002) Do sedmé třídy spadají minerály, které lze formálně odvodit od kyseliny sírové H2SO4, resp. analogických kyselin Cr, Mo a W. Jako kationty vystupují nejčastěji Na, K, Ca, Al, Mg, Fe, Ba, Sr, méně často Cu, Pb, Zn. Základem struktury sulfátů a analogů je tetraedr (MO4)2, kde M = S, Cr, Mo, W. Tyto tetraedry jsou ve strukturách přítomny izolovaně (na rozdíl od silikátů a borátů) a jsou vzájemně svázány prostřednictvím kationtů nebo cizích aniontů (O2, OH, F ). Mnohé sulfáty jsou hydráty (mají molekuly H2O ve stuktuře). Vazby mezi tetraedry a kationty mají převážně iontový charakter. Ve strukturách hydratovaných sulfátů mohou hrát významnou roli vodíkové můstky. Většina sulfátů, zejména hydráty, tvoří krystaly v soustavách s nízkou symetrií.

25 Třída sulfátů Pro sulfáty je charakteristický nekovový vzhled a nízká tvrdost (do 4 stupně Mohsovy stupnice, u hydrátů do 2. stupně). Čisté jsou většinou bezbarvé, skelně nebo perleťově lesklé, často dokonale štěpné. Sulfáty alkalických kovů a hydratované sulfáty jsou často dobře rozpustné ve vodě a mají charakteristickou hořkou nebo hořkoslanou chuť. Sulfáty vznikají v přírodě (1) jako evapority zejména mořského původu, (2) reakcemi plynných oxidů síry s okolními horninami při vulkanické činnosti, (3) oxidací sulfidů, hlavně pyritu a markazitu, v povrchových podmínkách (tzv. kyzové zvětrávání), (4) hydrotermálně (hl. bezvodé sulfáty Ba, Ca, Sr, Pb). Sulfáty se uplatňují ve stavebním průmyslu (sádrovec), jako zdroj některých prvků (Ba, Sr, Al, Mg), mají i řadu jiných využití (baryt). Chromáty, molybdáty a wolframáty mají ve srovnání se sulfáty vyšší hustotu a tvrdost a někdy až polokovový vzhled. Zatímco řada sulfátů patří k běžným minerálům (např. baryt, sádrovec), chromáty, molybdáty a wolframáty jsou až na výjimky v přírodě vzácné a počet jejich druhů je nevelký. Vznikají v oxidační zóně ložisek kovů (wulfenit, krokoit), hydrotermálně či metasomaticky (scheelit). Slouží jako rudy Cr, Mo a W.

26 BARYT BaSO 4 Symetrie: rombická Forma výskytu: Krystaly jsou převážně tabulkovité podle báze nebo sloupcovité (rakve) podle osy a, často hojnoploché. Agregáty bývají zrnité. Fyzikální vlastnosti: T = 3-3,5; H = 4,5; barva šedá, žlutá, nazelenalá, modrá, červená, lesk na krystalových plochách skelný, jinak matný, dokonale štěpný podle báze, zřetelně štěpný podle (210). Baryt, Banská Štiavnica (zdroj Herčko, 1984) Různé typy krystalů barytu (zdroj Bernard, 1992)

27 BARYT BaSO 4 Složení a struktura: Běžně bývá izomorfně přimíšeno Sr nebo Pb, mechanickou nečistotou bývá Fe 2 O 3. Vznik a výskyt: Je to běžný středně až nízce teplotní minerál postmagmatického a sedimentárního původu. Běžný je na některých hydrotermálních žilách (asociace fluorit-barytová), je součástí hydrotermálně sedimentárních ložisek, vzniká i krystalizací z termálních vod, a na řadě typů sedimentárních ložisek (reziduální zvětraliny, evaporitová ložiska nebo ve vápencích). Naleziště: Příbram, Jihlava, Stříbro, Harrachov, Moldava (hydrotermální žíly), Štěpánovice a Květnice u Tišnova (čočky ve vápencích), Kladno (na trhlinách pelosideritů), Kozákov, Studenec (dutiny bazaltů) Použití: při těžbě ropy na výplach vrtů, ve stavebniství na RTG absorbující omítky, výroba barev, plnidlo v papírenství a gumárenství Diagnostické znaky: hustota

28 ANHYDRIT CaSO 4 Symetrie: rombická, oddělení dipyramidální Forma výskytu: Izometrické nebo sloupcovité krystaly jsou poměrně vzácné. Agregáty zrnité až celistvé. Fyzikální vlastnosti: T = 3-3,5; H = 2,89-2,98; bývá bezbarvý, bílý, šedý, namodralý, červený nebo hnědý, lesk perleťový až skelný. Složení a struktura: Mívá řadu mechanických příměsí. Vznik a výskyt: Je naprosto převládající na ložiskách mořských evaporitů, jinde jen podružně (hydrotermální ložiska, dutiny bazaltů). Naleziště: Bad Ischl - Rakousko, Wieliczka - Polsko, Stassfurt - Německo (sedimentární ložiska), České Hamry (v dutinách vyvřelin) Použití: cementářský průmysl Diagnostické znaky: štěpnost

29 SÁDROVEC CaSO 4. 2H 2 O Symetrie: monoklinická Forma výskytu: Je známo asi 70 jednoduchých tvarů krystalů sádrovce, z nichž nejčastější jsou krystaly tabulkovité podle (010), sloupcovité nebo čočkovité. Zcela běžné jsou také srůsty podle (100) tzv. "vlaštovčí ocas" nebo podle (001) tzv. "pařížská dvojčata". Agregáty bývají zrnité, celistvé, vláknité (selenit) nebo lupenité. Fyzikální vlastnosti: T = 2; H = 2,32; zpravidla bezbarvý bílý, šedý nebo nažloutlý, lesk skelný na štěpných plochách perleťový. Štěpný velmi dokonale podle (010). Krystaly sádrovce (a) a dvojče (b) podle (100); n (111), f (110), b (010), e (001) (zdroj Klein a Hurlbut, 1993)

30 SÁDROVEC CaSO 4. 2H 2 O Složení a struktura: Se zvyšující se teplotou postupně ztrácí vodu (přes bassanit až k anhydritu), zpravidla obsahuje řadu mechanických příměsí. Vznik a výskyt: Typický minerál sedimentárních a zvětrávacích procesů (evapority, jílové sedimenty, zvětrávací kůry ložisek), méně často vzniká na fumarolách. Naleziště: Hromnice, Chvaletice (zvětrávání kyzových ložisek), Kateřinky a Kobeřice u Opavy (v sedimentech), v hnědouhelných pánvích Použití: výroba sádry Diagnostické znaky: štěpnost, krystalové tvary a srůsty Postupná dehydratace sádrovce se zvyšující se teplotou zdroj Klein a Hurlbut, 1993)

