PROCESY V TECHNICE BUDOV cvičení 3, 4

Rozměr: px
Začít zobrazení ze stránky:

Download "PROCESY V TECHNICE BUDOV cvičení 3, 4"

Transkript

1 UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního fondu (ESF) a rozpočtu České republiky v rámci řešení projektu: CZ.1.07/..00/ , MODERNIZACE VÝUKOVÝCH MATERIÁLŮ A DIDAKTICKÝCH METOD

2 Obsah... 3 Řešené příklady... 3 Příklady k procvičení... 7 Použitá literatura... 7 Seznam symbolů... 8 CZ.1.07/..00/ ,

3 3 STRUČNÝ OSAH CVIČENÍ: Tlak tekutin ve spojitých nádobách. Princip činnosti zařízení pro měření tlaku. MOTIVACE: V tomto cvičení se naučíme vypočítat tlak tekutin ve spojitých nádobách. Objasníme si princip zařízení pro měření tlaku. CÍL: Student umí uplatnit Pascalův zákon při výpočtu tlaku tekutin ve spojitých nádobách. Řešené příklady Příklad 1 Ve spojitých nádobách je v levém rameni voda ve výšce h 1 = 10 cm a v pravém rameni petrolej. Hustota petroleje je 880 kg.m -3. Určete výšku petrolejového sloupce h při rovnováze kapalin při teplotě 0 C. V rovnovážném stavu platí: pa 1gh 1 pa gh (1) Pak pro výšku h platí: h h h , 10 11,34 m 880 () (3) Obr. 1 Schématické znázornění spojitých nádob CZ.1.07/..00/ ,

4 4 Příklad Zásobník opatřený otevřeným rtuťovým manometrem se používá pro cejchování vodivostního čidla. Jaké je procentuelní objemové složení směsi vodíku a dusíku, které je určeno pro cejchování, je-li rozdíl hladin manometru u čistého dusíku 0 cm a ve směsi vodíku a dusíku 30 cm. arometrický tlak je 98,6 kpa. Hustota rtuti je kg.m -3. Ze zadání příkladu plyne: kg.m, Označme tlak dusíku p N, tlak vodíku p H. K výpočtu použijeme Daltonova zákona: H N ph p p H N 1 - g 9,81 m.s, h1 0, m, 0,3 m (4) p p g h (5) p p p g h (6) N H Dosazením rovnic Chyba! Nenalezen zdroj odkazů.a Chyba! Nenalezen zdroj odkazů. do Chyba! Nenalezen zdroj odkazů. po úpravě obdržíme pro molární zlomek H vztah: H g h h1 p gh (7) Po dosazení dostaneme: ,810,1 H 0,096, tj. 9,6 % vodíku 98, ,810,3 Příklad 3 h, p 98,6 kpa Obr. Rozdíl výšky hladin v manometru pro čistý dusík (vlevo) a pro směs vodíku a dusíku (vpravo) Při cejchování čidla z předchozího příkladu klesl rozdíl hladin měrného manometru na 10 cm. Zásobník byl doplněn čistým dusíkem na rozdíl hladin rtuťového manometru 40 cm. Jaké je procentuelní objemové složení směsi po doplnění zásobníku dusíkem? K řešení opět použijeme Daltonova zákona. Parciální tlak vodíku se ředěním dusíkem nemění. Tedy platí: p p (9) H1 H p p, (10) H1 H 1 p1 p p (11) p 1 1 (8) CZ.1.07/..00/ ,

5 5 p p g h (1) 1 1 p p g h (13) Obr. 3 Výšky hladin v manometru před ředěníma po ředění Pomocí vztahů Chyba! Nenalezen zdroj odkazů., Chyba! Nenalezen zdroj odkazů. a Chyba! Nenalezen zdroj odkazů. vypočteme molární složení vodíku po ředění: p p gh p p gh (14) Po dosazení obdržíme: ,810,1 0, 096 0, ,810, 4 (15) Ředěním se změní objemové složení z 9,6 % na 7,1 % vodíku. Příklad 4 Určete výšku hladiny kapaliny v tlakové nádobě pomocí uzavřeného rtuťového manometru, jeli dáno: rozdíl hladin rtuti a vzdálenost hladiny rtutiod vrcholu uzavřeného manometru a to před připojením a po připojení na probublávací potrubí, tlak v nádobě 0,4 MPa, barometrický tlak 98,6 kpa, hustota rtuti kg.m -3, rozdíly hladin v manometru před připojením a po připojení 10 cm a 60 cm, rozdíly hladin od vrcholu manometru před a po připojení 60 cm a 30 cm. Obr. 4 Měření výšky hladin CZ.1.07/..00/ ,

