Střední průmyslová škola, Hronov, Hostovského 910, Hronov. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT M/01 Strojírenství

Rozměr: px
Začít zobrazení ze stránky:

Download "Střední průmyslová škola, Hronov, Hostovského 910, 549 31 Hronov. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT 23-41-M/01 Strojírenství"

Transkript

1 Protokol SADA DUM Číslo sady DUM: Název sady DUM: Název a adresa školy: Registrační číslo projektu: Číslo a název šablony: Obor vzdělávání: Tematická oblast ŠVP: Předmět a ročník Autor: Použitá literatura: VY_32_INOVACE_STR_4 Hydrostatika Střední průmyslová škola, Hronov, Hostovského 910, Hronov CZ.1.07/1.5.00/ III/2 Inovace a zkvalitnění výuky prostřednictvím ICT M/01 Strojírenství Hydromechanika Hydrostatika Mechanika, 3. ročník teorie Ing. Josef Jankovič Mojmír Hofírek, Mechanika tekutin, hydromechanika a základy aerodynamiky, učebnice, Fragment Datum vytvoření a odzkoušení: Anotace Využití ve výuce materiál poskytuje žákům možnost pochopení základních pojmů a zákonitostí hydrostatiky, poskytuje návod na řešení úloh silového působení kapalin v relativním klidu na jednotlivé plochy v uzavřených i otevřených nádobách, řešení úloh relativní rovnováhy kapalin, řešení úloh při aplikaci Pascalova a Archimedova zákona, zjišťování hodnot přetlaků i podtlaků prostřednictvím rovnováhy na manometru materiál používá učitel pro větší názornost a za účelem snadnějšího pochopení a osvojení si základních pojmů a zákonitostí hydrostatiky žáky, materiál je vhodný jako podklad pro konkrétní výpočty v hydrostatice Vytvořeno v rámci projektu OP VK zavedení nové oblasti podpory 1.5 s názvem Zlepšení podmínek pro vzdělávání na středních školách. Stránka 1 z 1

2 VY_32_INOVACE_STR_4_01 Vytvořil: Ing. Josef Jankovič V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz.1.07/1.5.00/ Z.1.07/1.5.00/ AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

3 HYDROMECHANIKA HYDROSTATIKA

4 Rozdělení hydromechaniky Hydrostatika kapaliny vzhledem ke stěnám nádob, potrubí se nepohybuje, neproudí, nebo téměř neproudí otevřené nebo uzavřené nádoby s kapalinou v klidu, relativním klidu měření tlaků kapalin hydraulické brzdové, spojkové systémy hydraulické lisy a zvedáky plováky, prostředky pro dopravu po vodě

5 PŘÍKLADY Z PRAXE Zjištění tlaku v uzavřené nádobě nad hladinou Hydraulický zvedák - princip obr. 1 obr. 2

6 Rozdělení hydromechaniky Hydrodynamika kapalina vzhledem ke stěnám nádob, potrubí se pohybuje určitou relativní rychlostí doprava kapalin v potrubí ztráty při proudění, silové účinky proudících kapalin zákonitosti činnosti lopatkových strojů (vodní turbíny, čerpadla) zjišťování rychlosti a tlaku proudící kapaliny určení objemového případně hmotnostního průtoku kapalin

7 PŘÍKLADY Z PRAXE hydrogenerátor - čerpadlo hydromotor vodní turbína obr. 3 obr. 4

8 Zdroje Obr.1 Obr.2 Obr.3 Travaini odstředivá čerpadla - AxFlowwww.axflow.com Obr.4 pelton.gifmve.energetika.cz Mojmír Hofírek, Mechanika tekutin, hydromechanika a základy aerodynamiky, učebnice, Fragment

9 Děkuji za pozornost

10 VY_32_INOVACE_STR_4_02 Vytvořil: Ing. Josef Jankovič V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz.1.07/1.5.00/ Z.1.07/1.5.00/ AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

11 HYDROMECHANIKA FYZIKÁLNÍ VLASTNOSTI KAPALIN

12 Fyzikální vlastnosti kapalin Pojem tekutiny zahrnuje: kapaliny nepatrné změny objemu s tlakem a teplotou nevyplňují veškerý možný prostor vytváří hladinu jasné rozhraní mezi kapalinou a okolním prostorem menší vazbové síly mezi jednotlivými molekulami

13 Pojem tekutiny zahrnuje: vzdušniny (plyny, páry) prudké změny objemu při změně tlaku a teploty vyplňují veškerý možný prostor nevytváří hladinu podstatně slabší vazbové síly mezi jednotlivými molekulami než u kapalin

14 Fyzikální vlastnosti kapalin hustota kapaliny teplotní objemová roztažnost vnitřní tření viskozita tekutost povrchové napětí (kapilární elevace, deprese) teplota varu (závislost na tlaku) stlačitelnost kapalin (Newtonské kapaliny) vypařovací schopnost (voda, etanol)

15 Hustota kapaliny Kolik váží 1 m 3 dané kapaliny, poměr zjištěné hmotnosti kapaliny a příslušného objemu zjištění vážení a změření objemu (odměrné nádoby, pyknometry) jiný princip hustoměry označení řeckým písmenem (ró) základní vztah = m V hlavní jednotka kg/m 3 m - hmotnost V - objem

16 Objemová roztažnost kapalin Zvětšení nebo zmenšení původního objemu kapaliny v závislosti na změně teploty kapaliny (při stejném váhovém množství kapaliny) zjištění změření objemu před a po změně teploty (odměrné nádoby) přírůstek (úbytek) objemu označení ΔV (Δ delta) základní vztah ΔV = V 0.. Δt hlavní jednotka m 3 V 0 původní objem - součinitel objemové roztažnosti Δt změna teploty

17 Viskozita kapaliny dynamická viskozita součinitel udávající závislost mezi napětím dvou sousedních rovinných vrstev proudící kapaliny, které mají různé rychlosti pohybu ve směru rychlosti, tření mezi sousedními vrstvami vnitřní tření kapalin zjištění pomocí speciálních přístrojů - viskozimetrů označení řeckým písmenem (éta) empirické vztahy podle způsobů měření hlavní jednotka Pa.s (kg.m -1.s -1 ) často používaná P (Poise) (g.cm -1.s -1 )

18 Zdroje Mojmír Hofírek, Mechanika tekutin, hydromechanika a základy aerodynamiky, učebnice, Fragment

19 Děkuji za pozornost

20 VY_32_INOVACE_STR_4_03 Vytvořil: Ing. Josef Jankovič V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz.1.07/1.5.00/ Z.1.07/1.5.00/ AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

21 HYDROMECHANIKA VISKOZITA KAPALIN

22 Viskozita (vazkost) fyzikální veličina, fyzikální vlastnost tekutin (kapalin) udává poměr mezi tečným napětím a změnou rychlosti v závislosti na vzdálenosti mezi sousedními vrstvami při proudění skutečné kapaliny charakterizuje vnitřní tření závisí především na přitažlivých silách mezi částicemi, kapaliny s větší přitažlivou silou mají větší viskozitu, větší viskozita znamená větší brzdění pohybu kapaliny nebo těles v kapalině. pro ideální kapalinu má viskozita nulovou hodnotu kapaliny s nenulovou viskozitou se označují jako viskózní (vazké)

23 Vyjádření principu viskozity sleduj souvislosti s obrázkem ustálené laminární proudění molekuly v jednotlivých vodorovných vrstvách se pohybují rychlostí proudění kapalina dokonale smáčí stěnu, (potrubí) rychlost proudění kapaliny je v tomto případě 0 čím jsou vodorovné vrstvy dále od stěny, tím se její molekuly pohybují vyšší rychlostí

24 Vyjádření principu viskozity ve vrstvě od stěny potrubí ve vzdálenosti y sleduj souvislosti s obrázkem mají molekuly rychlost proudění v ve vrstvě vzdálené o kousek dy (přírůstek vzdálenosti) od původní vrstvy je rychlost proudění molekul o něco vyšší (dále od stěny), něco = dv (přírůstek rychlosti), tedy rychlost molekul je v+dv horní vrstva chce být rychlejší než spodní mezi molekulami těchto dvou vrstev působí slabé vzájemné síly (koheze soudržnost), působí proti tendenci vyšší rychlosti horní vrstvy tedy mezi vrstvami vzniká pnutí, tečné napětí, vzniká odpor proti tečení vnitřní tření

25 Vyjádření principu viskozity sleduj souvislosti s obrázkem vyjádření závislosti napětí mezi sousedními vrstvami je tím vyšší, čím vyšší je rozdíl jejich rychlosti (přímá úměrnost) dv dy pro rovnost zavádíme součinitel úměrnosti, tedy =. dv dy součinitel nazýváme dynamickou viskozitou

