Jaderné záření kolem nás

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Jaderné záření kolem nás"

Transkript

1 Jaderné záření kolem nás Projekt řešený na Letním soustředění mladých fyziků a matematiků v Plasnici, 2014 Řešitelé: Martin Kaplan, Adam Tywoniak, Petr Vincena Vedoucí projektu: RNDr. Zdeňka Koupilová, Ph.D. Anotace projektu Seznámili jsme se s digitální částicovou kamerou a způsoby detekce jaderného a kosmického záření. Pomocí softwaru Pixelman jsme pořídili snímky charakteristického záření různých druhů zářičů, měřili energii detekovaných částic, naměřená data zpracovali statistickými metodami a ověřili závislost energie a počtu částic na vzdálenosti zářiče od detektoru. Abstract The aim of the project's first phase was to study the theoretical principles of particle and cosmic ray detection as well as to learn how to use the Jablotron MX-10 EDUKIT set and the Pixelman software. Further work was focused on determining the radiation type corresponding to the respective radiation source and describing the spatial properties of the ray beam and the camera. Using the Pixelman software, we captured images of rays typically emitted by different radiation sources and measured the detected particles' energy. The following objective was to perform a statistic analysis of the data obtained from histograms of energy to produce charts showing relation between energy of the particles and the distance from radiation source to the detector. We also tried to verify the Bragg curve. Úvod Cílem první fáze projektu bylo seznámit se s teoretickými principy detekce jaderného a kosmického záření a zvládnout základy práce se sadou Jablotron MX-10 EDUKIT a softwarem Pixelman. Práce v další části projektu směřovala k určení druhu záření v závislosti na druhu zářiče a k prozkoumání prostorových vlastností svazku záření a detektoru. Hlavním cílem byla statistická analýza dat získaných z histogramů energie pro alfa záření, které procházelo různě dlouhou vrstvou vzduchu. Předpokládaným výstupem byly grafy vyjadřující závislost počtu a energie částic na vzdálenosti zářiče od detektoru a potvrzení tzv. Braggovy křivky pro alfa záření. Dalším cílem bylo prozkoumat statistickou povahu radioaktivního rozpadu, zejména závislost rozptylu počtu částic na délce intervalu měření, resp. počtu detekovaných částic. Teoretická část V této části je uveden stručný popis zkoumaných jevů, užité měřicí techniky a metod zpracování dat. Radioaktivita Některá nestabilní atomová jádra se samovolně přeměňují na jádra stabilnější; při této přeměně je uvolňována energie ve formě jaderného záření. Tato vlastnost se nazývá radioaktivita; radioaktivní jádra vyskytující se v přírodě nazýváme přírodně radioaktivními

2 Druhy záření Rozlišujeme tři nejčastější druhy jaderného záření: Záření (alfa) je tvořeno proudem kladně nabitých jader helia. Ze tří základních druhů záření je nejméně pronikavé, je možné je odstínit i listem papíru; vychyluje se v elektrickém poli. Záření (beta) je tvořeno proudem elektronů vyletujících z atomového jádra. Je poměrně málo pronikavé; vychyluje se v elektrickém poli. Záření (gama) má podobu elektromagnetického záření s velmi krátkou vlnovou délkou, odpovídající tvrdému rentgenovému záření. Z uvedených tří druhů záření je nejvíce pronikavé, k jeho odstínění je nutná vrstva kovu, např. olova. V elektrickém poli se nevychyluje, protože není tvořeno nabitými částicemi, ale fotony. Zářiče Sada Jablotron MX-10 EDUKIT obsahuje různé zářiče vyrobené z materiálů obsahujících nuklidy, které podléhají samovolné jaderné přeměně spojené s jaderným zářením některého z uvedených druhů. Uranové sklo je sklo zabarvené malým množstvím oxidu uranu. Tento druh skla je využíván k dekorativním účelům; jeho aktivita je o něco vyšší, než je přirozené pozadí. [1] Elektroda WT40 s příměsí thoria, běžně používaná k svařování, obsahuje 4 % ThO 2. Školní zdroj záření ŠZZ ALFA s možností nastavení různé míry kolimace svazku, obsahující nuklid 241 Am. [2] Demonstrační zdroj záření (DZZ) ze školní sady gamabeta, který je intenzivním -zářičem. Zdrojem záření je i vzorek běžného draselného hnojiva, obsahující přirozený podíl radioaktivního nuklidu 40 K. [3] Zdrojem záření typu ve vzduchu jsou izotopy radonu 219 Rn, 220 Rn a 222 Rn, vznikající v půdě přeměnou izotopu 238 U. [3] Obr. 1: Pracoviště s čističovou kamerou Obr. 2: Některé z použitých zářičů (U sklo, WT40, hnojivo a ŠZZ ALFA) Princip detekce částic Částicová kamera funguje podobně jako digitální fotoaparát: záření dopadá na čip z čistého křemíku, na kterém je absorbováno nebo jím prochází a při tom mu odevzdá celou svou energii nebo její část. Tato deponovaná energie se projeví vznikem volného náboje, který je - 2 -