31 Třída fosfátů Základní jednotkou struktury fosfátů je aniontová skupina (PO 4 ) -3.

32 Třída fosfátů obdobné sloučeniny: arsenáty (arseničnany, AsO43 ) vanadáty (vanadičnany, VO43 ) cca 700 minerálů, tj 18 % všech dnes známých minerálů (údaj k r. 2002) Minerály 8. třídy lze formálně odvodit od kyseliny trihydrogenfosforečné H3PO4 a obdobných kyselin trihydrogenarseničné H3AsO4 a trihydrogenvanadičné H3VO4. Fosfátů je v přírodě velké množství druhů, většina však patří ke vzácným až velmi vzácným minerálům. Základem jejich struktur jsou izolované tetraedry (PO4) 3 s centrálním kationtem P5+, svázané prostřednictvím kationtů. Uvnitř tetraedrů se uplatňují hlavně kovalentní vazby, mezi tetraedry a kationty zejména iontové vazby. Jako kationty vystupují nejčastěji Al3+, Ca2+, Fe2+, Cu2+, (UO2)2+, méně často Mn2+, Na+, Li+, Sr2+ a prvky vzácných zemin. Symetrie je nejčastěji rombickýnebo monoklinický. Asi polovina známých fosfátů jsou hydráty, nejčastěji se třemi, čtyřmi či osmi molekulami vody ve struktuře. Rozšířené jsou i fosfáty s cizími anionty OH, F, Cl, méně často O2, (CO3)2, (SO4)2. Časté je izomorfní zastupování mezi kationty (např. Ca2+ Sr2+ TR3+, Fe2+ Mn2+) i anionty (např. OH Cl F O2, (PO4)3 (AsO4)3, (PO4)3 (SiO4)4 (SO4)2 (CO3)2 ).

33 Třída fosfátů Tvrdost a hustota se u fosfátů pohybují v širokém rozmezí (T = 1 6,5, h = 1,7 7,3 g.cm 3), rozmanité jsou i ostatní makroskopické vlastnosti fosfátů. Mnoho fosfátů vykazuje luminiscenci v UV záření. Fosfáty vznikají v širokém spektru podmínek: jsou běžné jako akcesorie v magmatických horninách (např. apatit, monazit), vysktují se v greisenech, skarnech, pegmatitech i na hydrotermálních žilách. Velké množství druhů fosfátů, zejména Al, Fe a Ca, vzniká v hypogenním prostředí zdrojem fosforu jsou buď zvětrávající horniny s primárními fosfáty, nebo zbytky organizmů vytvářejících fosfátovou kostru (hl. obratlovci, z bezobratlých ramenonožci). Fosfáty Cu, Pb, Fe, Mn, Co, Ni, U atd. jsou typické pro oxidační zónu rudních ložisek. Praktický význam mají zejména fosfority (sedimentární fosfátové horniny tvořená hlavně apatitem), které jsou surovinami pro výrobu fosforečných hnojiv, fosforu a jeho sloučenin. Fosfáty jsou dále zdrojem prvků vzácných zemin a Th (monazit), Pb (pyromorfit), Co (erytrin), Ni (annabergit), U (uranové slídy). Vanadáty a arsenáty patří ke vzácným až velmi vzácným minerálům. Jako kationty vystupují Ca2+, Cu2+, Pb2+, Zn2+, Bi3+, Co2+, Ni2+, (UO2)2+. Vznikají téměř bez výjimky v oxidační zóně rudních ložisek. Místně slouží jako rudy kovů, vanadinit je nejvýznamnější rudou vanadu.

34 APATIT Ca 5 (PO 4 ) 3 (F, Cl, OH) Symetrie: hexagonální Forma výskytu: Krystaly jsou velmi rozmanitých forem - krátce i dlouze sloupcovité, jehlicovité nebo tabulkovité podle báze. Většinou převažuje prizma, báze nebo dipyramida. Agregáty nejčastěji zrnité nebo celistvé, ale i oolitické, vláknité či zemité. Krystaly apatitu (0,5 cm) Gunheath Pit, Cornwall (zdroj Lapis) Fyzikální vlastnosti: T = 5; H = 3,15-3,2; barva šedá, žlutá, zelená, modrá, hnědá někdy i čirý, lesk skelný, nezřetelně štěpný podle báze.

35 APATIT Ca 5 (PO 4 ) 3 (F, Cl, OH) Složení a struktura: Ve struktuře se běžně zastupují F, Cl, (OH) a CO 3. Skupina PO 4 může být nahrazována SO 4 nebo i SiO 4. Za vápník nejčastěji substituují Sr a Mn. Vznik a výskyt: Běžný akcesorický minerál hornin nejrůznějšího genetického typu. Zcela běžný je v magmatických a metamorfovaných horninách, krystalovaný bývá v pegmatitech a greisenech. Vzácněji se objevuje na hydrotermálních žilách a alpských žilách. Naleziště: alkalické horniny na poloostrově Kola, Rožná, Dobrá Voda (pegmatity), Horní Slavkov, Krupka (greiseny) Použití: zdroj fosforu, surovina pro přípravu syntetických hnojiv. Diagnostické znaky: barva, krystalové tvary

36 Pyromorfit Pb 5 (PO 4 ) 3 Cl Hexagonální, skupina apatitu Je nejčastěji zelený, méně často hnědý, šedý, žlutý. Je průsvitný až neprůhledný, s diamantovým až mastným leskem, neštěpný, má lasturnatý až nerovný lom. Tvrdost 3,5 4, hustota 6,7 7,1 g.cm 3, má bílý vryp. Často tvoří sloupečkovité až jehlicovité xx, vyskytuje se i v kůrách a ledvinitých agregátech. Poměrně hojný produkt oxidace galenitu (fosfor je mobilizován z apatitu ze sousedních hornin).

37 Vivianit Fe 3 (PO 4 ) 3 8H 2 O monoklinický Je modrý nebo modrozelený, často s červenavým odstínem, skelně lesklý, dokonale štěpný podle {010}. Tvrdost 1,5 2, hustota 2,68 g.cm 3, má modrý vryp. Nejčastěji vytváří dlouze sloupcovité krystaly, je i v hlízách, radiálně paprsčitých agregátech, zemitých agregátech, tvoří povlaky. Je vázán zejména na sedimentární horniny bohaté P a Fe. Vzácně se vyskytuje se i na rudních ložiskách, ve skarnech, na žilách Sn W spjatých s greiseny i jako produkt hoření uhlí. Vzniká také alterací některých pegmatitových fosfátů.

38 Děkuji za pozornost.

Fyzikální vlastnosti: štěpnost dle klence, tvrdost 3.5, hustota 3 g/cm 3. Je různě zbarven - bílý, šedý, naţloutlý, má skelný lesk.

Fyzikální vlastnosti: štěpnost dle klence, tvrdost 3.5, hustota 3 g/cm 3. Je různě zbarven - bílý, šedý, naţloutlý, má skelný lesk. 7.7. Karbonáty (uhličitany) Karbonáty patří mezi běţné minerály zemské kůry. Jejich vzorce odvodíme od kyseliny uhličité H 2 CO 3. Můţeme je rozdělit podle strukturních typů, nebo na bezvodé a vodnaté.