26 Dynamická viskozita =. dv dy matematická úprava = dv. dy - dynamická viskozita hlavní jednotka = Pa m. s. m = N.m-2.s označení řeckým písmenem (eta) N.s.m -2 (Pa.s) vyjádřeno pomocí jednotek SI (kg.m -1.s -1 ) příliš velká jednotka často používaná P (poise) 1P = g.cm -1.s -1

27 Kinematická viskozita definována jako poměr dynamické viskozity a hustoty kapaliny označení řeckým písmenem (ný) = hlavní jednotka = Pa.s kg. m3 = N. s m 2. kg. m3 = kg.m.s 2.s m 2.kg. m3 = m 2 s hlavní jednotka m 2.s -1 pro praxi příliš velká jednotka často používaná St (stokes) 1St = 1 cm2 s-1

28 Příklady hodnot Látka voda 0,001 benzín 0,00053 etanol (líh) 0,0012 glycerín 1,48 olej 0,00149 dynamická viskozita (N.s.m -2 ) Látka voda 1, benzín 7, glycerín 1, topný olej 5, motorový olej 9, Kinematická viskozita υ (m 2 /s) Teplota C (m 2 /s) Teplota C (m 2 /s) Teplota C (m 2 /s) Teplota C (m 2 /s) 0 1, , , , , , , , , , , ,

29 Zdroje s_stanoveni_viskozity_roztoku/teorie.htm

30 Děkuji za pozornost

31 VY_32_INOVACE_STR_4_04 Vytvořil: Ing. Josef Jankovič V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz.1.07/1.5.00/ Z.1.07/1.5.00/ AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

32 HYDROMECHANIKA HYDROSTATIKA POJMY - TLAK, PŘETLAK, PODTLAK

33 Atmosférický tlak tlak vytvořený vrstvami atmosféry (obal) gravitační působení Země na vrstvy atmosféry vyvolá tlakovou sílu kolmo na libovolnou plochu S mění se v určitém rozsahu (tlaková výše, níže) klesá s rostoucí nadmořskou výškou buď označení pa atmosférický nebo pb barometrický dle používaných jednotek

34 Normální tlak normální atmosférický tlak proměnlivost (počasí) tlak se mění v určitém rozsahu (tlaková výše, níže) pohyby Země, změny teplot, vlhkosti, proudění vrstev nejvyšší u hladiny moře klesá s rostoucí nadmořskou výškou Nutnost stanovení jednotné hodnoty mezinárodní dohodou pa = Pa

35 Rozsah atmosférického tlaku ve střední Evropě nejnižší hodnoty Pa = 935 hpa tlaková níže dohodnutý normální tlak Pa = 1013,25 hpa ve střední Evropě nejvyšší hodnoty Pa = 1055 hpa tlaková výše hpa hektopascal jednotka používaná v meteorologii

36 ABSOLUTNÍ TLAK, PODTLAK A PŘETLAK absolutní hodnota veličiny je vždy vzhledem k její nulové hodnotě nulová hodnota pro tlak je 0 Pa (vzduchoprázdno vaccum) absolutní tlak je tedy hodnota tlaku určená k 0-vému tlaku tedy k 0 Pa přetlak a podtlak jsou hodnoty tlaků určované vzhledem k tlaku atmosférickému (normálnímu) viz obr. další snímek

37 Grafické znázornění absolutní tlak přetlak podtlak absolutní tlak normální tlak Pa absolutní tlak 0 Pa vaccum

38 Příklady určení hodnot tlaků přetlak 5000 Pa absolutní tlak? Pa je navíc oproti pa Pa Pa p = Pa podtlak Pa absolutní tlak? o Pa méně oproti pa Pa Pa p = Pa absolutní tlak Pa přetlak? kolik je navíc oproti pa Pa Pa p = Pa

39 Děkuji za pozornost

40 VY_32_INOVACE_STR_4_05 Vytvořil: Ing. Josef Jankovič V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz.1.07/1.5.00/ Z.1.07/1.5.00/ AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

41 HYDROMECHANIKA HYDROSTATIKA JEDNOTKY TLAKU, HISTORIE A VZTAHY MEZI JEDNOTKAMI

42 Jednotky tlaku Používané v meteorologii (určování tlaku v atmosféře Země) Používané v technických aplikacích (např. hydraulické a pneumatické mechanismy) o Jednotlivé jednotky vznikaly historicky dle pokusů, objevů a dohod o Dnes existuje větší množství jednotek, používat bychom měli jednotky dle soustavy jednotek SI (Pa, hpa, kpa,mpa)

43 pascal 1Pa torr 1torr Jednotka podle soustavy jednotek SI vychází z definice tlaku, rovnoměrné rozložení síly na určitou plochu p = F N kg. m. s S rozměr dle jednotek SI 2 Pa = = m = 2 Jednotky používané pro vyjádření atmosférického tlaku (obal Země) odpovídá milimetru rtuťového sloupce při pokusu měření atmosférického tlaku italským přírodovědcem J. E. Torricellim ( ).V roce 1980 byla zrušena, místo ní se používá jednotka soustavy SI pascal (Pa) a její násobky. Tlak 1 torr je roven hydrostatickému tlaku vyvolanému 1mm sloupcem rtuti 1 torr = 1 mm Hg = 133,322 Pa m 2 m -1 kg s -2

44 fyzikální atmosféra 1 atm bar 1bar Jednotky používané pro vyjádření atmosférického tlaku (obal Země) tato jednotka se alternativně nazývala též absolutní atmosféra se dříve používala zejména ve fyzice a přírodních vědách obecně (zejména v meteorologii).byla dohodnuta jako normální tlak vzduchu při hladině moře. Je dána přesně převodním vztahem na jednotku pascal soustavy SI: 1 atm = Pa je vedlejší jednotkou tlaku v soustavě SI. Slovo bar pochází z řečtiny, kde báros znamená tíhu. Bar je stále užíván pro svou názornost, neboť přibližně odpovídá starší jednotce tlaku jedné atmosféry 1 at,která odpovídala přibližně atmosférickému tlaku na hladině moře (fyzikální atmosféra): 1 bar = pascalů (Pa)= 100 kpa = 0,1 MPa

45 psi 1psi Jednotky používané v technické praxi technická atmosféra 1 at tato jednotka se dříve používána k měření tlaku v technických oborech, především ve strojírenství pro vyjádření celkového tlaku, v případě přetlaku se používalo i označení atp (atmosféra technická přetlaku) je definovaná jako tlak odpovídající gravitační síle působící prostřednictvím tělesa o hmotnosti 1 kg na plochu jednoho cm 2 technická atmosféra odpovídá hydrostatickému tlaku 10 m vodního sloupce a je definována přesně převodním vztahem na jednotku pascal soustavy SI: 1 at = ,5 Pa anglosaská jednotka tlaku je definovaná jako tlak odpovídající gravitační síle působící prostřednictvím tělesa o hmotnosti jedné libry na plochu jednoho čtverečného palce je definována přesně převodním vztahem na jednotku pascal soustavy SI: 1 psi = 1 lbf/in² 6 894,757 Pa

46 Vztahy mezi jednotkami tlaku 1 atm = Pa 1 at = ,5 Pa 1 bar = Pa 1 torr = 133,322 Pa 1 psi = 6 894,757 Pa 1 atm = 760 torr = 1,013 bar = 14, psi = Pa 1 at = 735,559 torr = 0, bar = 14, psi = ,5 Pa

47 Zdroje _(jednotka)

48 Děkuji za pozornost

49 VY_32_INOVACE_STR_4_06 Vytvořil: Ing. Josef Jankovič V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz.1.07/1.5.00/ Z.1.07/1.5.00/ AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

50 HYDROMECHANIKA HYDROSTATICKÝ TLAK

51 Příčiny V gravitačním poli Země působí na kapalinu (částice kapaliny) gravitační síla Δm ΔG = Δm.g m= ΣΔm G =ΣΔG = ΣΔm.g

52 SILOVÉ ÚČINKY KAPALINY jednotlivé částice Δm kapaliny vyplňují možný prostor působí na ně stejné gravitační zrychlení g částice a kapalina jako celek chtějí mít minimální polohovou energii hladina zaujme vodorovnou polohu, poloha kolmá k výslednému působícímu zrychlení ( Země a hladina moře), v našem případě k g

53 Silové působení na dno tíha G se rovnoměrně rozloží na dno nádrže m, na dno o ploše S působí výsledná síla G takto je definován obecně tlak G S jedná se o tlak od kapaliny v klidu tedy o hydrostatický tlak tíha kapaliny G je dána součinem hmotnosti m kapaliny a gravitačního zrychlení g hmotnost m je dána součinem objemu kapaliny V a její hustoty