3 elektronicky zaznamenán a jeho velikost zpracována jako hodnota energie pro příslušný pixel. Stopa, kterou částice zanechá, závisí na druhu částice, její energii, kalibraci detektoru a dalších faktorech. Na snímcích vytvořených z naměřených dat jsou jasně odlišitelné stopy částic alfa, beta, gama a ojediněle zachycovaného kosmického záření. Kosmické záření Do zemské atmosféry přichází z kosmu záření, které při dopadu vytváří další spršky částic, tzv. sekundární kosmické záření. Sekundární záření přispívá k naměřeným hodnotám pozadí a je možné jej detekovat. Gaussovo rozdělení pravděpodobnosti Gaussovo rozdělení (též normální rozdělení) pravděpodobnosti odpovídá rozdělení pravděpodobnosti spojité náhodné veličiny při dostatečně velkém počtu pokusů. Obecný 2 ( x a) 2 d vztah pro normální rozdělení můžeme zapsat jako A e b, kde A určuje výšku peaku, a je střední hodnota statistického souboru, d je tzv. pološířka abje lineární člen určující posun po ose y. Radioaktivní rozpady spojené s emisí jaderného záření jsou jevy řízené pravděpodobností; není možné určit přesnou délku života konkrétní částice, ale rozpadová konstanta pouze popisuje pravděpodobnost jejího rozpadu v určitém čase. Naměřené četnosti částic v závislosti na jejich energii by při dostatečně dlouhém měření měly odpovídat normálnímu rozdělení s určitou střední hodnotou energie. [5] Graf 1: Příklad normálního rozdělení - 3 -

4 Praktická část V této části jsou popsány provedené experimenty, uvedena data získaná měřením a popsán způsob jejich zpracování. Vlastnosti zářičů Provedli jsme několik měření s cílem určit charakteristické záření pro jednotlivé druhy zářičů. ŠZZ ALFA Am Nuklid 241 Am je -zářičem, produkt jeho -přeměny ( 237 Np) následně neexcituje za uvolnění záření. [3] Na snímku jsou jasně patrné stopy částic a menší množství stop. Uranové sklo Převažující izotop uranu 238 U je -zářičem, na snímcích záření emitovaného uranovým sklem ale výrazně převládají stopy, zatímco stop je zaznamenáno jen malé množství. [3] Toto pozorování lze vysvětlit tak, že 238 U je součástí rozpadové řady, do které patří i izotopy podléhající -přeměně s kratším poločasem rozpadu a vyšší aktivitou než 238 U, například 234 Th. Obr. 3: Snímek záření ze ŠZZ ALFA Obr. 4: Snímek záření z uranového skla Elektroda WT40 Thorium, které tvoří příměs ve slitině elektrody, je -zářičem; snímek tuto skutečnost potvrzuje. [3] Draselné hnojivo Síran draselný, běžně používaný jako hnojivo, má nezanedbatelnou -aktivitu způsobenou přítomností radioaktivního izotopu draslíku 40 K. [3] Na snímku jsou patrné stopy částic

5 Pozadí Obr. 5: Snímek záření z elektrody WT40 Obr. 6: Snímek záření z draselného hnojiva Pro stanovení hodnoty pozadí bylo pořízeno 24 snímků s 5min expozicí, na nich bylo zachyceno 31 stop částic, 599 stop částic a 410 stop částic. Na pozadí je tedy průměrně detekována jedna částice za 4 minuty, jedna částice za 12 s a jedna částice za 17 s výskyt částic a je asi desetkrát častější než výskyt částic. Částice pravděpodobně pocházejí z rozpadu radonu přítomného ve vzduchu. Stínění a stranové vlastnosti detektoru Obr. 7: Snímek záření pozadí, součet 24 expozic po 5 min Mezi detektor a ŠZZ ALFA jsme vložili 1mm destičku olova a pořídili snímek dopadajícího záření. Stopy částic alfa byly zaznamenány pouze v té části snímku, kterou zachytila část čipu detektoru nepřekrytá olověnou destičkou; zároveň jsme zjistili, že orientace snímku odpovídá vnějšímu pohledu na detektor. Stínění olovem nezabránilo zachycení částic gama na překrytou část detektoru