Více

5. Třída - karbonáty

5. Třída - karbonáty 5. Třída - karbonáty Karbonáty vytváří cca 210 minerálů, tj. 6 % ze známých minerálů. Chemicky lze karbonáty odvodit od slabé kyseliny uhličité nahrazením jejich dvou vodíků kovem. Jako kationty vystupují

Více

Horniny a minerály II. část. Přehled nejdůležitějších minerálů

Horniny a minerály II. část. Přehled nejdůležitějších minerálů Horniny a minerály II. část Přehled nejdůležitějších minerálů Minerály rozlišujeme podle mnoha kritérií, ale pro přehled je vytvořeno 9. skupin, které vystihují, do jaké chemické skupiny patří (a to určuje

Více

Výuková pomůcka pro cvičení ze geologie pro lesnické a zemědělské obory. Úvod do mineralogie

Výuková pomůcka pro cvičení ze geologie pro lesnické a zemědělské obory. Úvod do mineralogie Úvod do mineralogie Specializovaná věda zabývající se minerály (nerosty) se nazývá mineralogie. Patří mezi základní obory geologie. Geologie je doslovně věda o zemi (z řec. gé = země, logos = slovo) a

Více

Přírodopis 9. Přehled minerálů UHLIČITANY, SÍRANY, FOSFOREČNANY. Mgr. Jan Souček Základní škola Meziměstí. 15. hodina

Přírodopis 9. Přehled minerálů UHLIČITANY, SÍRANY, FOSFOREČNANY. Mgr. Jan Souček Základní škola Meziměstí. 15. hodina Přírodopis 9 15. hodina Přehled minerálů UHLIČITANY, SÍRANY, FOSFOREČNANY Mgr. Jan Souček Základní škola Meziměstí VI. Uhličitany Uhličitany jsou soli kyseliny uhličité. Mají výrazně nekovový vzhled. Nejdůležitější

Více

1. PRVKY kovové nekovové ZLATO (Au) TUHA (GRAFIT) (C)

1. PRVKY kovové nekovové ZLATO (Au) TUHA (GRAFIT) (C) Nerosty - systém 1. PRVKY - nerosty tvořené jediným prvkem (Au, C, ) - dělíme je na: kovové: - ušlechtilé kovy, - velká hustota (kolem 20 g/cm 3 ) - zlato, stříbro, platina, někdy i měď nekovové: - síra

Více

Základy geologie pro geografy František Vacek

Základy geologie pro geografy František Vacek Základy geologie pro geografy František Vacek e-mail: fvacek@natur.cuni.cz; konzultační hodiny: Po 10:30-12:00 (P 25) Co je to geologie? věda o Zemi -- zabýváse se fyzikální, chemickou, biologickou a energetickou

Více

Chemické složení Země

Chemické složení Země Chemické složení Země Geochemie: do hloubky 16 km (zemská kůra) Clark: % obsah prvků v zemské kůře O, Si, Al = 82,5 % + Fe, Ca, Na, K, Mg, H = 98.7 % (Si0 2 = 69 %, Al 2 0 3 =14%) Rozložení prvků nerovnoměrné

Více

Mineralogie. 2. Vlastnosti minerálů. pro Univerzitu třetího věku VŠB-TUO, HGF. Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc.

Mineralogie. 2. Vlastnosti minerálů. pro Univerzitu třetího věku VŠB-TUO, HGF. Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc. Mineralogie pro Univerzitu třetího věku VŠB-TUO, HGF 2. Vlastnosti minerálů Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc. J441 Fyzikální vlastnosti minerálů Minerály jako fyzikální látky mají

Více

Úvod do praktické geologie I

Úvod do praktické geologie I Úvod do praktické geologie I Hlavní cíle a tematické okruhy Určování hlavních horninotvorných minerálů a nejběžnějších typů hornin Pochopení geologických procesů, kterými jednotlivé typy hornin vznikají

Více

Malý atlas minerálů. jméno minerálu chemické složení zařazení v systému minerálů. achát

Malý atlas minerálů. jméno minerálu chemické složení zařazení v systému minerálů. achát Malý atlas minerálů. achát Acháty vznikají v dutinách vyvřelých hornin. Jsou tvořené soustřednými vrstvičkami různě zbarvených odrůd křemene a chalcedonu, které vyplňují dutinu achátová pecka. Nauč se

Více

Nabídka vzorků hornin a minerálů pro účely školní výuky

Nabídka vzorků hornin a minerálů pro účely školní výuky Nabídka vzorků hornin a minerálů pro účely školní výuky Aby se člověk naučil poznávat kameny, musí si je osahat. Žádný sebelepší atlas mu v tom příliš nepomůže. Proto jsme pro vás připravili přehledné

Více

Vznik a vlastnosti minerálů

Vznik a vlastnosti minerálů Vznik a vlastnosti minerálů Autor: Mgr. Vlasta Hlobilová Datum (období) tvorby: 10. 10. 2012 Ročník: devátý Vzdělávací oblast: přírodopis Anotace: Žáci se seznámí s různými způsoby vzniku minerálů a s

Více

Stavba Země. pro poznání stavby Země se používá výzkum šíření = seizmických vln Země má tři hlavní části kůra,, jádro

Stavba Země. pro poznání stavby Země se používá výzkum šíření = seizmických vln Země má tři hlavní části kůra,, jádro Stavba Země pro poznání stavby Země se používá výzkum šíření = seizmických vln Země má tři hlavní části kůra,, jádro Stavba Země: astenosféra litosféra (zemská kůra a svrchní tuhý plášť) plášť 2 900 km

Více

Chemické složení surovin Chemie anorganických stavebních pojiv

Chemické složení surovin Chemie anorganických stavebních pojiv Chemické složení surovin Chemie anorganických stavebních pojiv Ing. Milena Pavlíková, Ph.D. K123, D1045 224 354 688, milena.pavlikova@fsv.cvut.cz tpm.fsv.cvut.cz Základní pojmy Materiál Stavební pojiva

Více

Výroba stavebních hmot

Výroba stavebních hmot Výroba stavebních hmot 1.Typy stavebních hmot Pojiva = anorganické hmoty, které mohou vázat kamenivo dohromady (tvrdnou s vodou nebo na vzduchu) hydraulická tvrdnou na vzduchu nebo ve vodě (např. cement)

Více

Modul 02 - Přírodovědné předměty

Modul 02 - Přírodovědné předměty Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 - Přírodovědné předměty Hana Gajdušková Výskyt

Více

Testové otázky ke zkoušce z předmětu Mineralogie

Testové otázky ke zkoušce z předmětu Mineralogie Testové otázky ke zkoušce z předmětu Mineralogie 1) Krystal můžeme definovat jako: homogenní anizotropní diskontinuum. Co znamená slovo homogenní? 2) Krystal můžeme definovat jako: homogenní anizotropní

Více

Přednáška č. 5. Optická krystalografie, metody určování optických vlastností, polarizační mikroskop.