54 Hydrostatický tlak podle předchozích poznatků tedy : ph = G S m. g = = S V. S. g jestliže h výška hladiny v nádobě m, V = S. h h G S S. h. ph =. g = S h.. g ph = h.. g hlavní jednotkou hydrostatického tlaku je 1 Pa p h [ N m 2 ] = [Pa]

55 Průběh hydrostatického tlaku směrem od hladiny ke dnu nádoby jak se hydrostatický tlak v nádobě mění? m, h G S větší výška h větší množství kapaliny větší tíha na dno nádoby G vyšší hydrostatický tlak na dno maximální tlak je na dně nádoby naplněné kapalinou do výšky h při naplnění do výšky h/2 je na dně poloviční při naplnění do výšky h/4 je čtvrtinový není-li kapalina, h= 0, tlak na dno je 0 Pa

56 Grafické znázornění průběhu hydrostatického tlaku směrem od hladiny ke dnu nádoby 0 p h p 4 = 0.. g m, h/2 h/4 p 3 = h/4.. g h G p 2 = h/2.. g S p 1 = h.. g h

57 Děkuji za pozornost

58 VY_32_INOVACE_STR_4_07 Vytvořil: Ing. Josef Jankovič V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz.1.07/1.5.00/ Z.1.07/1.5.00/ AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

59 HYDROMECHANIKA SÍLA NA DNO NÁDOBY OTEVŘENÁ NÁDOBA

60 Otevřená nádoba nad hladinou atmosférický tlak p b V gravitačním poli Země působí na kapalinu gravitační síla pb Na dně nádoby je hydrostatický tlak p h m, ph h p h = h.. g v případě prázdné nádoby na dno z obou stran působí atmosférický tlak p b pb silové účinky tohoto tlaku : jsou co do velikosti stejné orientovány proti sobě navzájem se ruší ve výsledné síle na dno s tímto tlakem p b nemusíme počítat!

61 Nádoba otevřená nad hladinou atmosférický tlak pb pb Tlak na ploše dna S vyvodí sílu na dno m, Sílu na dno od kapaliny o hustotě označíme F DNO h FDNO plocha dna S Plocha dna je S ph uvažujeme li obdélníkové dno o rozměrech a, b S = a. b FDNO = ph. S S = a. b pb FDNO = ph. S = h.. g. S jednotky [N] [Pa] [m 2 ]

62 jiná úvaha pro určení síly na dno nádoby těleso o hmotnosti m = a. b. h. představuje tíhu G = m. g h c tato tíha působí na obdélníkovou podložku o rozměrech a, b ( plocha dna) tíha vytváří tlak a zároveň je sílou, která zatěžuje podložku (dno nádoby) a b G = FDNO = V.. g = h.. g. a. b m ph S

63 Děkuji za pozornost

64 VY_32_INOVACE_STR_4_08 Vytvořil: Ing. Josef Jankovič V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz.1.07/1.5.00/ Z.1.07/1.5.00/ AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

65 HYDROMECHANIKA SÍLA NA DNO NÁDOBY S PŘETLAKEM NAD HLADINOU

66 Nádoba uzavřená nad hladinou přetlak Δp představa : plocha dna S = a. b (pb) (p b + Δp) Δp FDNO1 1. nejdříve nádoba uzavřená, prázdná a v ní je přetlak Δp přetlak je rozdíl absolutního tlaku a barometrického v uzavřené nádobě je tlak ve všech místech stejný uvnitř působí na dno atmosférický tlak + přetlak p b + Δp z vnější strany působí na dno nádoby tlak atmosférický p b účinky barometrického tlaku působí na dno z obou stran se navzájem ruší zbývá tedy pouze účinek přetlaku Δp působící na plochu dna tuto sílu na dno od přetlaku Δp označíme F DNO1 určení hodnoty síly (působí zevnitř) : FDNO1 = Δp. S = Δp. a. b

67 představa : 2. nádoba je otevřená, naplněná kapalinou ( ) do výšky h pb na dno působí síla vyvozená hydrostatickým tlakem p h ( viz. předchozí) h m, FDNO2 sílu označíme F DNO2 určení hodnoty síly (působí zevnitř) : ph plocha dna S = a. b FDNO2 = ph. S = h.. g. S pb

68 Uzavřená nádoba s kapalinou a přetlakem ZÁVĚR : Výsledná působící síla na dno je dána součtem silových účinků F DNO1 síla na dno od přetlaku Δp pb + Δp F DNO2 síla na dno od kapaliny - hydrostatického tlaku p h výsledná síla na dno tedy : m, ph FDNO plocha dna S = a. b h FDNO = FDNO1 + FDNO2 FDNO = Δp. S + h.. g S FDNO = (Δp + h.. g). a. b pb působiště výsledné síly těžiště plochy dna (střed úhlopříček)

69 Děkuji za pozornost

70 VY_32_INOVACE_STR_4_09 Vytvořil: Ing. Josef Jankovič V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz.1.07/1.5.00/ Z.1.07/1.5.00/ AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

71 HYDROMECHANIKA SÍLY NA STĚNY NÁDOBY OTEVŘENÁ NÁDOBA

72 SÍLY NA STĚNY NÁDOBY nádoba má rozměry a, b, c h c rozměry dna jsou a, b plocha dna S = a. b nádoba je naplněna do výšky h kapalinou o hustotě nad hladinou v nádobě je tlak pb otevřená a b

73 o ze vnitřku i z vnější strany působí na stěny nádoby atmosférický tlak p b o jeho silové ůčinky se navzájem ruší Ze znalosti průběhu hydrostatického tlaku směrem od hladiny ke dnu nádoby ( viz obr.) vyplývá : na stěnu v úrovni hladiny nepůsobí žádný hydrostatický tlak h = 0, p h = 0 p b 0 p h v místě dna působí na stěnu maximální hydrostatický tlak p max = p h = h.. g p b m, h/2 h/2 h/4 p b průběh závislosti hydrostatického tlaku na hloubce h je lineární(podle přímky) na stěnu působí průměrný tlak h

74 p b 0 p h m, h/4 p b h/2 p b p stř h/2 h na stěnu působí průměrný tlak průměrná hodnota mezi 0 a maximem je při lineární závislosti polovina p h(h/2) = p stř = h.. g 2

75 SÍLA NA JEDNU ZE STĚN kapalina působí na plochu stěny plocha stěny má rozměry např. S = a. h m, p b h/4 0 p h p b na plochu stěny působí průměrný tlak p stř h/2 p b h p stř tedy síla na danou stěnu: (h/2) F STĚNA = p stř. S po dosazení : b rozměry nádoby a, b, c F STĚNA = h.. g 2. S

76 p b PŮSOBIŠTĚ SÍLY NA JEDNU ZE STĚN p b m, h/4 h/2 h 0 p h p b p stř zatížení stěny od tlaku má graficky trojúhelníkovitý charakter je-li trojúhelníkový charakter hledáme vlastně těžiště trojúhelníku těžiště je v 1/3 výšky našeho trojúhelníka výška je h b F STĚNA h 3 p max působiště síly na stěnu je ve výšce h/3 nad dnem rozměry nádoby a, b, c

77 Děkuji za pozornost

78 VY_32_INOVACE_STR_4_10 Vytvořil: Ing. Josef Jankovič V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz.1.07/1.5.00/ Z.1.07/1.5.00/ AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

79 HYDROMECHANIKA SÍLY NA STĚNY NÁDOBY V UZAVŘENÉ NÁDOBĚ S PŘETLAKEM Δp

80 SÍLY NA STĚNY NÁDOBY nádoba má rozměry a, b, c h Δp c rozměry dna jsou a, b plocha dna S = a. b nádoba je naplněna do výšky h kapalinou o hustotě nad hladinou v nádobě je přetlak Δp uzavřená a b

81 Řešení provedeme obdobně jako u síly na dno s přetlakem nad hladinou : uvažujeme nádobu uzavřenou, prázdnou s přetlakem Δp v druhé fázi uvažujeme vliv pouze kapaliny síla od kapaliny na stěnu v otevřené nádobě výsledný účinek je součtem jednotlivých účinků, tedy síly sečteme určíme působiště výslednice z těchto dvou sil z momentové podmínky

82 Nádoba uzavřená, prázdná nad hladinou přetlak Δp c plocha stěny S ST = a. c (p b + Δp) pb b pb F Δp Δp přetlak je rozdíl absolutního tlaku a barometrického v uzavřené nádobě je tlak ve všech místech stejný uvnitř působí na celou stěnu atmosférický tlak + přetlak p b + Δp z vnější strany působí na celou stěnu nádoby tlak atmosférický p b účinky tlaku p b působí na celou stěnu z obou stran se navzájem ruší na celou plochu stěny S ST působí zevnitř přetlak Δp označíme sílu od přetlaku na stěnu F Δp hodnoty síly (působí zevnitř) : FΔp = Δp. SST = Δp. a. c