6 6 Pro barometrický tlak p před připojením platí: p p gh (16) 01 Hg 1 Při izotermním měření pro tlaky p 01 a p 0 plyne: p h p h (17) Pro tlak na dně tlakové nádoby lze psát rovnici: gh p h g p (18) Hg 0 S využitím (13) a (14) upravíme (15) pro výpočet výšky hladiny kapaliny h v tlakové nádobě: h 1 Hg Hg h h p gh1 h g g 1 p (19) Dosazením známých hodnot do rovnice (16) obdržíme: h , ,81 0,1 0, ,8 m , , ,81 (0) Výška hladiny v tlakové nádobě je 0,8 m. Příklad 5 Jaká je koncentrace dvousložkového roztoku, jestliže přetlak na probublávacím manometru je -3 9,81 kpa. Ústí trubice je 0,8 m pod hladinou. Hustoty čistých kapalných složek jsou 1 1,8 g.cm, -3 0,7 g.cm. Pro přetlak platí: p a h 1 a h, 1 kde a je hmotnostní zlomek složky hustoty 1. Odtud: (1) () CZ.1.07/..00/ ,

7 7 a p g h g h, 1 Po dosazení: a 3 9, ,81 0,8 0,5 9,810, (3) Hmotový poměr obou složek je 1:1. (4) Příklady k procvičení Příklad 6 Do spojených nádob nalijeme olej a vodu o teplotě 0 C. Vyška sloupce vody, měřena od společneho rozhrani, je 18 cm, vyška sloupce oleje je 0 cm. Vypočtěte hustotu oleje. Příklad 7 [Výsledek: 900 kg.m -3 ] Vakuometr na sacím hrdle u čerpadla ukazuje podtlak odpovídající 5,5 m vodního sloupce. Atmosférický tlak je 0,1 MPa. Určete absolutní tlak v sacím hrdle. [Výsledek: 0,046 MPa] Úlohy se vztahují k této otázce:, Pascalův zákon, atmosférický tlak, hydrostatický tlak, přetlak, podtlak, manometry. Použitá literatura [1] Kolomazník, K.: Teorie technologických procesů III, VUT rno, FT Zlín, [] Jahoda, M.: Prouděni tekutin, podklady k přednáškám,všcht Praha, 005. CZ.1.07/..00/ ,

8 8 [3] Jahoda, M.: Doprava tekutin, podklady k přednáškám,všcht Praha, 005. [4] Schauer, P.:, Interní materiály, FAST VUT v rně, 006. [5] Fyzika [online]. [cit ]. Dostupné z: [6] Štigler J.: Hydromechanika [online]. FSI VUT, rno, [cit ]. Dostupné z: [7] GRUER, Josef. Mechanika V: Hydromechanika [online]. [cit ]. Dostupné z: [8] MÍKA, Vladimír. Základy chemického inženýrství.. vyd. Praha: SNTL, Seznam symbolů a - hmotnostní zlomek, [1] A - plocha, [m ] d - průměr, [m] d ekv - ekvivalentní průměr, [m] e z - ztrátová energie, [J.kg -1 ] F - síla, [N] g - gravitační zrychlení, [m.s - ] h - výška, [m] L - délka, [m] m - hmotnost, [kg] M - molární hmotnost, [g.mol -1 ] n - látkové množství, [mol] p - tlak, [Pa] m - hmotnostní průtok, [kg.s -1 ] V - objemový průtok, [m 3.s -1 ] R - univerzální plynová konstanta, [J.mol -1.K -1 ] Re - Reynoldsovo kritérium, [1] S - průřez, [m ] t - teplota, [ C] T - termodynamická teplota, [K] v - rychlost, [m.s -1 ] V - objem, [m 3 ] - dynamická viskozita, [Pa.s] - součinitel tření, [1] - hustota, [kg.m -3 ] - kinematická viskozita, [m.s -1 ] CZ.1.07/..00/ ,