6 Obr. 8: Snímek záření, destička umístěna svisle Obr. 9: Snímek záření, destička umístěna úhlopříčně Stranové vlastnosti detektoru Detektor jsme položili na vodorovnou podložku, nad jeho čip úhlopříčně umístili elektrodu WT40 s obsahem thoria a pořídili snímek dopadajícího záření. Na snímku je patrná vyšší hustota stop částic alfa v jednom úhlopříčném pásu, než v úhlopříčném pásu, který je na něj kolmý. Pás s vyšší hustotou stop odpovídá průmětu elektrody na čip detektoru; elektrodu je tedy možné považovat za tyčový zdroj záření. Kolimace svazku Obr. 10: Zřetelné úhlopříčné umístění elektrody Školní zdroj záření ŠZZ ALFA umožňuje nastavení různé míry kolimace svazku výběrem otvoru v obalu zářiče, kterým prochází záření. [2] Pořídili jsme snímky jeho záření z nejširšího otvoru v tenké stěně obalu zářiče a záření z úzkého otvoru v silnější části obalu zářiče

7 Obr. 11: Stopy částic alfa rozptýlené po celé ploše detektoru Obr. 12: Stopy částic alfa soustředěné do místa dopadu kolimovaného svazku Kosmické záření Při pořizování snímků s dlouhou dobou expozice, např. při určování hodnoty pozadí, jsme na snímcích pozorovali zvláštní stopy, které neodpovídají částicím, ani. Na jednom snímku s poměrně krátkou dobou expozice byla zachycena dlouhá přímá stopa, odpovídající detekci mionu. Obr. 13: Stopa mionu Závislost energie částic na vzdálenosti zdroje od detektoru Provedli jsme sérii experimentů se ŠZZ ALFA umístěném na posuvné lavici v různé vzdálenosti od detektoru (0 mm, 10 mm, 15 mm, 20 mm, 21 mm, 22 mm, 23 mm, 24 mm a 30 mm). Zdroj měření byl nastaven na emisi svazku s nejvyšší mírou kolimace, pro každou vzdálenost byla pořízena sada 4000 snímků s dobou expozice 0,5 s. V softwaru Pixelman byl vytvořen histogram energie částic pro každou sadu snímků, data z těchto histogramů byla následně exportována do programu MS Office Excel a zpracována

8 střední hodnota energie [kev] počet částic Jaderné záření kolem nás, RNDr. Z. Koupilová, Ph.D., M. Kaplan, A. Tywoniak, P. Vincena, 2014 Z důvodu pravděpodobnostního řízení rozpadových dějů a statistické povahy měřených veličin by distribuce hodnot energie měla odpovídat některému statistickému rozdělení. Pro určení střední hodnoty energie jsme se rozhodli použít Gaussovo rozdělení, kterému se při velkých počtech měření blíží všechna statistická rozdělení. Metoda nejmenších čtverců a Řešitel Pro nalezení Gaussovy funkce nejlépe odpovídající hodnotám získaným z histogramu jsme užili tzv. metodu nejmenších čtverců v kombinaci s nástrojem Řešitel programu MS Office Excel. Nástroj Řešitel mění hodnoty parametrů A, a, d, b exponenciální funkce 2 ( x a) 2 d A e b tak, aby definovaný součet druhých mocnin rozdílů hodnot naměřených četnosti a funkční hodnoty hledané Gaussovy funkce byl co nejmenší Naměřené hodnoty energie Normální rozdělení energie [kev] Graf 2: Rozdělení hodnot energie pro vzdálenost 15 mm, parametry funkce: A = 13,16; a = 2196; d = 306; b = 0,83 Sledovali jsme závislost střední hodnoty energie částic, získané jako parametr a Gaussovy funkce, na vzdálenosti zářiče od detektoru. Energie klesá se vzdáleností exponenciálně, její zjištěný průběh ale Braggově křivce neodpovídá vzdálenost [mm] Graf 3: Závislost střední hodnoty energie na vzdálenosti, jako chybové úsečky jsme zvolili velikost parametru d (pološířku)