83 Nádoba otevřená s kapalinou hustoty do výšky h m, p b h/2 0 p h p b síla na danou stěnu: F kap = p stř. S p b h p stř S = a. h F kap po dosazení : b rozměry nádoby a, b, c h.. g F kap =. 2 S

84 PŮSOBIŠTĚ SÍLY NA JEDNU ZE STĚN p b p b + Δp m, c/2 h x Fv F V F STĚNA b F Δp h 3 p b A působiště síly na stěnu od přetlaku Δp je ve výšce c/2 nad dnem působiště síly na stěnu od kapaliny je ve výšce h/3 nad dnem kde je působiště celkové síly na danou stěnu? o jedná se o dvě rovnoběžné síly o výsledná je rovnoběžná a je dána prostým součtem o působiště x Fv lze určit z momentové podmínky ke zvolenému bodu např. k bodu A

85 výsledná síla na stěnu v nádobě s přetlakem nad hladinou FΔp = Δp. SST = Δp. a. c F h.. g kap = p stř. S =. a. h 2 F V = FΔp + F kap Výsledná poloha působiště síly na obdélníkovou svislou stěnu rovnováha momentů k bodu A c 2. F V. x Fv = FΔp. + F kap x Fv c 2. = (FΔp. + F kap ) / F V h 3 h 3

86 Děkuji za pozornost

87 VY_32_INOVACE_STR_4_11 Vytvořil: Ing. Josef Jankovič V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz.1.07/1.5.00/ Z.1.07/1.5.00/ AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

88 HYDROMECHANIKA SÍLY NA ŠIKMOU STĚNU NÁDOBY V OTEVŘENÉ NÁDOBĚ (p b )

89 SÍLY NA ŠIKMOU STĚNU NÁDOBY nádoba má rozměry a, b, c rozměry dna jsou a, b p b plocha dna S = a. b c h nádoba je naplněna do výšky h kapalinou o hustotě nad hladinou v nádobě je tlak p b otevřená a b úhel sklonu boční stěny

90 budeme uvažovat silové účinky od tlaku samostatně, podobně jako rozklad šikmé síly na pravoúhlé složky F x a F y v prvním případě jako účinek tlaku na svislou stěnu v druhém případně jako na plochu části dna pod kapalinou tvaru klínu 0 c h p b Sp y Sp x F X p stř plochy na které tlak působí uvažujeme jako pravoúhlé průměty odpovídající smáčené šikmé stěně a b F y b

91 Určení ploch Sp x a Sp y - pravoúhlé průměty odpovídající smáčené šikmé stěně pravoúhlý průmět plochy ve vodorovném směru směr x p b obdélník o stranách b, h c h Sp x h Sp x =. b pravoúhlý průmět plochy ve svislém směru směr y h Sp y b b obdélník o stranách b, h/tg a h / tg Sp y = b. h / tg

92 Výsledná síla na stěnu Silový účinek ve směru x na svislou stěnu Silový účinek ve směru y na vodorovné dno F x = p stř. Sp x Sp x = b. h F y = p stř. Sp y Sp y = b. h / tg po dosazení : h.. g F x =. 2 b. h po dosazení : h.. g F y =. 2 b. h / tg F = F x 2 + F y 2

93 ZA POUŽITÍ NÁHRADY A ZNALOSTÍ : délka smáčené stěny směrem od dna L = h / sin tedy po dosazení : h = L. sin Sp x = b. L. sin Sp y = b. L. sin / tg sin Sp y = b. L. sin /( ) cos Sp y = b. L. cos F = F x 2 + F y 2 = p stř2. b 2. L 2. sin 2 + p stř2. b 2. L 2. cos 2 F = (sin 2 + cos 2 ) p stř. b. L. F = p stř. b. L = p stř. S smáčená plocha je S = b. L p stř = h.. g 2 (sin 2 + cos 2 ) = 1

94 ZÁVĚR : Výslednou sílu na obdélníkovou šikmou stěnu lze počítat jako součin středního tlaku na plochu celé smáčené šikmé stěny nemusíme počítat přes průměty šikmé plochy ve směru složek působící síly p stř = h.. g F = p b. L = p stř. stř S 2. S = b. L smáčená plocha

95 Děkuji za pozornost

96 VY_32_INOVACE_STR_4_12 Vytvořil: Ing. Josef Jankovič V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz.1.07/1.5.00/ Z.1.07/1.5.00/ AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

97 HYDROMECHANIKA SÍLY NA VÍKO V NÁDOBÁCH DNO NÁDOBY

98 SÍLY NA VÍKA NÁDOBY OTEVŘENÉ NÁDOBY UZAVŘENÉ NÁDOBY určení velikosti síly na víko pouze od účinků kapaliny rozhodující hydrostatický tlak v místě plochy víka, na dně tlak působí na činnou plochu víka S nádoba je naplněna do výšky h kapalinou o hustotě určení velikosti síly na víko od účinků kapaliny a od přetlaku či podtlaku nad hladinou rozhodující hydrostatický tlak a působící přetlak či podtlak nad hladinou tlak působí na činnou plochu víka S nádoba je naplněna do výšky h kapalinou o hustotě a nad hladinou v nádobě je přetlak Δp

99 VÍKO NA DNĚ NÁDOBY OTEVŘENÉ NÁDOBY pb předpoklad např. víko kruhového tvaru průměr činné plochy na kterou působí p h je d h m, na dně na víko působí maximální hydrostatický tlak p h ph pb plocha víka S víko FVÍKO síla na víko F VÍKO je dána součinem tlaku p h a činné plochy víka S ph = FVÍKO h.. g = ph. S S = d2 4 FVÍKO = ph. S = h.. g. S

100 UZAVŘENÉ NÁDOBY VÍKO NA DNĚ NÁDOBY nad hladinou je přetlak Δp předpoklad víko kruhového tvaru Δp průměr činné plochy na kterou působí p h a přetlak Δp je d h m, ph plocha víka S FVÍKO na dně na víko působí celkový tlak p (superpozice účinků) celkový tlak je dán součtem p h a Δp síla na víko F VÍKO je dána součtem účinků tlaku p h a přetlaku Δp pb víko FVÍKO = ph. S ( ) + Δp. S FVÍKO = ph + Δp. S FVÍKO = ( h.. g + Δp ). d2 4 S = d2 4

101 Závěr : OTEVŘENÉ NÁDOBY UZAVŘENÉ NÁDOBY h výška hladiny kapaliny v nádrži FVÍKO = h.. g. d2 4 v případě přetlaku Δp: FVÍKO = ( h.. g + Δp ). d2 4 v případě podtlaku Δp: působiště síly na víko těžiště plochy víka FVÍKO = ( h.. g - Δp ). d2 4

102 Děkuji za pozornost

103 VY_32_INOVACE_STR_4_13 Vytvořil: Ing. Josef Jankovič V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz.1.07/1.5.00/ Z.1.07/1.5.00/ AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

104 HYDROMECHANIKA SÍLY NA VÍKA VE STĚNÁCH NÁDOB

105 SÍLY NA VÍKA VE STĚNÁCH NÁDOB OTEVŘENÉ NÁDOBY určení velikosti síly na víko pouze od účinků kapaliny rozhodující je hydrostatický tlak v místě těžiště plochy víka tlak působí na činnou plochu víka S těžiště víka se nachází ve výšce h t od hladiny směrem dolů nádoba je naplněna do výšky h kapalinou o hustotě UZAVŘENÉ NÁDOBY určení velikosti síly na víko od účinků kapaliny a od přetlaku či podtlaku nad hladinou rozhodující je tlak v místě těžiště plochy víka a působící přetlak či podtlak nad hladinou tlak působí na činnou plochu víka S nádoba je naplněna do výšky h kapalinou o hustotě a nad hladinou v nádobě je přetlak Δp

106 VÍKO VE STĚNĚ NÁDOBY OTEVŘENÉ NÁDOBY předpoklad činná plocha víka je kruhového tvaru h m, p b ht FVÍKO plocha víka S p t pb v těžišti víka (středu kruhu) působí průměrný hydrostatický tlak p t odpovídající výšce h t průměr činné plochy, na kterou působí p h, je d p t = h t.. g FVÍKO = p t. S síla na víko F VÍKO je dána součinem tlaku p t a činné plochy víka S FVÍKO = h t.. g. d2 4

107 VÍKO VE STĚNĚ NÁDOBY UZAVŘENÉ NÁDOBY předpoklad činná plocha víka je kruhového tvaru h m, Δp ht FVÍKO plocha víka S p t pb v těžišti víka (středu kruhu) působí hydrostatický tlak p t odpovídající výšce h t v případě pouze natlakované nádoby bez kapaliny působí na víko pouze přetlak Δp p t = h t.. g FVÍKO = ( p t + Δp ). S FVÍKO = ( h t.. g + Δp ). d2 4 průměr činné plochy na kterou působí p t a Δp je d síla na víko F VÍKO je dána součtem účinku tlaku p t a Δp na činnou plochu víka S