PROCESY V TECHNICE BUDOV cvičení 7, 8

PROCESY V TECHNICE BUDOV cvičení 7, 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV cvičení 7, 8 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento stuijní materiál vznikl za finanční popory Evropského

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

Identifikátor materiálu: ICT 1 7

Identifikátor materiálu: ICT 1 7 Identifikátor materiálu: ICT 1 7 Registrační číslo projektu Název projektu Název příjemce podpory název materiálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního materiálu Druh interaktivity

Více

Univerzita obrany. Měření součinitele tření potrubí K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů

Univerzita obrany. Měření součinitele tření potrubí K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů Univerzita obrany K-216 Laboratorní cvičení z předmětu HYDROMECHANIKA Měření součinitele tření potrubí Protokol obsahuje 14 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování:5.5.2011

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ

nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ HYDRODYNAMIKA 5.37 Jaké objemové nmožství nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ. d 0mm v 0.3ms.850kgm

Více

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez

Více

MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D07_Z_OPAK_M_Mechanika_kapalin_a_plynu_T Člověk a příroda Fyzika Mechanika kapalin

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5

2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5 Obsah 1 Tekutiny 1 2 Tlak 2 2.1 Tlak v kapalině vyvolaný vnější silou.............. 3 2.2 Tlak v kapalině vyvolaný tíhovou silou............. 4 2.3 Tlak v kapalině vyvolaný tíhovou silou............. 4

Více

Základní pojmy a jednotky

Základní pojmy a jednotky Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar

Více

Síla, vzájemné silové působení těles

Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_02_01 Vytvořeno Leden 2014 Síla, značka a jednotka síly, grafické znázornění

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_368 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková

Více

Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů

Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů Mechanika tekutin Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů Vlastnosti kapalin a plynů Tekutiny = kapaliny + plyny Ideální kapalina - dokonale tekutá - bez vnitřního tření - zcela

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

FYZIKA Mechanika tekutin

FYZIKA Mechanika tekutin Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Mechanika

Více

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek Univerzita obrany K-216 Laboratorní cvičení z předmětu TERMOMECHANIKA Měření na výměníku tepla Protokol obsahuje 13 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování: 7.5.2011

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 10

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 10 UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 10 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA V

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA V STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA V HYDROMECHANIKA PRACOVNÍ SEŠIT Vytvořeno v rámci Operačního programu Vzdělávání

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Univerzita obrany K-204. Laboratorní cvičení z předmětu AERODYNAMIKA. Měření rozložení součinitele tlaku c p na povrchu profilu Gö 398

Univerzita obrany K-204. Laboratorní cvičení z předmětu AERODYNAMIKA. Měření rozložení součinitele tlaku c p na povrchu profilu Gö 398 Univerzita obrany K-204 Laboratorní cvičení z předmětu AERODYNAMIKA Měření rozložení součinitele tlaku c p na povrchu profilu Gö 39 Protokol obsahuje 12 listů Vypracoval: Vít Havránek Studijní skupina:

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. XIX Název: Pád koule ve viskózní kapalině Pracoval: Matyáš Řehák stud.sk.: 16 dne:

Více

N A = 6,023 10 23 mol -1

N A = 6,023 10 23 mol -1 Pro vyjadřování množství látky se v chemii zavádí veličina látkové množství. Značí se n, jednotkou je 1 mol. Látkové množství je jednou ze základních veličin soustavy SI. Jeden mol je takové množství látky,

Více

Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové

Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové Přírodní vědy moderně a interaktivně FYZIKA 4. ročník šestiletého a 2. ročník čtyřletého studia Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové ymnázium Přírodní vědy moderně