9 Čočka jako mechanický model Rozhodli jsme se modelovat počet jader mechanicky binárním rozdělením. Pomocí náhodného rozhození tečkovaných zrn čočky jsme získali statistická data, která jsme následně porovnali s teoreticky vypočtenými hodnotami. Metoda spočívala ve změření desetinásobného počtu hodů a následném zprůměrování po 10 měřeních. Graf 4 Graf 5 Histogramy ukazují počet hodů, v nichž padl daný počet zrn označenou stranou nahoru. V levém grafu jsou zobrazena data získaná 100 hody po 30 zrnech, v pravém jsou zobrazena data získaná ze 100 hodů po 300 zrnech, kdy pro každý hod byl určen průměrný počet označených zrn pro 30 kusů. Graf 6 Graf 7 Zde na obrázcích byly přidány do histogramů pro srovnání přidány teoreticky spočtené hodnoty (modré sloupce představují naměřené hodnoty, oranžové pak teoreticky spočtené)

10 Poté jsme měřili histogram četnosti gama záření. Opět nejprve pro kratší dobu expozice (0,1 s) a následně pro delší dobu expozice (1 s). Graf 8 Graf 9 Histogram kratší expozice byl sestaven na základě snímků po 0,1 sekundy, histogram dlouhé expozice je sestaven z desetiny počtu částic detekovaných během 1 sekundy (odpovídá průměrnému počtu částic zachycených během 0,1 sekundy). Z výsledků je patrné, že pro menší množství dat získáme širší histogramy, které mají větší rozptyl. Pro získání přesnějších výsledků jsme proto využili metodu středování při větším počtu hodů. Při porovnání snímků je též vidět, že pro delší expozici získáme užší rozložení a tedy i přesněji určenou střední hodnotu počtu částic na 0,1 sekundy

11 Závěr Naučili jsme se pracovat s digitální částicovou kamerou a seznámili se s principy detekce jaderného a kosmického záření. Ze snímků záření emitovaného různými zářiči jsme určili druh jejich převládající jaderné přeměny a tento poznatek srovnali s údaji z literatury. Neshodu jsme zaznamenali pouze u uranového skla; tuto skutečnost lze vysvětlit přítomností produktů rozpadu uranu, které samy podléhají -přeměně. Rozborem snímků s celkovou dvouhodinovou dobou expozice jsme stanovili hodnotu přirozeného pozadí; částic a je bylo zaznamenáno asi desetkrát více než částic, které pravděpodobně pocházejí z rozpadu radonu přítomného ve vzduchu. Prozkoumali jsme vliv překrytí části detektoru olověnou deskou na počet zachycených částic, částice byly odstíněny zcela, částice pouze částečně. Zároveň jsme určili stranovou orientaci částicové kamery: orientace snímku odpovídá vnějšímu pohledu na detektor. Ze stop částic alfa na snímcích elektrody WT40 položené na detektor v jednom úhlopříčném pásu, než v úhlopříčném pásu, který je na něj kolmý. Pás s vyšší hustotou stop odpovídá průmětu elektrody na čip detektoru; elektrodu je tedy možné považovat za tyčový zdroj záření. Ze sad 4000 snímků pro různé vzdálenosti zářiče od detektoru byly získány histogramy energie a data z těchto histogramů zpracována. Protože distribuce hodnot energie odpovídá statistickému rozdělení, bylo možné metodou nejmenších čtverců najít předpis Gaussovy funkce, která nejlépe odpovídá hodnotám získaným z histogramů. Z parametrů takto nalezených funkcí byly získány střední hodnoty energie a zkoumána závislost těchto hodnot na vzdálenosti zářiče od detektoru. Zjištěný klesající exponenciální průběh neodpovídá Braggově křivce. Byl sestaven graf závislosti celkového počty částic na vzdálenosti zářiče od detektoru, zjištěná závislost odpovídá údajům v literatuře, tedy většina částic se zastaví ve stejné vzdálenosti od zářiče. Mechanickým způsobem jsme modelovali binární rozdělení počtu jader. Ze srovnání výsledků je patrné, že změřením většího počtu hodů a následným zprůměrováním získáme širší histogramy s větším rozptylem; pro získání přesnějších výsledků je vhodné využít metodu středování při větším počtu hodů. Obdobně vede delší expozice snímku k užšímu rozložení a přesnějšímu určení střední hodnoty počtu částic. Zdroje a citace [1] Sada Jablotron MX-10 EDUKIT. Digitální částicová kamera. Stručný průvodce. Jablotron Alarms a.s. [2] Školní zdroj záření ŠZZ ALFA. Návod k použití, 2014 [3] HÁLA, J. Radioaktivní izotopy. Sursum, Tišnov, 2013 [4] BROKLOVÁ, Z. Učíme jadernou fyziku. ČEZ a.s. [5] [citováno ]