108 Závěr : OTEVŘENÉ NÁDOBY UZAVŘENÉ NÁDOBY h t vzdálenost těžiště víka od hladiny kapaliny v nádrži FVÍKO = h t.. g. d2 4 v případě přetlaku Δp: FVÍKO = ( h t.. g + Δp ). d2 4 v případě podtlaku Δp: FVÍKO = ( h t.. g - Δp ). d2 4

109 Děkuji za pozornost

110 VY_32_INOVACE_STR_4_14 Vytvořil: Ing. Josef Jankovič V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz.1.07/1.5.00/ Z.1.07/1.5.00/ AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

111 HYDROMECHANIKA RELATIVNÍ ROVNOVÁHA KAPALIN V NÁDOBÁCH PŘÍMOČARÝ POHYB a = konst

112 Nádoby pohybující se přímočaře s konstantním zrychlením g V gravitačním poli Země působí na kapalinu gravitační síla na jednotlivé částice hmoty kapaliny působí zrychlení gravitační g zrychlení je vektor, má směr, velikost a orientaci hladina kapaliny je vždy kolmá k působícímu výslednému zrychlení působícímu na kapalinu (tzv. Euleurova věta o hladině) názorný příklad hladiny moří na Zemi g g g

113 Přímočarý pohyb nádoby rovnoměrně zrychlený Př.: rozjezd nebo brzdění cisterny Δm a a a c h p h1 L/2 g L p h2 Vlastní řešení podobnost trojúhelníků s vrcholovým úhlem

114 Řešení: je-li cisterna v klidu, působí na každou část kapaliny gravitační zrychlení g svisle dolů hladina v cisterně má vodorovnou polohu při rozjezdu s konstantním zrychlením a působí na Δm zrychlení g a a obě zrychlení vektorově sečteme a dostaneme výsledné celkové zrychlení a c poloha hladiny kapaliny v cisterně je k a c kolmá Z podobnosti trojúhelníků s úhlem plynou vztahy : tg = Δh L 2 = a g

115 Důsledky, charakteristické hodnoty snížení hladiny Δh v přední části a zvýšení hladiny Δh v zadní části při rozjezdu Δh = a g. L 2 změny hodnot hydrostatického tlaku na dně, tlak v přední části p h1 a zadní části cisterny p h2 p h1 = h - Δh ( ).. g Opatření v praxi přepážky v cisternách nebezpečí nekontrolovatelné rozkmitání velkých hmot p h2 = ( h + Δh ).. g

116 Děkuji za pozornost

117 VY_32_INOVACE_STR_4_15 Vytvořil: Ing. Josef Jankovič V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz.1.07/1.5.00/ Z.1.07/1.5.00/ AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

118 HYDROMECHANIKA RELATIVNÍ ROVNOVÁHA KAPALIN V NÁDOBÁCH ÚČINKY ODSTŘEDIVÉ SÍLY a odst

119 Nádoby pohybující se po kruhové dráze ve vodorovné rovině s konstantní rychlostí rovnoměrný pohyb po kružnici na jednotlivé částice hmoty kapaliny působí zrychlení gravitační g a odstředivé zrychlení a odst obecně F = m. a odstředivá síla F odst = m.v2 = m. v 2 R R porovnání a v 2 R hladina kapaliny je vždy kolmá k působícímu výslednému zrychlení působícímu na kapalinu (tzv. Euleurova věta o hladině)

120 Přímočarý pohyb nádoby rovnoměrně zrychlený Př.: jízda cisterny v zatáčce B Δm a odst g a c h p h1 p h2 S zatáčky R B/2 Vlastní řešení podobnost trojúhelníků s vrcholovým úhlem

121 Řešení: jede-li cisterna přímo konstantní rychlostí, působí na každou část kapaliny pouze gravitační zrychlení g svisle dolů hladina v cisterně má vodorovnou polohu při průjezdu zatáčkou o poloměru R konstantní rychlostí v působí na Δm zrychlení g a a odst obě zrychlení vektorově sečteme a dostaneme výsledné celkové zrychlení a c poloha hladiny kapaliny v cisterně je k a c kolmá Z podobnosti trojúhelníků s úhlem plynou vztahy : tg = Δh B = a odst 2 g

122 Důsledky, charakteristické hodnoty snížení hladiny Δh v části bližší ke středu zatáčky a zvýšení hladiny Δh v části cisterny vzdálenější od středu zatáčky Δh = a odst g. B 2 změny hodnot hydrostatického tlaku na dně, tlak v bližší části p h1 a ve vzdálenější části cisterny p h2 p h1 = h - Δh ( ).. g p h2 = ( h + Δh ).. g Opatření v praxi přepážky v cisternách nebezpečí nekontrolovatelné rozkmitání velkých hmot

123 Děkuji za pozornost

124 VY_32_INOVACE_STR_4_16 Vytvořil: Ing. Josef Jankovič V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz.1.07/1.5.00/ Z.1.07/1.5.00/ AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

125 HYDROMECHANIKA RELATIVNÍ ROVNOVÁHA KAPALIN V ROTUJÍCÍCH VÁLCOVÝCH NÁDOBÁCH osa rotace je osou nádoby

126 Rotující nádoba kolem své osy, poloha osy svislá s konstantní rychlostí konstantní otáčky konstantní úhlová rychlost na vybranou částice hmoty Δm kapaliny působí zrychlení gravitační g a odstředivé zrychlení a odst odstředivé zrychlení je dáno poměrem R = 2. R každá část hmoty kapaliny má podle vzdálenosti od osy rotace jinou obvodovou rychlost, tedy jiné odstředivé zrychlení - závislost na poloměru r (rozsah od 0 do R) hladina kapaliny je vždy kolmá k působícímu výslednému zrychlení působícímu na kapalinu (tzv. Euleurova věta o hladině) celkové výsledné zrychlení plynule mění velikost a směr od středu k obvodu nádoby v 2

127 D Rotační pohyb nádoby rovnoměrný kolem osy nádoby v ose rotace a odst = 0 tečna k hladině vodorovná úhel = a odst2 v místě hladiny 1 h Δm a odst1 1 1 g a c2 a odst1 = 2. r 1 tečna k hladině mírnější sklon úhel 1 g p h1 r 1 g a c1 r 2 p h2 v místě hladiny 2 a odst2 = 2. r 2 tečna k hladině prudší sklon úhel 2

128 Vlastní řešení podobnost trojúhelníků s proměnlivým úhlem (závislost na velikosti r) tg tg = = a odst g r. 2 g = 2 g Řešení:. r čára hladiny odpovídá obdobně určení s na kraji je s = 2. Δh pro r = R tg s = 2.Δh =.. r 2 =.. 2 R = 2 g g 2 2 g Δh = 2 g 2. D 2 16 Δh Δr při úvaze : směrnice tečny v určitém bodě hladiny využití matematiky tzv integrace a derivace : 1 obdoba : s =. a. t 2 2 v = a. t a =. D 2 8 konst.

129 Důsledky, charakteristické hodnoty celkové převýšení hladiny je 2.Δh Δh = 2 g. D 2 16 změny hodnot hydrostatického tlaku na dně - tlak v místě osy rotace na dně p h1 p h1 = h - Δh ( ).. g změna hodnoty hydrostatického tlaku na dně - tlak u stěny válce na dně p h2 p h2 = ( h + Δh ).. g

130 Děkuji za pozornost

131 VY_32_INOVACE_STR_4_17 Vytvořil: Ing. Josef Jankovič V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz.1.07/1.5.00/ Z.1.07/1.5.00/ AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

132 HYDROMECHANIKA ARCHIMÉDŮV ZÁKON

133 Odvození základního vztahu těleso o rozměrech a x b x c hustota materiálu tělesa t pb h 1 ph 1 na horní plochu a x c tělesa působí hydrostatický tlak ph 1 t b tento tlak vyvozuje sílu na horní plochu F 1 h 2 ph 2 k a na dolní plochu a x c tělesa působí hydrostatický tlak ph 2 tento tlak vyvozuje sílu na horní plochu F 2 na boční plochy a x b a c x b tělesa působí průměrný hydrostatický tlak (ph 1 + ph 2 )/2 vzniklé síly působí proti sobě a jsou stejně velké ruší se