Více

Příklady z hydrostatiky

Příklady z hydrostatiky Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007 TEST Z FYZIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-F-2006-01 1. Převeďte 37 mm 3 na m 3. a) 37 10-9 m 3 b) 37 10-6 m 3 c) 37 10 9 m 3 d) 37 10 3 m 3 e) 37 10-3 m 3 2. Voda v řece proudí rychlostí 4 m/s. Kolmo

Více

Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu

Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326 PROJEKT

Více

Vysoká škola báňská Technická univerzita Ostrava Mechanika tekutin návody pro laboratorní měření Milada Kozubková a kolektiv Ostrava 2007

Vysoká škola báňská Technická univerzita Ostrava Mechanika tekutin návody pro laboratorní měření Milada Kozubková a kolektiv Ostrava 2007 Vysoká škola báňská Technická univerzita Ostrava Mechanika tekutin návody pro laboratorní měření Milada Kozubková a kolektiv Ostrava 007 Určeno pro projekt: Operační program Rozvoj lidských zdrojů Název:

Více

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I.

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 Obsah 1 Obsah... 2 2 Označení...3

Více

Příklady - rovnice kontinuity a Bernouliho rovnice

Příklady - rovnice kontinuity a Bernouliho rovnice DUM Základy přírodních věd DUM III/2-T3-20 Téma: Mechanika tekutin a rovnice kontinuity Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Příklady Příklady - rovnice kontinuity a Bernouliho

Více

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa].

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. Příklad 1 Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. m 20[kg], t 15 [ C] 288.15 [K], p 10 [MPa] 10.10 6 [Pa], R 8314 [J. kmol 1. K 1 ] 8,314

Více

Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 1

Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 1 Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 1 Autor prezentace: Ing. Eva Václavíková VY_32_INOVACE_1201_základní_pojmy_1_pwp Název školy: Číslo a název projektu: Číslo a název šablony

Více

Spalovací vzduch a větrání pro plynové spotřebiče typu B

Spalovací vzduch a větrání pro plynové spotřebiče typu B Spalovací vzduch a větrání pro plynové spotřebiče typu B Datum: 1.2.2010 Autor: Ing. Vladimír Valenta Recenzent: Doc. Ing. Karel Papež, CSc. U plynových spotřebičů, což jsou většinou teplovodní kotle a

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K141) Přednáškové slidy předmětu 1141 HYA (Hydraulika) verze: 09/2008 K141 FSv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu

Více

CVIČENÍ č. 3 STATIKA TEKUTIN

CVIČENÍ č. 3 STATIKA TEKUTIN Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením

Více

12. Termomechanika par, Clausius-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par

12. Termomechanika par, Clausius-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par 1/2 1. Určovací veličiny pracovní látky 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 3. Směsi plynů, měrné tepelné kapacity plynů 4. První termodynamický zákon 5. Základní vratné

Více

čas t s 60s=1min rychlost v m/s 1m/s=60m/min

čas t s 60s=1min rychlost v m/s 1m/s=60m/min TEKUTINOVÉ MECHANIMY UČEBNÍ TEXTY PRO VÝUKU MECHATRONIKY OBAH: Hydraulika... 3 Základní veličiny a jednotky... 3 Molekulové vlastnosti tekutin... 3 Tlak v kapalinách... 4 Hydrostatický tlak... 6 Atmosférický

Více

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL.

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. Látkové množství Značka: n Jednotka: mol Definice: Jeden mol je množina, která má stejný počet prvků, jako je atomů ve 12 g nuklidu

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. = (pascal) tlak je skalár!!! F p = =

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. = (pascal) tlak je skalár!!! F p = = MECHANIKA TEKUTIN I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tekutiny zahrnují kapaliny a plyny. Společnou vlastností tekutin je, že částice mohou být snadno od sebe odděleny (nemají vlastní

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3665 Šablona: III/2 č. materiálu: VY_32_INOVACE_96 Jméno autora: Mgr. Eva Mohylová Třída/ročník:

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 Entalická bilance výměníků tela Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní

Více

Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP. Termodynamika. Příklad 10

Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP. Termodynamika. Příklad 10 Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP Termodynamika Příklad 1 Stláčením ideálního plynu na 2/3 původního objemu vzrostl při stálé teplotě jeho tlak na 15 kpa.