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Gama spektroskopie Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Teoretický úvod ke spektroskopii Produkce a transport neutronů v různých materiálech, které se v daných zařízeních vyskytují (urychlovačem

Více

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO

Více

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Vojtěch Přikryl Ročník 1 Předmět IFY Kroužek 35 ID 143762 Spolupracoval Měřeno dne Odevzdáno dne Daniel Radoš 7.3.2012 21.3.2012 Příprava

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 19. 12. 2012 Pořadové číslo 09 1 RADIOAKTIVITA Předmět: Ročník: Jméno autora:

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní

Více

Přírodní radioaktivita

Přírodní radioaktivita Přírodní radioaktivita Náš celý svět, naše Země, je přirozeně radioaktivní, a to po celou dobu od svého vzniku. V přírodě můžeme najít několik tisíc radionuklidů, tj. prvků, které se samovolně rozpadají

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka

Více

Křemíkovým okem do nitra hmoty, radioaktivita

Křemíkovým okem do nitra hmoty, radioaktivita Křemíkovým okem do nitra hmoty, radioaktivita BaBar SLAC Zbyněk Drásal 1 Historie diodového jevu v polovodičích Objev tzv. Halbleiteru (polovodiče) bodový kontakt kovu a krystalu (PbS) usměrňuje proud

Více

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory.

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích

Více

Atomová a jaderná fyzika

Atomová a jaderná fyzika Mgr. Jan Ptáčník Atomová a jaderná fyzika Fyzika - kvarta Gymnázium J. V. Jirsíka Atom - historie Starověk - Démokritos 19. století - první důkazy Konec 19. stol. - objev elektronu Vznik modelů atomu Thomsonův

Více

212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium

212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium Pracovní list - Jaderné reakce 1. Vydává-li radionuklid záření alfa: a) protonové číslo se zmenšuje o 4 a nukleonové číslo se nemění b) nukleonové číslo se změní o 4 a protonové se nemění c) protonové

Více

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka. PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207 6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.

Více

8.1 Elektronový obal atomu

8.1 Elektronový obal atomu 8.1 Elektronový obal atomu 8.1 Celkový náboj elektronů v elektricky neutrálním atomu je 2,08 10 18 C. Který je to prvek? 8.2 Dánský fyzik N. Bohr vypracoval teorii atomu, podle níž se elektron v atomu

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne: 2.3.

Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne: 2.3. Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne:.3.3 Úloha: Radiometrie ultrafialového záření z umělých a přirozených světelných

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

PATENTOVÝ SPIS CO « O?oo 05. ézěk ČESKÁ REPUBLIKA

PATENTOVÝ SPIS CO « O?oo 05. ézěk ČESKÁ REPUBLIKA PATENTOVÝ SPIS ČESKÁ REPUBLIKA (19) (21) Číslo pfihláiky: 1325-94 (22) PMhláSeno: 31. 05. 94 (40) Zveřejněno: 14. 06. 95 (47) Uděleno: 27. 04. 95 (24) Oznámeno uděleni ve Věstníku: 14. 06. 95 ézěk (11)

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

2.9.3 Exponenciální závislosti

2.9.3 Exponenciální závislosti .9.3 Eponenciální závislosti Předpoklady: 9 Pedagogická poznámka: Látka připravená v této hodině zabere tak jeden a půl vyučovací hodiny. Proč probíráme tak eotickou funkci jako je eponenciální? V životě

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

GIS ANALÝZA VLIVU DÁLNIČNÍ SÍTĚ NA OKOLNÍ KRAJINU. Veronika Berková 1

GIS ANALÝZA VLIVU DÁLNIČNÍ SÍTĚ NA OKOLNÍ KRAJINU. Veronika Berková 1 GIS ANALÝZA VLIVU DÁLNIČNÍ SÍTĚ NA OKOLNÍ KRAJINU Veronika Berková 1 1 Katedra mapování a kartografie, Fakulta stavební, ČVUT, Thákurova 7, 166 29, Praha, ČR veronika.berkova@fsv.cvut.cz Abstrakt. Metody

Více

Ultrazvuková defektoskopie. Vypracoval Jan Janský

Ultrazvuková defektoskopie. Vypracoval Jan Janský Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací

Více

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012 Název školy Dvojí povaha světla Název a registrační číslo projektu Označení RVP (název RVP) Vzdělávací oblast (RVP) Vzdělávací obor (název ŠVP) Předmět/modul (ŠVP) Tematický okruh (ŠVP) Název DUM (téma)

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek / 1 ZPRACOVAL Martin Hložek TMB MCK, 2011 ZADAVATEL PhDr. Margaréta Musilová Mestský ústav ochrany pamiatok Uršulínska 9 811 01 Bratislava OBSAH Úvod Skanovací elektronová mikroskopie (SEM) Energiově-disperzní

Více

Jednoduchý elektrický obvod

Jednoduchý elektrický obvod 21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod

Více

2. Určete frakční objem dendritických částic v eutektické slitině Mg-Cu-Zn. Použijte specializované programové vybavení pro obrazovou analýzu.