Přednáška č. 5. Optická krystalografie, metody určování optických vlastností, polarizační mikroskop. Přednáška č. 5 Optická krystalografie, metody určování optických vlastností, polarizační mikroskop. Systematická mineralogie. Princip mineralogického systému (Strunz). Popis minerálů v jednotlivých třídách

Více

Sedimentární neboli usazené horniny

Sedimentární neboli usazené horniny Sedimentární neboli usazené horniny Sedimenty vznikají destrukcí starších hornin, transportem různě velkých úlomků horninového materiálu i vyloužených látek (v podobě roztoků) a usazením materiálu transportovaného

Více

Větrání smolince. Nejbizarnější pornografii spatříme v mikroskopu.

Větrání smolince. Nejbizarnější pornografii spatříme v mikroskopu. Nejbizarnější pornografii spatříme v mikroskopu. Větrání smolince Obecně nejchudší recentní sekundární mineralizace se vyskytovala bezprostředně na karbonátových žilách. Primární rudy v nich obsažené zůstaly

Více

5. MINERALOGICKÁ TŘÍDA UHLIČITANY

5. MINERALOGICKÁ TŘÍDA UHLIČITANY 5. MINERALOGICKÁ TŘÍDA UHLIČITANY Minerály 5. mineralogické třídy jsou soli kyseliny uhličité. Jsou anorganického i organického původu (vznikaly usazováním a postupným zkameněním vápenitých koster a schránek

Více

Biogeochemické cykly vybraných chemických prvků

Biogeochemické cykly vybraných chemických prvků Biogeochemické cykly vybraných chemických prvků Uhlík důležitý biogenní prvek cyklus C jedním z nejdůležitějších látkových toků v biosféře poměr mezi CO 2 a C org - vliv na oxidačně redukční potenciál

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

MINERALOGICKÁ SOUSTAVA III

MINERALOGICKÁ SOUSTAVA III MINERALOGICKÁ SOUSTAVA III PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST VY_52_INOVACE_269 VZDĚLÁVACÍ OBLAST: ČLOVĚK A PŘÍRODA VZDĚLÁVACÍ OBOR: PŘÍRODOPIS ROČNÍK: 9 MINERALOGICKÁ

Více

Kyselina fosforečná Suroviny: Výroba: termický způsob extrakční způsob

Kyselina fosforečná Suroviny: Výroba: termický způsob extrakční způsob Kyselina fosforečná bezbarvá krystalická sloučenina snadno rozpustná ve vodě komerčně dodávané koncentrace 75% H 3 PO 4 s 54,3% P 2 O 5 80% H 3 PO 4 s 58.0% P 2 O 5 85% H 3 PO 4 s 61.6% P 2 O 5 po kyselině

Více

Systematická mineralogie

Systematická mineralogie Systematická mineralogie Silikáty - základní klasifikace na základě struktur. Systematický přehled nejdůležitějších minerálů ze skupiny silikátů. Přehled technického použití vybraných minerálů a jejich

Více

SOLI A JEJICH VYUŽITÍ. Soli bezkyslíkatých kyselin Soli kyslíkatých kyselin Hydrogensoli Hydráty solí

SOLI A JEJICH VYUŽITÍ. Soli bezkyslíkatých kyselin Soli kyslíkatých kyselin Hydrogensoli Hydráty solí SOLI A JEJICH VYUŽITÍ Soli bezkyslíkatých kyselin Soli kyslíkatých kyselin Hydrogensoli Hydráty solí POUŽITÍ SOLÍ Zemědělství dusičnany, draselné soli, fosforečnany. Stavebnictví, sochařství vápenaté soli.

Více

Přírodopis 9. Fyzikální vlastnosti nerostů. Mgr. Jan Souček Základní škola Meziměstí. 8. hodina

Přírodopis 9. Fyzikální vlastnosti nerostů. Mgr. Jan Souček Základní škola Meziměstí. 8. hodina Přírodopis 9 8. hodina Fyzikální vlastnosti nerostů Mgr. Jan Souček Základní škola Meziměstí Hustota (g/cm 3.) udává, kolikrát je objem nerostu těžší než stejný objem destilované vody. Velkou hustotu má

Více

SOLI. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 12. 4. 2013. Ročník: osmý

SOLI. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 12. 4. 2013. Ročník: osmý SOLI Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 12. 4. 2013 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Anorganické sloučeniny 1 Anotace: Žáci se seznámí s vlastnostmi solí,

Více

Chlor Cl 1. Výskyt v přírodě: Chemické vlastnosti: Výroba: 2Na + 2H2O 2NaOH + H2 Významné sloučeniny: 5. Použití: 6. Biologický význam: Kyslík O

Chlor Cl 1. Výskyt v přírodě: Chemické vlastnosti: Výroba: 2Na + 2H2O 2NaOH + H2 Významné sloučeniny: 5. Použití: 6. Biologický význam: Kyslík O 1. Výskyt v přírodě: NaCl - kamenná sůl KCl - sylvín Významným zdrojem je mořská voda. Chlor Cl 2. Chemické vlastnosti: Chlor je žlutozelený, štiplavě zapáchající plyn. Je prudce jedovatý, leptá a rozkládá

Více

STAVEBNÍ KÁMEN A KAMENIVO STAVEBNÍ KÁMEN A KAMENIVO 22.2.2012. TAJEMSTVÍ ČESKÉHO KAMENE od Svazu kameníků a kamenosochařů ČR STAVEBNÍ KÁMEN

STAVEBNÍ KÁMEN A KAMENIVO STAVEBNÍ KÁMEN A KAMENIVO 22.2.2012. TAJEMSTVÍ ČESKÉHO KAMENE od Svazu kameníků a kamenosochařů ČR STAVEBNÍ KÁMEN AI01 STAVEBNÍ LÁTKY A GEOLOGIE Kámen a kamenivo pro stavební účely Ing. Věra Heřmánková, Ph.D. Video: A TAJEMSTVÍ ČESKÉHO KAMENE od Svazu kameníků a kamenosochařů ČR A Přírodní kámen se již v dávných dobách

Více

Přednáška č. 6. Systematická mineralogie. Vybrané minerály z třídy: Sulfidů, halogenidů a karbonátů

Přednáška č. 6. Systematická mineralogie. Vybrané minerály z třídy: Sulfidů, halogenidů a karbonátů Přednáška č. 6 Systematická mineralogie. Vybrané minerály z třídy: Sulfidů, halogenidů a karbonátů Třída sulfidů Převážně rudní minerály, které jsou charakteristické svými fyzikálními vlastnostmi (vysokým

Více

Základní stavební částice

Základní stavební částice Základní stavební částice ATOMY Au O H Elektroneutrální 2 H 2 atomy vodíku 8 Fe Ř atom železa IONTY Na + Cl - H 3 O + P idávat nebo odebírat se mohou jenom elektrony Kationty Kladn nabité Odevzdání elektron