134 Velikosti sil působících na vodorovné plochy tělesa F1 = p h1. S = h 1. k. g. a. c F2 = p h2. S = h 2. k. g. a. c rozdíl těchto sil : F 1 h 1 F2 - F1 = h 2. k. g. a. c - h 1. k. g. a. c ph 1 F2 - F1 = ( h 2 - h 1 ). k. g. a. c t b h 2 poněvadž tlak ph 2 je vyšší než ph 1 výsledná síla působí nahoru, nadlehčuje těleso k a F 2 ph 2 ( h 2 - h 1 ) = b vytváří vztlakovou sílu F vzt F1 b F2 - =. k. g. a. c tedy Fvzt = k. g. a. c. b = V t. k. g Vt objem tělesa

135 Slovní vyjádření tohoto vztahu je Archimédův zákon Fvzt = k. g. a. c. b =. k. g Vt objem tělesa V t těleso ponořené do kapaliny je nadlehčováno silou rovnající se tíze kapaliny kapaliny tělesem vytlačené Vt ponořený objem tělesa Fvzt V t. k. g = m k. g Vt ponořený objem tělesa

136 Děkuji za pozornost

137 VY_32_INOVACE_STR_4_18 Vytvořil: Ing. Josef Jankovič V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz.1.07/1.5.00/ Z.1.07/1.5.00/ AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

138 HYDROMECHANIKA ARCHIMÉDŮV ZÁKON PLAVÁNÍ TĚLES

139 Plovák bez zátěže plovák o rozměrech a x b x c hustota materiálu plováku t G p t,v t x c pokud plovák plave a má ponor x platí rovnováha sil: a Fvzt F vzt + G p = 0 k g. k a. b.. x - = 0 g. t. a. b. c ponořená část plováku celý objem plováku Závěr : velikost ponoru je ovlivněna poměrem hustot t k x = t k. c

140 Možnosti chování tělesa v kapalině těleso plave t k t k t = k těleso plove t = k t k těleso se potápí t k k

141 Plovák se zátěží přidaný náklad o hmotnosti m plovák o rozměrech a x b x c má ponor x m G m hustota materiálu plováku t hmotnost zátěže m pokud plovák plave a má ponor x platí rovnováha sil: G p t x F vzt + G m + G p = 0 síly vektory podle směrů znaménka Fvzt g. k. a. b. x - g. t. a. b. c - m. g = 0 k teoreticky maximální zatížení je v případě, když ponor x = c g. k. a. b. c - g. t. a. b. c - m. g = 0 Maximální přidaná hmotnost na plovák je dána součinem objemu plováku a rozdílem hustot kapaliny a materiálu plováku m = ( - t ). k a. b. c V t

142 Děkuji za pozornost

143 VY_32_INOVACE_STR_4_19 Vytvořil: Ing. Josef Jankovič V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz.1.07/1.5.00/ Z.1.07/1.5.00/ AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

144 HYDROMECHANIKA MĚŘENÍ PŘETLAKU A PODTLAKU TRUBICOVÝM MANOMETREM

145 Přetlak v uzavřené nádobě p [Pa] (p b + Δp) p b h Řešíme rovnováhu v U-trubici ze strany nádoby s přetlakem působí : absolutní tlak v nádobě z druhé strany působí na kapalinu v U- trubici: h 2 tlak p b tlak kapalinového sloupce o výšce h h 1 0

146 Podtlak v uzavřené nádobě p [Pa] (p b - Δp) p b t 0 h h 1 h 2 Řešíme rovnováhu v U- trubici ze strany nádoby s podtlakem působí : absolutní tlak v nádobě tlak kapalinového sloupce o výšce h z druhé strany působí na kapalinu v U- trubici: tlak p b

147 Vyjádření rovnováhy měření přetlaku měření podtlaku p = k. g. h + p b p + k. g. h = p b. (h 2 h 1 ) = h (h 2 h 1 ) = h p absolutní tlak v Pa přetlak Δp je dán rozdílem p - p b p absolutní tlak v Pa podtlak Δp je dán rozdílem p b - p

148 Možnosti změn rozsahu měření volba měřící kapaliny o vyšší hustotě kapalina o menší hustotě změna sklonu ramene U - trubice Př. 1 : voda hustota 1000 kg/m 3 měření vyšších přetlaků a podtlaků měření nižších přetlaků a podtlaků zjišťování malých přetlaků a podtlaků přetlak, podtlak Δp = 9, 810 kpa Př. 2 : rtuť hustota kg/m 3 Př. 3 : líh hustota 789 kg/m 3 v případě h = 1 m přetlak, podtlak Δp = 133, 416 kpa přetlak, podtlak Δp = 7, 740 kpa

149 Případ sklonu trubice p [Pa] (p b + Δp) L h sin = h L h = L. sin zvýšení citlivosti měření zaznamenání minimálních změn tlaku naměřený tlak naměřený přetlak p = k. g. h + Δp k. g. = h p b

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

Síla, vzájemné silové působení těles

Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_02_01 Vytvořeno Leden 2014 Síla, značka a jednotka síly, grafické znázornění

Více

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné.

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Fyzika kapalin Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Plyny nemají stálý tvar ani stálý objem, jsou velmi snadno stlačitelné. Tekutina je společný název pro kapaliny

Více

Příklady z hydrostatiky

Příklady z hydrostatiky Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Mechanické vlastnosti kapalin hydromechanika

Mechanické vlastnosti kapalin hydromechanika Mechanické vlastnosti kapalin hydromechanika Vlastnosti kapalných látek nemají vlastní tvar, mění tvar podle nádoby jsou tekuté, dají se přelévat jejich povrch je vodorovný se Zemí jsou téměř nestlačitelné

Více

Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů

Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů Mechanika tekutin Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů Vlastnosti kapalin a plynů Tekutiny = kapaliny + plyny Ideální kapalina - dokonale tekutá - bez vnitřního tření - zcela

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. = (pascal) tlak je skalár!!! F p = =

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. = (pascal) tlak je skalár!!! F p = = MECHANIKA TEKUTIN I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tekutiny zahrnují kapaliny a plyny. Společnou vlastností tekutin je, že částice mohou být snadno od sebe odděleny (nemají vlastní

Více

Základní pojmy a jednotky

Základní pojmy a jednotky Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar

Více

MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D07_Z_OPAK_M_Mechanika_kapalin_a_plynu_T Člověk a příroda Fyzika Mechanika kapalin

Více

Teoretické otázky z hydromechaniky

Teoretické otázky z hydromechaniky Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká

Více

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vlastnosti molekul kapalin V neustálém pohybu Ve stejných vzdálenostech, nejsou ale vázány Působí na sebe silami: odpudivé x přitažlivé Vlastnosti kapalin

Více

1 Vlastnosti kapalin a plynů

1 Vlastnosti kapalin a plynů 1 Vlastnosti kapalin a plynů hydrostatika zkoumá vlastnosti kapalin z hlediska stavu rovnováhy kapalina je v klidu hydrodynamika zkoumá vlastnosti kapalin v pohybu aerostatika, aerodynamika analogicky

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K141) Přednáškové slidy předmětu 1141 HYA (Hydraulika) verze: 09/2008 K141 FSv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak)

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak) Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak) Autor: Doc. Ing. Josef Formánek, Ph.D. Tvorba grafické vizualizace principu

Více

FYZIKA Mechanika tekutin

FYZIKA Mechanika tekutin Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Mechanika

Více

Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.

Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34. Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_466A Škola: Akademie - VOŠ, Gymn. a SOŠUP Světlá nad

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

MECHANIKA HYDROSTATIKA A AEROSTATIKA Implementace ŠVP

MECHANIKA HYDROSTATIKA A AEROSTATIKA Implementace ŠVP Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MECHANIKA HYDROTATIKA A AEROTATIKA Implementace ŠVP

Více

2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5

2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5 Obsah 1 Tekutiny 1 2 Tlak 2 2.1 Tlak v kapalině vyvolaný vnější silou.............. 3 2.2 Tlak v kapalině vyvolaný tíhovou silou............. 4 2.3 Tlak v kapalině vyvolaný tíhovou silou............. 4

Více

čas t s 60s=1min rychlost v m/s 1m/s=60m/min

čas t s 60s=1min rychlost v m/s 1m/s=60m/min TEKUTINOVÉ MECHANIMY UČEBNÍ TEXTY PRO VÝUKU MECHATRONIKY OBAH: Hydraulika... 3 Základní veličiny a jednotky... 3 Molekulové vlastnosti tekutin... 3 Tlak v kapalinách... 4 Hydrostatický tlak... 6 Atmosférický

Více

Otázky pro Státní závěrečné zkoušky

Otázky pro Státní závěrečné zkoušky Obor: Název SZZ: Strojírenství Mechanika Vypracoval: Doc. Ing. Petr Hrubý, CSc. Doc. Ing. Jiří Míka, CSc. Podpis: Schválil: Doc. Ing. Štefan Husár, PhD. Podpis: Datum vydání 8. září 2014 Platnost od: AR

Více

Univerzita obrany. Měření součinitele tření potrubí K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů

Univerzita obrany. Měření součinitele tření potrubí K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů Univerzita obrany K-216 Laboratorní cvičení z předmětu HYDROMECHANIKA Měření součinitele tření potrubí Protokol obsahuje 14 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování:5.5.2011

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA V

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA V STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA V HYDROMECHANIKA PRACOVNÍ SEŠIT Vytvořeno v rámci Operačního programu Vzdělávání

Více

ELEKTRICKÉ STROJE - POHONY

ELEKTRICKÉ STROJE - POHONY ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.1 OBECNÉ ZÁKLADY EL. POHONŮ 2. ELEKTRICKÉ POHONY Pod pojmem elektrický pohon rozumíme soubor elektromechanických vazeb a vztahů mezi elektromechanickou

Více

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny 125 15 MECHANIKA IDEÁLNÍCH TEKUTIN Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny Na rozdíl od pevných látek, které zachovávají při pohybu svůj tvar, setkáváme se v přírodě s látkami, které

Více

Pohyb tělesa, síly a jejich vlastnosti, mechanické vlastnosti kapalin a plynů, světelné jevy

Pohyb tělesa, síly a jejich vlastnosti, mechanické vlastnosti kapalin a plynů, světelné jevy Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Pohyb tělesa, síly a jejich vlastnosti, mechanické vlastnosti kapalin a plynů, světelné jevy Sekunda 2 hodiny týdně Pomůcky, které poskytuje sbírka

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012

Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Mechanika, statika Pasivní odpory Ing.Jaroslav Svoboda

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

VY_32_INOVACE_G 19 01

VY_32_INOVACE_G 19 01 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

Mechanické vlastnosti kapalin a plynů. opakování

Mechanické vlastnosti kapalin a plynů. opakování Mechanické vlastnosti kapalin a plynů opakování 1 Jakým směrem se šíří tlak? 2 Chlapci si zhotovili model hydraulického lisu podle obrázku. Na písty ručních stříkaček působí stejnou silou. Který chlapec

Více

Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu

Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326 PROJEKT

Více

Inovace výuky Fyzika F7/ 10. Barometr. Atmosférický tlak, tlak, teplota vzduchu, barometr, aneroid

Inovace výuky Fyzika F7/ 10. Barometr. Atmosférický tlak, tlak, teplota vzduchu, barometr, aneroid Inovace výuky Fyzika F7/ 10 Barometr Vzdělávací oblast: Vzdělávací obor: Tematický okruh: Cílová skupina: Klíčová slova: Očekávaný výstup: Člověk a příroda Fyzika Mechanické vlastnosti tekutin 7. ročník

Více

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO Seznam výukových materiálů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast: Předmět: Vytvořil: MECHANIKA FYZIKA JANA SUCHOMELOVÁ 01 - Soustava SI notebook VY_32_INOVACE_01.pdf Datum

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Termika VY_32_INOVACE_0301_0212 Teplotní roztažnost látek. Fyzika 2. ročník, učební obory Bez příloh

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Termika VY_32_INOVACE_0301_0212 Teplotní roztažnost látek. Fyzika 2. ročník, učební obory Bez příloh VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky patří: a) grafit b) diamant c) jantar d) modrá skalice Mezi krystalické látky patří: a) rubín

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

Laboratorní práce č. 4: Určení hustoty látek

Laboratorní práce č. 4: Určení hustoty látek Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 4: Určení hustoty látek ymnázium Přírodní vědy moderně a interaktivně FYZIKA 3. ročník

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

Ročník VII. Fyzika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Mezipřed. vztahy.

Ročník VII. Fyzika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Mezipřed. vztahy. Opakování IX. Fyzikální veličiny a jejich měření. Metoda didaktická-soutěže,diskuse Žák si zopakuje fyzikální veličiny probírané v 6.roč., jejich značky, jednotky a mezi nimi. výchova-vztah k přírodě,

Více

Mechanika plynů. Vlastnosti plynů. Atmosféra Země. Atmosférický tlak. Měření tlaku

Mechanika plynů. Vlastnosti plynů. Atmosféra Země. Atmosférický tlak. Měření tlaku Mechanika plynů Vlastnosti plynů Molekuly plynu jsou v neustálém pohybu, pronikají do všech míst nádoby plyn je rozpínavý. Vzdálenosti mezi molekulami jsou větší než např. v kapalině. Zvýšením tlaku je

Více

Vzdělávací oblast: Člověk a příroda Vyučovací předmět: Fyzika. Ročník: 7. Průřezová témata Mezipředmětové vztahy Projekty a kurzy

Vzdělávací oblast: Člověk a příroda Vyučovací předmět: Fyzika. Ročník: 7. Průřezová témata Mezipředmětové vztahy Projekty a kurzy 1 Vzdělávací oblast: Člověk a příroda Vyučovací předmět: Fyzika Ročník: 7. -rozhodne, zda je dané těleso v klidu či v pohybu vzhledem k jinému tělesu -změří dráhu uraženou tělesem a odpovídající čas Pohyb

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. XIX Název: Pád koule ve viskózní kapalině Pracoval: Matyáš Řehák stud.sk.: 16 dne:

Více

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5.

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5. A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P A:Měření

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

Stanovení hustoty pevných a kapalných látek

Stanovení hustoty pevných a kapalných látek 55 Kapitola 9 Stanovení hustoty pevných a kapalných látek 9.1 Úvod Hustota látky ρ je hmotnost její objemové jednotky, definované vztahem: ρ = dm dv, kde dm = hmotnost objemového elementu dv. Pro homogenní

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ Katedra fyziky ZÁKLADY FYZIKY I Pro obory DMML, TŘD a AID prezenčního studia DFJP RNDr. Jan Z a j í c, CSc., 2004 5. M E C H A N I K A T E K U T I N

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 3. Newtonovy zákony 1 Autor: Jazyk: Aleš Trojánek čeština

Více

Univerzita obrany K-204. Laboratorní cvičení z předmětu AERODYNAMIKA. Měření rozložení součinitele tlaku c p na povrchu profilu Gö 398

Univerzita obrany K-204. Laboratorní cvičení z předmětu AERODYNAMIKA. Měření rozložení součinitele tlaku c p na povrchu profilu Gö 398 Univerzita obrany K-204 Laboratorní cvičení z předmětu AERODYNAMIKA Měření rozložení součinitele tlaku c p na povrchu profilu Gö 39 Protokol obsahuje 12 listů Vypracoval: Vít Havránek Studijní skupina:

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. XIV Název: Studium teplotní závislosti povrchového napětí Pracoval: Matyáš Řehák

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

JEVY NA ROZHRANÍ PEVNÉHO TĚLESA A KAPALINY

JEVY NA ROZHRANÍ PEVNÉHO TĚLESA A KAPALINY Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Dagmar Horká MGV_F_SS_1S3_D17_Z_MOLFYZ_Jevy_na_rozhrani_pevneho_tel esa_a_kapaliny_pl Člověk a příroda Fyzika

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3665 Šablona: III/2 č. materiálu: VY_32_INOVACE_96 Jméno autora: Mgr. Eva Mohylová Třída/ročník:

Více

DYNAMIKA ROTAČNÍ POHYB

DYNAMIKA ROTAČNÍ POHYB DYNAMIKA ROTAČNÍ POHYB Dynamika rotačního pohybu hmotného bodu kolem pevné osy - při rotační pohybu hmotného bodu kolem stálé osy stálými otáčkami kolem pevné osy (pak hovoříme o rovnoměrném rotačním pohybu)

Více

Variace. Mechanika kapalin

Variace. Mechanika kapalin Variace 1 Mechanika kapalin Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Pascalův zákon, mechanické vlastnosti

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

CVIČENÍ č. 3 STATIKA TEKUTIN

CVIČENÍ č. 3 STATIKA TEKUTIN Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením

Více

Dirlbeck J" zš Františkovy Lázně

Dirlbeck J zš Františkovy Lázně Veletrh nápadtl učiteltl fyziky Iniekční stříkačka ve fyzice Dirlbeck J" zš Františkovy Lázně Proč injekční stříkačka? Učím na škole, kde žákyně a poslední dobou i někteří žáci odcházejí na zdravotnickou

Více

Měření tlaku v závislosti na nadmořské výšce KET/MNV

Měření tlaku v závislosti na nadmořské výšce KET/MNV Měření tlaku v závislosti na nadmořské výšce KET/MNV Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P 1. Zadání Změřte hodnotu atmosférického tlaku v různých nadmořských výškách (v několika patrech

Více

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo.