2. Určete frakční objem dendritických částic v eutektické slitině Mg-Cu-Zn. Použijte specializované programové vybavení pro obrazovou analýzu. 1 Pracovní úkoly 1. Změřte střední velikost zrna připraveného výbrusu polykrystalického vzorku. K vyhodnocení snímku ze skenovacího elektronového mikroskopu použijte kruhovou metodu. 2. Určete frakční

Více

6.2.7 Princip neurčitosti

6.2.7 Princip neurčitosti 6..7 Princip neurčitosti Předpoklady: 606 Minulá hodina: Elektrony se chovají jako částice, ale při průchodu dvojštěrbinou projevují interferenci zdá se, že neplatí předpoklad, že elektron letí buď otvorem

Více

Derivační spektrofotometrie a rozklad absorpčního spektra

Derivační spektrofotometrie a rozklad absorpčního spektra Derivační spektrofotometrie a rozklad absorpčního spektra Teorie: Derivační spektrofotometrie, využívající derivace absorpční křivky, je obecně používanou metodou pro zvýraznění detailů průběhu záznamu,

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

Za hranice současné fyziky

Za hranice současné fyziky Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie

Více

Gama spektroskopie. Ústav jaderné fyziky AV ČR, Řež u Prahy. Konzultanti: RNDr. Vladimír Wagner, CSc. Ing. Ondřej Svoboda.

Gama spektroskopie. Ústav jaderné fyziky AV ČR, Řež u Prahy. Konzultanti: RNDr. Vladimír Wagner, CSc. Ing. Ondřej Svoboda. Gama spektroskopie Ústav jaderné fyziky AV ČR, Řež u Prahy Autor: Sláma Ondřej Konzultanti: RNDr. Vladimír Wagner, CSc. Rok: 2009/2010 Ing. Ondřej Svoboda Úvod Jaderná fyzika, oblast vědy, která je stará

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XI Název: Charakteristiky diody Pracoval: Pavel Brožek stud. skup. 12 dne 9.1.2009 Odevzdal

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Zadavatel: KRONEN LABE spol. s r. o. Tylova 410/24, 400 04 Trmice

Zadavatel: KRONEN LABE spol. s r. o. Tylova 410/24, 400 04 Trmice ÚSTAV TECHNIK Y A ŘÍZENÍ V ÝROBY Ústav techniky a řízení výroby Univerzity J. E. Purkyně v Ústí nad Labem Na Okraji 11 Tel.: +42 475 285 511 96 Ústí nad Labem Fax: +42 475 285 566 Internet: www.utrv.ujep.cz

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera Výstup RVP: Klíčová slova: pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Mirek Kubera žák diskutuje a kriticky zhodnotí statistické informace a daná statistická sdělení, volí

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý Autor: Mgr. Stanislava Bubíková JADERNÁ ENERGIE Datum (období) tvorby: 25. 6. 2012 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemické reakce; chemie a společnost 1 Anotace: Žáci se

Více

Školení CIUR termografie

Školení CIUR termografie Školení CIUR termografie 7. září 2009 Jan Pašek Stavební fakulta ČVUT v Praze Katedra konstrukcí pozemních staveb Část 1. Teorie šíření tepla a zásady nekontaktního měření teplot Terminologie Termografie

Více

Experiment P-10 OHMŮV ZÁKON. Sledování vztahu mezi napětím a proudem procházejícím obvodem s rezistorem známého odporu.