Více

(1) Řešení. z toho F 2 = F1S2. 3, 09 m/s =. 3, 1 m/s. (Proč se zde nemusí převádět jednotky?)

(1) Řešení. z toho F 2 = F1S2. 3, 09 m/s =. 3, 1 m/s. (Proč se zde nemusí převádět jednotky?) () Která kapalina se více odlišuje od ideální kapaliny, voda nebo olej? Zdůvodněte Popište princip hydraulického lisu 3 Do nádob A, B, C (viz tabule), které mají stejný obsah S dna, je nalita voda do stejné

Více

8. TLAKOMĚRY. Úkol měření. Popis přípravků a přístrojů

8. TLAKOMĚRY. Úkol měření. Popis přípravků a přístrojů Úkol měření 8. TLAKOMĚRY 1. Ověřte funkci diferenčního kapacitního tlakoměru pro měření malých tlakových rozdílů. 2. Změřte závislost obou kapacit na tlakovém rozdílu.. Údaje porovnejte s průmyslovým diferenčním

Více

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo.

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo. PROMOTE MSc POPIS TÉMATU FYZKA 1 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubov@upol.cz Popis

Více

Složení soustav (roztoky, koncentrace látkového množství)

Složení soustav (roztoky, koncentrace látkového množství) VZOROVÉ PŘÍKLADY Z CHEMIE A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava Doporučená literatura z chemie: Prakticky jakákoliv celostátní učebnice

Více

Proudění viskózní tekutiny. Renata Holubova renata.holubova@upol.cz

Proudění viskózní tekutiny. Renata Holubova renata.holubova@upol.cz Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubova@upol.cz Popis základních zákonitostí v mechanice

Více

Vlhký vzduch a jeho stav

Vlhký vzduch a jeho stav Vlhký vzduch a jeho stav Příklad 3 Teplota vlhkého vzduchu je t = 22 C a jeho měrná vlhkost je x = 13, 5 g kg 1 a entalpii sv Určete jeho relativní vlhkost Řešení Vyjdeme ze vztahu pro měrnou vlhkost nenasyceného

Více

MECHANIKA HYDROSTATIKA A AEROSTATIKA Implementace ŠVP

MECHANIKA HYDROSTATIKA A AEROSTATIKA Implementace ŠVP Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MECHANIKA HYDROTATIKA A AEROTATIKA Implementace ŠVP

Více

Dirlbeck J" zš Františkovy Lázně

Dirlbeck J zš Františkovy Lázně Veletrh nápadtl učiteltl fyziky Iniekční stříkačka ve fyzice Dirlbeck J" zš Františkovy Lázně Proč injekční stříkačka? Učím na škole, kde žákyně a poslední dobou i někteří žáci odcházejí na zdravotnickou

Více

215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI

215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI 215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI ÚVOD Rektifikace je nejčastěji používaným procesem pro separaci organických látek. Je široce využívána jak v chemické laboratoři, tak i v průmyslu.

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

V i s k o z i t a N e w t o n s k ý c h k a p a l i n

V i s k o z i t a N e w t o n s k ý c h k a p a l i n V i s k o z i t a N e w t o n s k ý c h k a p a l i n Ú k o l : Změřit dynamickou viskozitu destilované vody absolutní metodou a její závislost na teplotě relativní metodou. P o t ř e b y : Viz seznam

Více

Příklad 1. Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ p 1 = p 2 F 1 = F 2 S 1 S 2.

Příklad 1. Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ p 1 = p 2 F 1 = F 2 S 1 S 2. VII Mechanika kapalin a plynů Příklady označené symbolem( ) jsou obtížnější Příklad 1 Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ Stručné řešení:

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

Vytápění BT01 TZB II cvičení

Vytápění BT01 TZB II cvičení CZ.1.07/2.2.00/28.0301 Středoevropské centrum pro vytváření a realizaci inovovaných technicko-ekonomických studijních programů Vytápění BT01 TZB II cvičení Zadání U zadaného RD nadimenzujte potrubní rozvody

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1..00/1.79 Název DUM: Hydrostatický tlak

Více

Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.

Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34. Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_466A Škola: Akademie - VOŠ, Gymn. a SOŠUP Světlá nad

Více

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení

Více

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program 1 VY_32_INOVACE_01_13 fyzika 6. Elektrické vlastnosti těles Výklad učiva PowerPoint 6 4 2 VY_32_INOVACE_01_14 fyzika 6. Atom Výklad učiva

Více

9 Charakter proudění v zařízeních

9 Charakter proudění v zařízeních 9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění

Více

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3 Výpočtový seminář z Procesního inženýrství podzim 2008 Bilance Materiálové a látkové 10.10.2008 1 Tématické okruhy bilance - základní pojmy bilanční schéma způsoby vyjadřování koncentrací a přepočtové

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

Sešit pro laboratorní práci z chemie

Sešit pro laboratorní práci z chemie Sešit pro laboratorní práci z chemie téma: Roztoky výpočty koncentrací autor: MVDr. Alexandra Gajová vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační

Více

11. Mechanika tekutin

11. Mechanika tekutin . Mechanika tekutin.. Základní poznatky Pascalův zákon Působí-li na tekutinu vnější tlak pouze v jednom směru, pak uvnitř tekutiny působí v každém místě stejně velký tlak, a to ve všech směrech. Hydrostatický

Více

1) PROCENTOVÁ KONCENTRACE HMOTNOSTNÍ PROCENTO (w = m(s) /m(roztoku))

1) PROCENTOVÁ KONCENTRACE HMOTNOSTNÍ PROCENTO (w = m(s) /m(roztoku)) OBSAH: 1) PROCENTOVÁ KONCENTRACE HMOTNOSTNÍ PROCENTO (w = m(s) /m(roztoku)) 2) ŘEDĚNÍ ROZTOKŮ ( m 1 w 1 + m 2 w 2 = (m 1 + m 2 ) w ) 3) MOLÁRNÍ KONCENTRACE (c = n/v) 12 příkladů řešených + 12příkladů s

Více

Přednáška 2. Martin Kormunda

Přednáška 2. Martin Kormunda Přednáška 2 Objemové procesy Difuze Tepelná transpirace (efuze) Přenos energie Proudění plynů : proud plynu, vakuová vodivost, vodivost otvoru, potrubí. Proudění plynu netěsnostmi Difuze plynu Veškeré

Více

Měření kinematické a dynamické viskozity kapalin

Měření kinematické a dynamické viskozity kapalin Úloha č. 2 Měření kinematické a dynamické viskozity kapalin Úkoly měření: 1. Určete dynamickou viskozitu z měření doby pádu kuličky v kapalině (glycerinu, roztoku polysacharidu ve vodě) při laboratorní

Více

3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice

3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice 3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice I Základní vztahy a definice iltrace je jedna z metod dělení heterogenních směsí pevná fáze tekutina. Směs prochází pórovitým materiálem

Více

Chemie - cvičení 2 - příklady

Chemie - cvičení 2 - příklady Cheie - cvičení 2 - příklady Stavové chování 2/1 Zásobník o objeu 50 obsahuje plynný propan C H 8 při teplotě 20 o C a přetlaku 0,5 MPa. Baroetrický tlak je 770 torr. Kolik kg propanu je v zásobníku? Jaká

Více

TECHNICKÁ ZAŘÍZENÍ BUDOV

TECHNICKÁ ZAŘÍZENÍ BUDOV Katedra prostředí staveb a TZB TECHNICKÁ ZAŘÍZENÍ BUDOV Cvičení pro bakalářské studium studijního oboru Příprava a realizace staveb Cvičení č. 7 Zpracoval: Ing. Zdeněk GALDA Nové výukové moduly vznikly

Více

Mechanika plynů. Vlastnosti plynů. Atmosféra Země. Atmosférický tlak. Měření tlaku

Mechanika plynů. Vlastnosti plynů. Atmosféra Země. Atmosférický tlak. Měření tlaku Mechanika plynů Vlastnosti plynů Molekuly plynu jsou v neustálém pohybu, pronikají do všech míst nádoby plyn je rozpínavý. Vzdálenosti mezi molekulami jsou větší než např. v kapalině. Zvýšením tlaku je