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3665 Šablona: III/2 č. materiálu: VY_32_INOVACE_152 Jméno autora: Ing. Kateřina Lisníková Třída/ročník:

Více

Vnitřní geologické děje

Vnitřní geologické děje Vznik a vývoj Země 1. Jak se nazývá naše galaxie a kdy pravděpodobně vznikla? 2. Jak a kdy vznikla naše Země? 3. Jak se následně vyvíjela Země? 4. Vyjmenuj planety v pořadí od slunce. 5. Popiš základní

Více

Vzdělávací oblast: Člověk a příroda. Vyučovací předmět: Chemie. Třída: tercie. Očekávané výstupy. Poznámky. Přesahy. Žák: Průřezová témata

Vzdělávací oblast: Člověk a příroda. Vyučovací předmět: Chemie. Třída: tercie. Očekávané výstupy. Poznámky. Přesahy. Žák: Průřezová témata Vzdělávací oblast: Člověk a příroda Vyučovací předmět: Chemie Třída: tercie Očekávané výstupy Uvede příklady chemického děje a čím se zabývá chemie Rozliší tělesa a látky Rozpozná na příkladech fyzikální

Více

Mineralogický systém skupina IV - oxidy

Mineralogický systém skupina IV - oxidy Mineralogický systém skupina IV - oxidy Autor: Mgr. Vlasta Hlobilová Datum (období) tvorby: 10. 10. 2012 Ročník: devátý Vzdělávací oblast: přírodopis Anotace: Žáci se seznámí s vybranými minerály, které

Více

Horniny a minerály II. část. Přehled nejdůležitějších minerálů

Horniny a minerály II. část. Přehled nejdůležitějších minerálů Horniny a minerály II. část Přehled nejdůležitějších minerálů Minerály rozlišujeme podle mnoha kritérií, ale pro přehled je vytvořeno 9. skupin, které vystihují, do jaké chemické skupiny patří (a to určuje

Více

Základy analýzy potravin Přednáška 1

Základy analýzy potravin Přednáška 1 ANALÝZA POTRAVIN Význam a využití kontrola jakosti surovin, výrobků jakost výživová jakost technologická jakost hygienická autenticita, identita potravinářských materiálů hodnocení stravy (diety) Analytické

Více

Mineralogie a petrografie PRACOVNÍ pro 9. LIST ročník č. 1 ZŠ. Úkol č. 1. Úkol č. 2. Úkol č. 3. Téma: Prvky. Spoj minerál se způsobem jeho vzniku.

Mineralogie a petrografie PRACOVNÍ pro 9. LIST ročník č. 1 ZŠ. Úkol č. 1. Úkol č. 2. Úkol č. 3. Téma: Prvky. Spoj minerál se způsobem jeho vzniku. Mineralogie a petrografie PRACOVNÍ pro 9. LIST ročník č. 1 ZŠ Pracovní list 1A Téma: Prvky Úkol č. 1 Spoj minerál se způsobem jeho vzniku. DIAMANT GRAFIT SÍRA STŘÍBRO ZLATO Ze sopečných plynů aktivních

Více

Geologie-Minerály II.

Geologie-Minerály II. Geologie-Minerály II. Připravil: Ing. Jan Pecháček Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Doporučená literatura do cvičení z LGAG:

Více

K O V Y. 4/5 všech prvků

K O V Y. 4/5 všech prvků K O V Y 4/5 všech prvků Vlastnosti kovů 4/5 všech prvků jsou kovy kovový lesk dobrá elektrická a tepelná vodivost tažnost a kujnost nízká elektronegativita = snadno vytvářejí kationty pevné látky (kromě

Více

Laboratorní práce č. 4

Laboratorní práce č. 4 1/8 3.2.04.6 Uhličitany kalcit (CaCO3) nejrozšířenější, mnoho tvarů, nejznámější je klenec, součást vápenců a mramorů - organogenní vápenec nejvíce kalcitu usazováním schránek různých živočichů (korálů,

Více

SEKUNDÁRNÍ MINERÁLY VZNIK SEKUNDÁRNÍCH MINERÁLŮ VZNIK SEKUNDÁRNÍCH MINERÁLŮ VZNIK SEKUNDÁRNÍCH MINERÁLŮ

SEKUNDÁRNÍ MINERÁLY VZNIK SEKUNDÁRNÍCH MINERÁLŮ VZNIK SEKUNDÁRNÍCH MINERÁLŮ VZNIK SEKUNDÁRNÍCH MINERÁLŮ SEKUNDÁRNÍ MINERÁLY DEFINICE: sekundární minerály vznikají během zvětrávání zvětrávání sulfidů a okolních minerálů uvolňuje obrovské množství kationtů a aniontů do pórových vod 1. ionty mohou být sorbovány

Více

10. Minerální výživa rostlin na extrémních půdách

10. Minerální výživa rostlin na extrémních půdách 10. Minerální výživa rostlin na extrémních půdách Extrémní půdy: Kyselé Alkalické Zasolené Kontaminované těžkými kovy Kyselé půdy Procesy vedoucí k acidifikaci (abnormálnímu okyselení): Zvětrávání hornin

Více

a) žula a gabro: zastoupení hlavních nerostů v horninách (pozorování pod lupou)

a) žula a gabro: zastoupení hlavních nerostů v horninách (pozorování pod lupou) Metodický list Biologie Významné horniny Pracovní list 1 1. Vyvřelé horniny: a) žula a gabro: zastoupení hlavních nerostů v horninách (pozorování pod lupou) přítomen +, nepřítomen hornina amfibol augit

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Šablona III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146

Více

Přednáška IV. Mineralogie. klíčová slova: mineralogie, systém minerálů, vznik minerálů, vlastnosti minerálů, krystalografie.

Přednáška IV. Mineralogie. klíčová slova: mineralogie, systém minerálů, vznik minerálů, vlastnosti minerálů, krystalografie. Přednáška IV. Mineralogie klíčová slova: mineralogie, systém minerálů, vznik minerálů, vlastnosti minerálů, krystalografie. 1 Mineralogie je věda zabývající se všestranným studiem minerálů (nerostů). Podle

Více

Test pro 8. třídy A. 3) Vypočítej kolik potřebuješ gramů soli na přípravu 600 g 5 % roztoku.