Experiment P-10 OHMŮV ZÁKON. Sledování vztahu mezi napětím a proudem procházejícím obvodem s rezistorem známého odporu. Experiment P-10 OHMŮV ZÁKON CÍL EXPERIMENTU Sledování vztahu mezi napětím a proudem procházejícím obvodem s rezistorem známého odporu. MODULY A SENZORY PC + program NeuLog TM USB modul USB 200 senzor napětí

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Mobilní Ramanův spektrometr Ahura First Defender

Mobilní Ramanův spektrometr Ahura First Defender ČVUT v Praze, Kloknerův ústav, Šolínova 7, Praha 6 Mobilní Ramanův spektrometr Ahura First Defender Příručka Ing. Daniel Dobiáš, Ph.D. Doc. Ing. Tomáš Klečka, CSc. Praha 2009 Anotace Příručka obsahuje

Více

Semestrální práce z předmětu Matematika 6F

Semestrální práce z předmětu Matematika 6F vypracoval: Jaroslav Nušl dne: 17.6.24 email: nusl@cvut.org Semestrální práce z předmětu Matematika 6F Zádání: Cílem semestrální práce z matematiky 6F bylo zkoumání hudebního signálu. Pluginem ve Winampu

Více

Ochrana při práci se zdroji ionizujícího záření

Ochrana při práci se zdroji ionizujícího záření Ochrana při práci se zdroji ionizujícího záření 1. Legislativní normy. Základním zákonem, který upravuje všechny činnosti spojené s využíváním ionizujícího záření je tzv. Atomový zákon 1 z roku 1997 (Sbírka

Více

Testové otázky za 2 body

Testové otázky za 2 body Přijímací zkoušky z fyziky pro obor PTA K vypracování písemné zkoušky máte k dispozici 90 minut. Kromě psacích potřeb je povoleno používání kalkulaček. Pro úspěšné zvládnutí zkoušky je třeba získat nejméně

Více

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou.

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 1 Pracovní úkoly 1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 2. Sestrojte graf této závislosti. 2 Teoretický úvod 2.1 Povrchové napětí

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Fotokroužek 2009/2010

Fotokroužek 2009/2010 Fotokroužek 2009/2010 První hodina Úvod do digitální fotografie Druhy fotoaparátů Diskuse Bc. Tomáš Otruba, 2009 Pouze pro studijní účely žáků ZŠ Slovanské náměstí Historie fotografie Za první fotografii

Více

1. Stanovte a graficky znázorněte charakteristiky vakuové diody (EZ 81) a Zenerovy diody (KZ 703).

1. Stanovte a graficky znázorněte charakteristiky vakuové diody (EZ 81) a Zenerovy diody (KZ 703). 1 Pracovní úkoly 1. Stanovte a graficky znázorněte charakteristiky vakuové diody (EZ 81) a Zenerovy diody (KZ 703). 2. Určete dynamický vnitřní odpor Zenerovy diody v propustném směru při proudu 200 ma

Více

Termovizní měření. 1 Teoretický úvod. Cíl cvičení: Detekce lidské kůže na snímcích z termovizní i klasické kamery

Termovizní měření. 1 Teoretický úvod. Cíl cvičení: Detekce lidské kůže na snímcích z termovizní i klasické kamery Termovizní měření Cíl cvičení: Detekce lidské kůže na snímcích z termovizní i klasické kamery 1 Teoretický úvod Termovizní měření Termovizní kamera je přístroj pro bezkontaktní měření teplotních polí na

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

Téma: Investice do akcií společnosti ČEZ

Téma: Investice do akcií společnosti ČEZ Matematika a byznys Téma: Investice do akcií společnosti ČEZ Alena Švédová A07146 Investice do akcií společnosti ČEZ ÚVOD Tímto tématem, které jsem si pro tuto práci zvolila, bych chtěla poukázat na to,

Více

Automatický optický pyrometr v systémové analýze

Automatický optický pyrometr v systémové analýze ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ K611 ÚSTAV APLIKOVANÉ MATEMATIKY K620 ÚSTAV ŘÍDÍCÍ TECHNIKY A TELEMATIKY Automatický optický pyrometr v systémové analýze Jana Kuklová, 4 70 2009/2010

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Plynové lasery pro průmyslové využití

Plynové lasery pro průmyslové využití Laserové technologie v praxi I. Přednáška č.3 Plynové lasery pro průmyslové využití Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Využití plynových laserů v průmyslových aplikacích Atomární - He-Ne

Více

POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ. (51) Int Cl. 4 ČESKOSLOVENSKA SOCIALISTICKÁ REPUBLIKA ( 1» ) ÚAAD PRO VYNÁLEZY A OBJEVY

POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ. (51) Int Cl. 4 ČESKOSLOVENSKA SOCIALISTICKÁ REPUBLIKA ( 1» ) ÚAAD PRO VYNÁLEZY A OBJEVY ČESKOSLOVENSKA SOCIALISTICKÁ REPUBLIKA ( 1» ) POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ (22) Přihlášeno 27 05 85 (21) PV 3787-85 254367 (") (BI) (51) Int Cl. 4 G 21 К 1/10 ÚAAD PRO VYNÁLEZY A OBJEVY (40) Zveřejněno