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo. PROMOTE MSc POPIS TÉMATU FYZKA 1 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubov@upol.cz Popis

Více

Identifikátor materiálu: ICT 1 7

Identifikátor materiálu: ICT 1 7 Identifikátor materiálu: ICT 1 7 Registrační číslo projektu Název projektu Název příjemce podpory název materiálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního materiálu Druh interaktivity

Více

FYZIKA. Newtonovy zákony. 7. ročník

FYZIKA. Newtonovy zákony. 7. ročník FYZIKA Newtonovy zákony 7. ročník říjen 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt

Více

MECHANIKA TEKUTIN TEKUTINY

MECHANIKA TEKUTIN TEKUTINY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 28. 3. 2013 Název zpracovaného celku: MECHANIKA TEKUTIN TEKUTINY Tekutiny jsou společný název pro kapaliny a plyny. Společná vlastnost tekutin

Více

Archimédův zákon, vztlaková síla

Archimédův zákon, vztlaková síla Variace 1 Archimédův zákon, vztlaková síla Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Vztlaková síla,

Více

11. Mechanika tekutin

11. Mechanika tekutin . Mechanika tekutin.. Základní poznatky Pascalův zákon Působí-li na tekutinu vnější tlak pouze v jednom směru, pak uvnitř tekutiny působí v každém místě stejně velký tlak, a to ve všech směrech. Hydrostatický

Více

TŘENÍ A PASIVNÍ ODPORY

TŘENÍ A PASIVNÍ ODPORY Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 3. BŘEZNA 2013 Název zpracovaného celku: TŘENÍ A PASIVNÍ ODPORY A) TŘENÍ SMYKOVÉ PO NAKLONĚNÉ ROVINĚ Pohyb po nakloněné rovině bez

Více

MECHANIKA KAPALIN A PLYNŮ

MECHANIKA KAPALIN A PLYNŮ MECHANIKA KAPALIN A PLYNŮ Věda, která oisuje kaaliny v klidu se nazývá Věda, která oisuje kaaliny v ohybu se nazývá Věda, která oisuje lyny v klidu se nazývá Věda, která oisuje lyny v ohybu se nazývá VLATNOTI

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1..00/1.79 Název DUM: Hydrostatický tlak

Více

Snímače hladiny. Učební text VOŠ a SPŠ Kutná Hora. Základní pojmy. měření výšky hladiny kapalných látek a sypkých hmot

Snímače hladiny. Učební text VOŠ a SPŠ Kutná Hora. Základní pojmy. měření výšky hladiny kapalných látek a sypkých hmot Snímače hladiny Učební text VOŠ a SPŠ Kutná Hora Základní pojmy Použití snímačů hladiny (stavoznaků) měření výšky hladiny kapalných látek a sypkých hmot O výběru vhodného snímače rozhoduje požadovaný rozsah

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program 1 VY_32_INOVACE_01_13 fyzika 6. Elektrické vlastnosti těles Výklad učiva PowerPoint 6 4 2 VY_32_INOVACE_01_14 fyzika 6. Atom Výklad učiva

Více

Měření teploty a tlaku. Tematický celek: Termodynamika. Úkol:

Měření teploty a tlaku. Tematický celek: Termodynamika. Úkol: Název: Měření teploty a tlaku. Tematický celek: Termodynamika. Úkol: 1. Zopakujte si, co víte o teplotě a jejím měření. 2. Zopakujte si, co víte o atmosférickém tlaku. 3. Navrhněte robota, který bude po

Více

Vzdělávací oblast: Člověk a příroda. Vyučovací předmět: fyzika. Třída: sekunda. Očekávané výstupy. Poznámky. Přesahy. Průřezová témata.

Vzdělávací oblast: Člověk a příroda. Vyučovací předmět: fyzika. Třída: sekunda. Očekávané výstupy. Poznámky. Přesahy. Průřezová témata. Vzdělávací oblast: Člověk a příroda Vyučovací předmět: fyzika Třída: sekunda Očekávané výstupy Nalezne společné a rozdílné vlastnosti kapalin, plynů a pevných látek Uvede konkrétní příklady jevů dokazujících,

Více

Clemův motor vs. zákon zachování energie

Clemův motor vs. zákon zachování energie Clemův motor vs. zákon zachování energie (c) Ing. Ladislav Kopecký, 2009 V učebnicích fyziky se traduje, že energii nelze ani získat z ničeho, ani ji zničit, pouze ji lze přeměnit na jiný druh. Z této

Více

V i s k o z i t a N e w t o n s k ý c h k a p a l i n

V i s k o z i t a N e w t o n s k ý c h k a p a l i n V i s k o z i t a N e w t o n s k ý c h k a p a l i n Ú k o l : Změřit dynamickou viskozitu destilované vody absolutní metodou a její závislost na teplotě relativní metodou. P o t ř e b y : Viz seznam

Více

GEODÉZIE II. metody Trigonometrická metoda Hydrostatická nivelace Barometrická nivelace GNSS metoda. Trigonometricky určen. ení. Princip určen.

GEODÉZIE II. metody Trigonometrická metoda Hydrostatická nivelace Barometrická nivelace GNSS metoda. Trigonometricky určen. ení. Princip určen. Vysoká škola báňská technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví GEODÉZIE II Ing. Hana Staňková, Ph.D. 3. URČOV OVÁNÍ VÝŠEK metody Trigonometrická metoda

Více

Fyzika pro 6.ročník. mezipředmětové vztahy. výstupy okruh učivo dílčí kompetence. poznámky. Ch8 - atom

Fyzika pro 6.ročník. mezipředmětové vztahy. výstupy okruh učivo dílčí kompetence. poznámky. Ch8 - atom Fyzika pro 6.ročník výstupy okruh učivo dílčí kompetence Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly Elektrické vlastnosti látek, el.pole, model atomu Magnetické vlastnosti látek, magnetické

Více

soustava jednotek SI, základní, odvozené, vedlejší a doplňkové jednotky, násobky a díly jednotek, skalární a vektorové veličiny

soustava jednotek SI, základní, odvozené, vedlejší a doplňkové jednotky, násobky a díly jednotek, skalární a vektorové veličiny Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D01_Z_OPAK_M_Uvodni_pojmy_T Člověk a příroda Fyzika Úvodní pojmy, fyzikální veličiny

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD F-1 Fyzika hravě ( k sadě 20 materiálů) Poř. 1. F-1_01 KLID a POHYB 2. F-1_02 ROVNOVÁŽNÁ POLOHA Prezentace obsahuje látku 1 vyučovací hodiny. materiál slouží k opakování látky na téma relativnost klidu

Více

Měření kinematické a dynamické viskozity kapalin

Měření kinematické a dynamické viskozity kapalin Úloha č. 2 Měření kinematické a dynamické viskozity kapalin Úkoly měření: 1. Určete dynamickou viskozitu z měření doby pádu kuličky v kapalině (glycerinu, roztoku polysacharidu ve vodě) při laboratorní

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Věra Keselicová. duben 2013

Věra Keselicová. duben 2013 VY_52_INOVACE_VK53 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace Věra Keselicová duben 2013 7. ročník

Více

VY_52_INOVACE_J 06 25

VY_52_INOVACE_J 06 25 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Skládání a rozkládání sil Číslo DUM: III/2/FY/2/1/17 Vzdělávací předmět: Fyzika Tematická oblast:

Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Skládání a rozkládání sil Číslo DUM: III/2/FY/2/1/17 Vzdělávací předmět: Fyzika Tematická oblast: Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Skládání a rozkládání sil Číslo DUM: III/2/FY/2/1/17 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny a jejich měření Autor: Mgr. Petra

Více

Fyzika pro 6.ročník. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly. Elektrické vlastnosti látek, el.

Fyzika pro 6.ročník. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly. Elektrické vlastnosti látek, el. Fyzika pro 6.ročník výstupy okruh učivo dílčí kompetence Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly Elektrické vlastnosti látek, el.pole, model atomu Magnetické vlastnosti látek, magnetické

Více

VY_32_INOVACE_C 08 19. hřídele na kinetickou a tlakovou energii kapaliny. Poháněny bývají nejčastěji elektromotorem.

VY_32_INOVACE_C 08 19. hřídele na kinetickou a tlakovou energii kapaliny. Poháněny bývají nejčastěji elektromotorem. Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

Metodický list. Ověření materiálu ve výuce: Datum ověření: 25. 03. 2013 Třída: VII. B Ověřující učitel: Mgr. Martin Havlíček

Metodický list. Ověření materiálu ve výuce: Datum ověření: 25. 03. 2013 Třída: VII. B Ověřující učitel: Mgr. Martin Havlíček Projekt: Tvořivá škola, registrační číslo projektu CZ.1.07/1.4.00/21.3505 Příjemce: Základní škola Ruda nad Moravou, okres Šumperk, Sportovní 300, 789 63 Ruda nad Moravou Metodický list Zařazení materiálu:

Více

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), Tělesa 1/6 Tělesa 1.Mnohostěny n-boký hranol Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), hranol kosý hranol kolmý (boční stěny jsou kolmé k rovině podstavy) pravidelný

Více