Test pro 8. třídy A. 3) Vypočítej kolik potřebuješ gramů soli na přípravu 600 g 5 % roztoku. Test pro 8. třídy A 1) Rozhodni, zda je správné tvrzení: Vzduch je homogenní směs. a) ano b) ne 2) Přiřaď k sobě: a) voda-olej A) suspenze b) křída ve vodě B) emulze c) vzduch C) aerosol 3) Vypočítej kolik

Více

ACH 02 VZÁCNÉPLYNY. Katedra chemie FP TUL www.kch.tul.cz VZÁCNÉ PLYNY

ACH 02 VZÁCNÉPLYNY. Katedra chemie FP TUL www.kch.tul.cz VZÁCNÉ PLYNY VZÁCNÉPLYNY ACH 02 Katedra chemie FP TUL www.kch.tul.cz VZÁCNÉ PLYNY 1 VZÁCNÉ PLYNY 2 Vzácné plyny 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 I II III IV V VI VII VIII I II III IV V VI VII VIII s 2 p

Více

DUM VY_52_INOVACE_12CH01

DUM VY_52_INOVACE_12CH01 Základní škola Kaplice, Školní 226 DUM VY_52_INOVACE_12CH01 autor: Kristýna Anna Rolníková období vytvoření: říjen 2011 duben 2012 ročník, pro který je vytvořen: 8. a 9. vzdělávací oblast: vzdělávací obor:

Více

Elektrotermické procesy

Elektrotermické procesy Elektrotermické procesy Elektrolýza tavenin Výroba Al Elektrické pece Výroba P Výroba CaC 1 Vysokoteplotní procesy, využívající elektrický ohřev (případně v kombinaci s elektrolýzou) Elektrotermické procesy

Více

Název materiálu: Horniny přeměněné, horninový cyklus

Název materiálu: Horniny přeměněné, horninový cyklus Název materiálu: Horniny přeměněné, horninový cyklus Jméno autora: Mgr. Magda Zemánková Materiál byl vytvořen v období: 2. pololetí šk. roku 2010/2011 Materiál je určen pro ročník: 9. Vzdělávací oblast:

Více

Horniny a jejich použití ve stavebnictví

Horniny a jejich použití ve stavebnictví a jejich použití ve stavebnictví Hornina anorganická nestejnorodá přírodnina tvořená minerály Minerál prvek nebo chemická sloučenina, (nerost) která je krystalická a která vznikla jako výsledek geologických

Více

www.zlinskedumy.cz Střední odborná škola Luhačovice Bc. Magda Sudková III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_TECHKE_0802

www.zlinskedumy.cz Střední odborná škola Luhačovice Bc. Magda Sudková III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_TECHKE_0802 Suroviny pro výrobu glazur Název školy Číslo projektu Autor Název šablony Název DUMu Stupeň a typ vzdělání Vzdělávací obor Tematický okruh Druh učebního materiálu Cílová skupina Anotace Klíčová slova Střední

Více

Geologie. Mgr. Petr Křížek

Geologie. Mgr. Petr Křížek Geologie Mgr. Petr Křížek Copyright istudium, 2008, http://www.istudium.cz Žádná část této publikace nesmí být publikována a šířena žádným způsobem a v žádné podobě bez výslovného svolení vydavatele. Fotografie:

Více

Geologie-Minerály I.

Geologie-Minerály I. Geologie-Minerály I. Připravil: Ing. Jan Pecháček Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Fyzikální vlastnosti minerálů: a) barva

Více

MATERIÁLOVÉ INŽENÝRSTVÍ II

MATERIÁLOVÉ INŽENÝRSTVÍ II MATERIÁLOVÉ INŽENÝRSTVÍ II KÁMEN, KAMENNÉ ZDIVO Kamenné zdivo má hodnotu Historického dokumentu dobového způsobu zdění a opracování kamene, je svědkem podoby historické architektury. Estetickou, což se

Více

Přírodopis 9. Přehled minerálů PRVKY

Přírodopis 9. Přehled minerálů PRVKY Přírodopis 9 10. hodina Přehled minerálů PRVKY Mgr. Jan Souček Základní škola Meziměstí I. Prvky V přírodě existuje přes 20 minerálů tvořených samostatnými prvky. Dělí se na kovy: měď (Cu), stříbro (Ag),

Více

1. Co je to mineralogie = věda o minerálech (nerostech), podmínkách jejich vzniku, stavbě a chemickém složení

1. Co je to mineralogie = věda o minerálech (nerostech), podmínkách jejich vzniku, stavbě a chemickém složení Přírodopis 9. třída pracovní list Téma: Mineralogie Jméno:. 1. Co je to mineralogie = věda o minerálech (nerostech), podmínkách jejich vzniku, stavbě a chemickém složení 2. Definice minerálu = nerost =

Více

VI. skupina PS, ns 2 np4 Kyslík, síra, selen, tellur, polonium

VI. skupina PS, ns 2 np4 Kyslík, síra, selen, tellur, polonium VI. skupina PS, ns 2 np4 Kyslík, síra, selen, tellur, polonium O a S jsou nekovy (tvoří kovalentní vazby), Se, Te jsou polokovy, Po je typický kov O je druhý nejvíce elektronegativní prvek vytváření oktetové

Více

Určování hlavních horninotvorných minerálů

Určování hlavních horninotvorných minerálů Určování hlavních horninotvorných minerálů Pro správné určení horniny je třeba v prvé řadě poznat texturu a strukturu horninového vzorku a poté rozeznat základní minerály, které horninu tvoří. Každá hornina

Více

Hlavní činitelé přeměny hornin. 1. stupeň za teploty 200 C a tlaku 200 Mpa. 2.stupeň za teploty 400 C a tlaku 450 Mpa

Hlavní činitelé přeměny hornin. 1. stupeň za teploty 200 C a tlaku 200 Mpa. 2.stupeň za teploty 400 C a tlaku 450 Mpa Přeměna hornin Téměř všechna naše pohraniční pohoří jako Krkonoše, Šumava, Orlické hory jsou tvořena vyvřelými a hlavně přeměněnými horninami. Před několika desítkami let se dokonce žáci učili říkanku"žula,

Více

Pedogeochemie VÁPNÍK V PŮDĚ. Vápník v půdě HOŘČÍK V PŮDĚ. 12. přednáška. Koloběh a přeměny vápníku v půdě

Pedogeochemie VÁPNÍK V PŮDĚ. Vápník v půdě HOŘČÍK V PŮDĚ. 12. přednáška. Koloběh a přeměny vápníku v půdě Pedogeochemie 12. přednáška VÁPNÍK V PŮDĚ v půdách v průměru 0,057 (0,0001 32) % vápnité sedimenty > bazické vyvřeliny > kyselé vyvřeliny plagioklasy, pyroxeny kalcit, dolomit, anhydrit, sádrovec fosfáty

Více

OBECNÁ FYTOTECHNIKA BLOK: VÝŽIVA ROSTLIN A HNOJENÍ Témata konzultací: Základní principy výživy rostlin. Složení rostlin. Agrochemické vlastnosti půd a půdní úrodnost. Hnojiva, organická hnojiva, minerální

Více

Geologie Horniny vyvřelé

Geologie Horniny vyvřelé Geologie Horniny vyvřelé Připravil: Ing. Jan Pecháček Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 strana 2 strana 3 HORNINY - jsou to

Více

HOŘČÍK KOVY ALKALICKÝCH ZEMIN. Pozn. Elektronová konfigurace valenční vrstvy ns 2

HOŘČÍK KOVY ALKALICKÝCH ZEMIN. Pozn. Elektronová konfigurace valenční vrstvy ns 2 HOŘČÍK KOVY ALKALICKÝCH ZEMIN Pozn. Elektronová konfigurace valenční vrstvy ns 2 Hořčík Vlastnosti: - stříbrolesklý, měkký, kujný kov s nízkou hustotou (1,74 g.cm -3 ) - diagonální podobnost s lithiem

Více

Rozvoj znalostí a kompetencí žáků v oblasti geověd na Gymnáziu Chotěboř a Základní škole a Mateřské škole Maleč. Doteky geologie.