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm Spektroskopie v UV-VIS oblasti UV-VIS spektroskopie pracuje nejčastěji v oblasti 2-8 nm lze měřit i < 2 nm či > 8 nm UV VIS IR Ultra Violet VISible Infra Red Roztok KMnO 4 roztok KMnO 4 je červenofialový

Více

Elektrotechnika - test

Elektrotechnika - test Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám. 1594/16, 664 51 Šlapanice www.zsslapanice.cz MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/21.2389 Elektrotechnika

Více

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. neutronové číslo

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. neutronové číslo JADERNÁ FYZIKA I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í 1. Úvod 4 14 17 1 jádra E. Rutherford, 1914 první jaderná reakce: α+ N O H 2 7 8 + 1 jaderné síly = nový druh velmi silných sil vzdálenost

Více

SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE

SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE Vzdělávací předmět: Fyzika Tematický celek dle RVP: Látky a tělesa Tematická oblast: Vlastnosti látek a těles magnetické vlastnosti látek Cílová skupina: Žák 6. ročníku

Více

E-LEARNINGOVÁ OPORA PŘEDMĚTU PROGRAMOVÉ VYBAVENÍ ORDINACE ZUBNÍHO LÉKAŘE Kateřina Langová, Jana Zapletalová, Jiří Mazura

E-LEARNINGOVÁ OPORA PŘEDMĚTU PROGRAMOVÉ VYBAVENÍ ORDINACE ZUBNÍHO LÉKAŘE Kateřina Langová, Jana Zapletalová, Jiří Mazura E-LEARNINGOVÁ OPORA PŘEDMĚTU PROGRAMOVÉ VYBAVENÍ ORDINACE ZUBNÍHO LÉKAŘE Kateřina Langová, Jana Zapletalová, Jiří Mazura Anotace Příspěvek popisuje novou koncepci výuky předmětu Programové vybavení ordinace

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí

Více

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - ovzduší V této kapitole se dozvíte: Co je to ovzduší. Jaké plyny jsou v atmosféře. Jaké složky znečišťují

Více

FLUORESCENČNÍ MIKROSKOP

FLUORESCENČNÍ MIKROSKOP FLUORESCENČNÍ MIKROSKOP na gymnáziu Pierra de Coubertina v Táboře Pavla Trčková, kabinet Biologie, GPdC Tábor Co je fluorescence Fluorescence je jev spočívající v tom, že některé látky (fluorofory) po

Více

Zhodnocení dopadů inovace na studijní výsledky

Zhodnocení dopadů inovace na studijní výsledky Zhodnocení dopadů inovace na studijní výsledky Zpracoval: doc. Ing. Josef Weigel, CSc. hlavní řešitel projektu Hodnocené studijní programy: - Bakalářský studijní program Geodézie a kartografie v prezenční

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

... 10) K čemu se tyto tyče používají?... 11) Zakresli do obrázku (uveden níže) kontejnment. 12) Vyjmenuj tři vlastnosti kontejnmentu.

... 10) K čemu se tyto tyče používají?... 11) Zakresli do obrázku (uveden níže) kontejnment. 12) Vyjmenuj tři vlastnosti kontejnmentu. Exkurze pro 1. ročníky Elektrárna a meteorologická stanice Temelín Termíny konání: 3. září 2014 6. A 4. září 2014 2. B 5. září 2014 2. C Označení jednotlivých tříd odpovídá školnímu roku 2014/2015. Cíle

Více

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA1_11 Název materiálu: Teplo a teplota. Tematická oblast: Fyzika 1.ročník Anotace: Prezentace slouží k vysvětlení základních fyzikálních veličin tepla a teploty.

Více

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země strana 2 Co je DPZ Dálkový průzkum je umění rozdělit svět na množství malých barevných čtverečků, se kterými si lze hrát na počítači a odhalovat jejich neuvěřitelný

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce: REDL 3.EB 9 1/11 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku zenerovy diody v propustném i závěrném směru. Charakteristiky znázorněte graficky. b) Vypočtěte a graficky znázorněte statický odpor diody

Více

PEDAGOGICKÁ FAKULTA JIHOČESKÉ UVIVERZITY

PEDAGOGICKÁ FAKULTA JIHOČESKÉ UVIVERZITY PEDAGOGICKÁ FAKULTA JIHOČESKÉ UVIVERZITY Referát z jaderné fyziky Téma: Atomové jádro Vypracoval: Josef Peterka, MVT bak. II. Ročník Datum dokončení: 24. června 2002 Obsah: strana 1. Struktura atomu 2

Více