Více

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013 Učební osnova předmětu Fyzikální chemie Studijní obor: Aplikovaná chemie Zaměření: Forma vzdělávání: Celkový počet vyučovacích hodin za studium: Analytická chemie Chemická technologie Ochrana životního

Více

Stanovení dělící účinnosti rektifikační kolony

Stanovení dělící účinnosti rektifikační kolony Stanovení dělící účinnosti rektifikační kolony Destilace je jedna z nejběžnějších separačních metod v chemickém průmyslu, především v odvětví organické výroby a petrochemii. Návrh či diagnostika destilačních

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: č. 5 - Kalibrace teploměru, skupenské teplo Jméno: Ondřej Finke Datum měření: 6.10.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly 1.1 - Kalibrace

Více

Hmotnost atomu, molární množství. Atomová hmotnost

Hmotnost atomu, molární množství. Atomová hmotnost Hmotnost atomu, molární množství Atomová hmotnost Hmotnosti jednotlivých atomů (atomové hmotnosti) se vyjadřují v násobcích tzv atomové hmotnostní jednotky u: Dohodou bylo stanoveno, že atomová hmotnostní

Více

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura

Více

1 Tlaková ztráta při toku plynu výplní

1 Tlaková ztráta při toku plynu výplní I Základní vztahy a definice 1 Tlaková ztráta při toku plynu výplní Proudění plynu (nebo kapaliny) nehybnou vrstvou částic má řadu aplikací v chemické technoloii. Částice tvořící vrstvu mohou být kuličky,

Více

MOLEKULOVÁ FYZIKA KAPALIN

MOLEKULOVÁ FYZIKA KAPALIN MOLEKULOVÁ FYZIKA KAPALIN Struktura kapalin Povrchová vrstva kapaliny Povrchová energie, povrchová síla, povrchové napětí Kapilární tlak Kapilarita Prof. RNDr. Emanuel Svoboda, CSc. STRUKTURA KAPALIN Tvoří

Více

Větránípřirozenéa nucené, výpočet průtoku vzduchu oknem

Větránípřirozenéa nucené, výpočet průtoku vzduchu oknem Větránípřirozenéa nucené, výpočet průtoku vzduchu oknem Modernizace vzdělávacího obsahu a podpora rozvoje na SPŠS Havlíčkův Brod zavřeným a otevřeným VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ ÚSTAV

Více

STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ

STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ Zadání: 1. Stanovte oxygenační kapacitu a procento využití kyslíku v čisté vodě pro provzdušňovací porézní element instalovaný v plexi válci následujících rozměrů:

Více

Odborně-pedagogický koncept

Odborně-pedagogický koncept Odborně-pedagogický koncept Škola SPŠCH Brno (CZ) Oblast Odborné vzdělávání Odborná zaměření 1. Aplikovaná chemie Analytická chemie Farmaceutické substance Ochrana životního prostředí 2. Analýza potravin

Více

SADA VY_32_INOVACE_CH2

SADA VY_32_INOVACE_CH2 SADA VY_32_INOVACE_CH2 Přehled anotačních tabulek k dvaceti výukovým materiálům vytvořených Ing. Zbyňkem Pyšem. Kontakt na tvůrce těchto DUM: pys@szesro.cz Výpočet empirického vzorce Název vzdělávacího

Více

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné.

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Fyzika kapalin Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Plyny nemají stálý tvar ani stálý objem, jsou velmi snadno stlačitelné. Tekutina je společný název pro kapaliny

Více

h ztr = ς = v = (R-4) π d Po dosazení z rov.(r-3) a (R-4) do rov.(r-2) a úpravě dostaneme pro ztrátový součinitel (R-1) a 2 Δp ς = (R-2)

h ztr = ς = v = (R-4) π d Po dosazení z rov.(r-3) a (R-4) do rov.(r-2) a úpravě dostaneme pro ztrátový součinitel (R-1) a 2 Δp ς = (R-2) Stanovení součinitele odporu a relativní ekvivalentní délky araturního prvku Úvod: Potrubí na dopravu tekutin (kapalin, plynů) jsou vybavena araturníi prvky, kterýi se regulují průtoky (ventily, šoupata),