Rozvoj znalostí a kompetencí žáků v oblasti geověd na Gymnáziu Chotěboř a Základní škole a Mateřské škole Maleč. Doteky geologie. Rozvoj znalostí a kompetencí žáků v oblasti geověd na Gymnáziu Chotěboř a Základní škole a Mateřské škole Maleč Doteky geologie Kvarta Doteky geologie Obsahvýukového bloku: nerostné suroviny - druhy nerostných

Více

Fyzikální a chemické vlastnosti minerálů. Cvičení 1GEPE + 1GEO1

Fyzikální a chemické vlastnosti minerálů. Cvičení 1GEPE + 1GEO1 Fyzikální a chemické vlastnosti minerálů Cvičení 1GEPE + 1GEO1 1 Pro popis a charakteristiku minerálních druhů je třeba zná jejich základní fyzikální a chemické vlastnosti. Tyto vlastnosti slouží k přesné

Více

MINERÁLY I Minerály I

MINERÁLY I Minerály I MINERÁLY I Součástí projektu Geovědy vedle workshopů, odborných exkurzí a tvorby výukových materiálů je i materiální vybavení škol, které se do tohoto projektu přihlásily. Situace ve výbavě školních kabinetů

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL

DIGITÁLNÍ UČEBNÍ MATERIÁL DIGITÁLNÍ UČEBNÍ MATERIÁL Pořadové číslo DUM 253 Jméno autora Jana Malečová Datum, ve kterém byl DUM vytvořen 10.2.2012 Ročník, pro který je DUM určen 9. Vzdělávací oblast (klíčová slova) Člověk a příroda

Více

Možnosti rozvoje stavebnictví ve vazbě na zásoby stavebních surovin v ČR

Možnosti rozvoje stavebnictví ve vazbě na zásoby stavebních surovin v ČR Možnosti rozvoje stavebnictví ve vazbě na zásoby stavebních surovin v ČR Jaromír Starý, Josef Godany Želešice 2012: stavební kámen - hornblendit 1 Základní informace o stavebních surovinách v ČR Termín

Více

Mineralogie 4. Přehled minerálů -oxidy

Mineralogie 4. Přehled minerálů -oxidy Mineralogie 4 Přehled minerálů -oxidy 4. Oxidy - sloučeniny různých prvků s kyslíkem - vodu buď neobsahují - bezvodé oxidy - nebo ji obsahují vázanou ve své struktuře - vodnaté oxidy (zpravidla jsou amorfní)

Více

Učíme se v muzeu. Výlet za geologickými zajímavostmi Karlových Varů

Učíme se v muzeu. Výlet za geologickými zajímavostmi Karlových Varů Učíme se v muzeu www.ucimesevmuzeu.cz www.kvmuz.cz Legenda: otázka doporučení + zajímavost Pracovní list pro žáky Výlet za geologickými zajímavostmi Karlových Varů Úvod: Lázeňské město Karlovy Vary leží

Více

Pedologie. Půda je přírodní bohatství. Zákony na ochranu půdního fondu

Pedologie. Půda je přírodní bohatství. Zákony na ochranu půdního fondu Pedologie Půda je přírodní bohatství. Zákony na ochranu půdního fondu Půda nově vzniklý přírodní útvar na styku geologických útvarů s atmosférou a povrchovou vodou zvětralá povrchová část zemské kůry,

Více

4. MINERALOGICKÁ TŘÍDA OXIDY. - jedná se o sloučeniny kyslíku s jiným prvkem (křemíkem, hliníkem, železem, uranem).

4. MINERALOGICKÁ TŘÍDA OXIDY. - jedná se o sloučeniny kyslíku s jiným prvkem (křemíkem, hliníkem, železem, uranem). 4. MINERALOGICKÁ TŘÍDA OXIDY - jedná se o sloučeniny kyslíku s jiným prvkem (křemíkem, hliníkem, železem, uranem). Výskyt: Oxidy se vyskytují ve svrchních částech zemské kůry (v místech, kde je litosféra

Více

VY_32_INOVACE_04.03 1/12 3.2.04.3 Krystalová struktura a vlastnosti minerálů Krystalová soustava

VY_32_INOVACE_04.03 1/12 3.2.04.3 Krystalová struktura a vlastnosti minerálů Krystalová soustava 1/12 3.2.04.3 Krystalová soustava cíl rozeznávat krystalové soustavy - odvodit vlastnosti krystalových soustav - zařadit základní minerály do krystalických soustav - minerály jsou pevné látky (kromě tekuté

Více

Jan Valenta. Katedra geotechniky K135 (5. patro budova B) Místnost B502 Konzultační hodiny: Jinak kdykoliv po dohodě: Jan.valenta@fsv.cvut.

Jan Valenta. Katedra geotechniky K135 (5. patro budova B) Místnost B502 Konzultační hodiny: Jinak kdykoliv po dohodě: Jan.valenta@fsv.cvut. Jan Valenta Katedra geotechniky K135 (5. patro budova B) Místnost B502 Konzultační hodiny: Jinak kdykoliv po dohodě: Jan.valenta@fsv.cvut.cz Doporučená literatura skripta: Chamra,S.- Schröfel,J.- Tylš,V.(2004):

Více

SEKCE B TĚŽBA A DOBÝVÁNÍ

SEKCE B TĚŽBA A DOBÝVÁNÍ SEKCE B TĚŽBA A DOBÝVÁNÍ 05 Černé a hnědé uhlí a lignit 05.1 Černé uhlí 05.10 Černé uhlí 05.10.1 Černé uhlí 05.10.10 Černé uhlí - brikety, bulety a podobná tuhá paliva vyrobená z černého uhlí (19.20.11)

Více

Vyučující po spuštění prezentace může provádět výklad a zároveň vytvářet zápis. Výklad je doprovázen cvičeními k osvojení probírané tématiky.

Vyučující po spuštění prezentace může provádět výklad a zároveň vytvářet zápis. Výklad je doprovázen cvičeními k osvojení probírané tématiky. Projekt: Příjemce: Tvořivá škola, registrační číslo projektu CZ.1.07/1.4.00/21.3505 Základní škola Ruda nad Moravou, okres Šumperk, Sportovní 300, 789 63 Ruda nad Moravou Zařazení materiálu: Šablona: Sada:

Více

ÚZEMNĚ ANALYTICKÉ PODKLADY PRO ÚZEMÍ ORP KUTNÁ HORA ÚPLNÁ AKTUALIZACE V ROCE 2010 VYHODNOCENÍ STAVU A VÝVOJE ÚZEMÍ TEXTOVÁ ČÁST

ÚZEMNĚ ANALYTICKÉ PODKLADY PRO ÚZEMÍ ORP KUTNÁ HORA ÚPLNÁ AKTUALIZACE V ROCE 2010 VYHODNOCENÍ STAVU A VÝVOJE ÚZEMÍ TEXTOVÁ ČÁST ÚZEMNĚ ANALYTICKÉ PODKLADY PRO ÚZEMÍ ORP KUTNÁ HORA ÚPLNÁ AKTUALIZACE V ROCE 2010 VYHODNOCENÍ STAVU A VÝVOJE ÚZEMÍ TEXTOVÁ ČÁST Město Kutná Hora, Havlíčkovo náměstí 552, 284 01 Kutná Hora prosinec 2010

Více

SULFIDY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 14. 3. 2013. Ročník: osmý

SULFIDY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 14. 3. 2013. Ročník: osmý Autor: Mgr. Stanislava Bubíková SULFIDY Datum (období) tvorby: 14. 3. 2013 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Anorganické sloučeniny 1 Anotace: Žáci se seznámí s dvouprvkovými

Více

Minerály jejich fyzikální a chemické vlastnosti. Horniny magmatické, sedimentární, metamorfované

Minerály jejich fyzikální a chemické vlastnosti. Horniny magmatické, sedimentární, metamorfované Horninotvorné minerály Magmatické horniny Hlavní témata dnešní přednášky Co jsou to minerály a horniny Minerály jejich fyzikální a chemické vlastnosti Systém minerálů Vznik minerálů Přehled hlavních horninotvorných

Více

MINERÁLY (NEROSTY) PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

MINERÁLY (NEROSTY) PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST MINERÁLY (NEROSTY) PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST VY_52_INOVACE_263 VZDĚLÁVACÍ OBLAST: ČLOVĚK A PŘÍRODA VZDĚLÁVACÍ OBOR: PŘÍRODOPIS ROČNÍK: 9 CO JE MINERÁL

Více

Potok Besének které kovy jsou v minerálech říčního písku?

Potok Besének které kovy jsou v minerálech říčního písku? Potok Besének které kovy jsou v minerálech říčního písku? Karel Stránský, Drahomíra Janová, Lubomír Stránský Úvod Květnice hora, Besének voda dražší než celá Morava, tak zní dnes již prastaré motto, které

Více

Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D.

Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D. Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D. Rentgenová fluorescenční spektrometrie ergiově disperzní (ED-XRF) elé spektrum je analyzováno najednou polovodičovým

Více

Horniny a nerosty miniprojekt

Horniny a nerosty miniprojekt Horniny a nerosty miniprojekt Zpracovali: žáci Základní školy Vsetín, Luh 1544 11.12.2013 Obsah 1. Úvod... 2 2. Cíl projektu... 2 3. Vypracování... 3 3.1. Sbírka nerostů... 3 3.2. Vzorky hornin a nerostů

Více

Nanokompozity na bázi polymer/jíl

Nanokompozity na bázi polymer/jíl Nanokompozity na bázi polymer/jíl Nanokompozity Nanokompozity se skládají ze dvou hlavních složek polymerní matrice a nanoplniva. Nanoplniva můžeme rozdělit na organická a anorganická, podle výskytu na

Více

Klasifikace struktur

Klasifikace struktur Klasifikace struktur typ vazby iontové, kovové, kovalentní, molekulové homodesmické x heterodesmické stechiometrie prvky, binární: X, X, m X n, ternární: m B k X n,... Title page symetrie prostorové grupy

Více

VY_32_INOVACE_13_KALCIT_27

VY_32_INOVACE_13_KALCIT_27 VY_32_INOVACE_13_KALCIT_27 Autor:Vladimír Bělín Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Číslo projektu: CZ.1.07/1.4.00/21.2400

Více

14 OSTATNÍ NEROSTNÉ SUROVINY A PRÁCE SOUVISEJÍCÍ S JEJICH TĚŽBOU. Kód SKP N á z e v HS/CN

14 OSTATNÍ NEROSTNÉ SUROVINY A PRÁCE SOUVISEJÍCÍ S JEJICH TĚŽBOU. Kód SKP N á z e v HS/CN Poznámka: Práce spojené s těžbou a hrubým opracováním ostatních nerostných surovin se klasifikují v příslušné třídě tohoto oddílu. 14.1 Stavební kámen 14.11 Stavební kámen 14.11.1 Kameny pro výtvarné práce

Více

tvorbou anionu tato schopnost je menší než u kyslíku

tvorbou anionu tato schopnost je menší než u kyslíku Chalkogeny Elektronová konfigurace:. => valenčních elektronů => maximální oxidační číslo je Odlišnost vlastností O 2 a ostatních prvků způsobeny: vysokou elektronegativitou O neschopností O tvořit excitované

Více

Úprava podzemních vod

Úprava podzemních vod Úprava podzemních vod 1 Způsoby úpravy podzemních vod Neutralizace = odkyselování = stabilizace vody odstranění CO 2 a úprava vody do vápenato-uhličitanové rovnováhy Odstranění plynných složek z vody (Rn,

Více

Škola: Střední škola obchodní, České Budějovice, Husova 9

Škola: Střední škola obchodní, České Budějovice, Husova 9 Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona

Více

Soli jsou chemické sloučeniny složené z kationtů kovů (nebo amonného kationtu NH4+) a aniontů kyselin.

Soli jsou chemické sloučeniny složené z kationtů kovů (nebo amonného kationtu NH4+) a aniontů kyselin. Soli Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Hana Bednaříková. Dostupné z Metodického portálu www.rvp.cz; ISSN 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozuje

Více

VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu

VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu Číslo projektu Škola Šablona klíčové aktivity V/2 CZ.1.07/1.4.00/21.1825 Sada Přírodopis 6-9 Základní škola s rozšířenou výukou výtvarné výchovy, Teplice, Koperníkova

Více

Ukázky z pracovních listů B

Ukázky z pracovních listů B Ukázky z pracovních listů B 1) Označ každou z uvedených rovnic správným názvem z nabídky. nabídka: termochemická, kinetická, termodynamická, Arrheniova, 2 HgO(s) 2Hg(g) + O 2 (g) H = 18,9kJ/mol v = k.

Více

Stavební hmoty. Přednáška 9

Stavební hmoty. Přednáška 9 Stavební hmoty Přednáška 9 Autoklávované výrobky Autoklávování propařování za zvýšeného tlaku a teploty (nad 100 C) ve speciálních nádobách = autoklávech hydrotermální vytvrzování silikátových výrobků

Více

Technologie pro úpravu bazénové vody

Technologie pro úpravu bazénové vody Technologie pro úpravu GHC Invest, s.r.o. Korunovační 6 170 00 Praha 7 info@ghcinvest.cz Příměsi významné pro úpravu Anorganické látky přírodního původu - kationty kovů (Cu +/2+, Fe 2+/3+, Mn 2+, Ca 2+,

Více