Více

Otázky pro Státní závěrečné zkoušky

Otázky pro Státní závěrečné zkoušky Obor: Název SZZ: Strojírenství Mechanika Vypracoval: Doc. Ing. Petr Hrubý, CSc. Doc. Ing. Jiří Míka, CSc. Podpis: Schválil: Doc. Ing. Štefan Husár, PhD. Podpis: Datum vydání 8. září 2014 Platnost od: AR

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Termika VY_32_INOVACE_0301_0212 Teplotní roztažnost látek. Fyzika 2. ročník, učební obory Bez příloh

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Termika VY_32_INOVACE_0301_0212 Teplotní roztažnost látek. Fyzika 2. ročník, učební obory Bez příloh VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Teoretické otázky z hydromechaniky

Teoretické otázky z hydromechaniky Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká

Více

Struktura a vlastnosti kapalin

Struktura a vlastnosti kapalin I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 7 Struktura a vlastnosti kapalin

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA TERMODYNAMICKÁ TEPLOTNÍ STUPNICE, TEPLOTA 1) Převeďte hodnoty v

Více

Kontrola parametrů ventilátoru

Kontrola parametrů ventilátoru 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních zařízení

Více

Vybrané technologie povrchových úprav. Vakuum 2. Část Doc. Ing. Karel Daďourek 2006

Vybrané technologie povrchových úprav. Vakuum 2. Část Doc. Ing. Karel Daďourek 2006 Vybrané technologie povrchových úprav Vakuum 2. Část Doc. Ing. Karel Daďourek 2006 Základní parametry vývěv Mezní tlak vývěvy p mez Tlak na výstupu vývěvy, od kterého je schopna funkce p 0 Čerpací schopnost

Více

Spotřeba paliva a její měření je jedna z nejdůležitějších užitných vlastností vozidla. Měřit a uvádět spotřebu paliva je možno několika způsoby.

Spotřeba paliva a její měření je jedna z nejdůležitějších užitných vlastností vozidla. Měřit a uvádět spotřebu paliva je možno několika způsoby. S Spotřeba paliva Spotřeba paliva a její měření je jedna z nejdůležitějších užitných vlastností vozidla. ěřit a uvádět spotřebu paliva je možno několika způsoby. S.1 Spotřeba a měrná spotřeba Spotřeba

Více

Příloha 4/A. Podpisy zdrojů. Lokalita Střední Čechy. Vzduchotechnické parametry při měření

Příloha 4/A. Podpisy zdrojů. Lokalita Střední Čechy. Vzduchotechnické parametry při měření Podpisy zdrojů Lokalita Střední Čechy Technologie obalovna živičných směsí Technologie Obalovna živičných směsí Datum : 19.červen 2009 Místo : Mezi komínem a TF Atmosférický tlak p a 96300 Pa Teplota okolí

Více

Ztráty tlaku v mikrofluidních zařízeních

Ztráty tlaku v mikrofluidních zařízeních Ztráty tlaku v mikrofluidních zařízeních 1 Teoretický základ Mikrofluidní čipy jsou zařízení obsahující jeden nebo více kanálků sloužících k manipulaci a zpracování tutin nebo k detci chemických slož v

Více

Ilustrační animace slon a pírko

Ilustrační animace slon a pírko Disipativní síly Kopírování a šíření tohoto materiálu lze pouze se souhlasem autorky PhDr. Evy Tlapákové, CSc. Určeno pro základní kurz biomechaniky studentů FTVS UK, školní rok 2008/2009 Disipativní síly

Více

5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu

5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu Fázové přechody 5.6.5 Fáze Fázové rozhraní 5.6.6 Gibbsovo pravidlo fází 5.6.7 Fázový přechod Fázový přechod prvního druhu Fázový přechod druhého druhu 5.6.7.1 Clausiova-Clapeyronova rovnice 5.6.8 Skupenství

Více