LABORATORNÍ CVIČENÍ Z FYZIKY
|
|
- Anežka Hrušková
- před 5 lety
- Počet zobrazení:
Transkript
1 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA APLIKOVANÉ MATEMATIKY FAKULTA DOPRAVNÍ LABORATORNÍ CVIČENÍ Z FYZIKY Jméno Jana Kuklová Stud. rok 7/8 Číslo kroužku 2 32 Číslo úlohy 52 Ročník 2. Klasifikace Název úlohy Termovizní měření teplotních polí. Datum měření Datum odevzdání Pomůcky Termokamera FLIR P65 měřené objekty Software ThermaCAM TM Reporter TM Úkol 1. Sledujte rozložení teplotního pole na vybraných objektech. 2. Vyhodnoťte parametr emisivity objektu a stanovte extrémy teploty v pořízeném záznamu. Dílčí úkoly 1. Pořiďte statický snímek rozložení teploty na vybraném objektu. 2. Pomocí software ThermaCAM TM Reporter TM vyhodnoťte emisivitu měřeného objektu. 3. Ve vybraných bodech stanovte hodnotu teploty. 4. Vykreslete průběh teploty na zvoleném profilu záznamu. 5. Vyhodnoťte histogram teplot ve zvolené oblasti záznamu. 6. Vyznačte v obrázku místa konstantní teploty.
2 Teoretický úvod Infračervená oblast elektromagnetického záření (IR) zahrnuje vlnové délky delší než pro viditelné světlo až po oblast mikrovln dělení dle vlnových délek: blízká infračervená oblast (0,75 3) µm střední infračervená oblast (3 6) µm daleká infračervená oblast (6-) µm pozn.: Vlnové délky pro tyto oblasti se velmi často udávají v angströmech: 1 Å = 10 4 µm Stefanův Boltzmannův zákon popisuje vyzařování tělesa v závislosti na jeho termodynamické teplotě: W= εσt 4 (1) W je intenzita vyzařování [W] = W m -2, ε je emisivita (pro černá tělesa ε =1) [ε] = 1, σ je Stefanova-Boltzmannova konstanta (σ = 5, W m -2 K -4 ), T je termodynamická teplota [T] = K Černé těleso objekt, který absorbuje veškeré záření, které na něj dopadá, bez ohledu na vlnovou délku. Šedé (nečerné) těleso reálné objekty existují tři jevy, které mohou odlišovat reálný objekt od černého tělesa. Tyto složky jsou obecně závislé na vlnové délce, a proto pro jejich vyjádření užíváme spektrálních veličin: 1. část dopadajícího záření α může být pohlcena spektrální pohltivost α λ 2. část dopadajícího záření ρ může být odražena spektrální odrazivost ρ λ 3. část dopadajícího záření τ může tělesem prostoupit spektrální propustnost τ λ Tyto spektrální veličiny jsou definované vždy jako poměr pohlcené, eventuelně odražené či propuštěné energie ku celkové energii dopadající na těleso a jejich součet je vždy roven jedné. α λ + ρ λ + τ λ = 1 (2) Emisivita tělesa charakteristika každého tělesa (objektu), která se definuje jako poměr mezi vyzařováním daného objektu a černého tělesa; ε 0; 1 emisivita reálných povrchů: 0,1 0,95. nejdůležitější parametr, jehož volba ovlivňuje správnost výsledků při termovizních měřeních. hodnoty emisivity pro vybrané materiály budeme mít při měření k dispozici Spektrální emisivita tělesa emisivita ε λ definovaná pro určitou hodnotu λ ze zákonů vyzařování je zřejmé, že platí: ε λ = α λ (3)
3 Infračervená kamera (termokamera) vytváří obraz na základě povrchem tělesa emitovaného infračerveného záření pomocí termokamery lze stanovit teplotu daného tělesa (emitované infračervené záření závisí na teplotě povrchu tělesa) vlastní měření záření emitovaného povrchem objektu se provádí pomocí speciálních senzorů, bolometrů Bolometr (z řec. bole = paprsek) senzor pro bezdotykové měření teploty pracující na principu pyrometrie (měření celkového vyzářeného tepelného výkonu prostřednictvím infračerveného záření) obvykle se vyskytují v podobě integrovaných obvodů obsahující uspořádání více (až tisíců) bolometrů do matice, ty se pak označují jako mikrobolometry. jeho elektrický odpor se mění v závislosti na jeho teplotě (ta závisí na množství absorbovaného dopadajícího infračerveného záření), na základě změn odporu bolometru, je tedy možné stanovit teplotu objektu, přičemž je třeba zajistit tepelnou izolaci bolometru od svého okolí. Způsob měření Měření tělesa termokamerou se provádí podle následujícího blokového schématu: Při měření je třeba brát v úvahu několik faktů: 1. infračervené záření vyzařované tělesem závisí nejen na jeho teplotě, ale také na jeho emisivitě 2. infračervené záření vzniká také na okolních materiálech a je zkoumaným tělesem odráženo 3. záření emitované tělesem a odražené záření je částečně absorbováno atmosférou mezi objektem a kamerou (dáno vlhkostí vzduchu)
4 Před samotným měřením je tedy třeba stanovit správně korekční koeficienty, které známe: emisivita tento parametr nejvíce ovlivňuje vyhodnocení termogramu, často právě emisivita je předmětem měření (v případě, že známe teplotu měřeného tělesa) odražená teplota kompenzuje vliv záření odraženého měřeným tělesem a vliv záření z atmosféry mezi objektem a kamerou vzdálenost a relativní vlhkost pro případ vzduchu nemají příliš velkou váhu externí optika nastavuje se v případě použití jiného objektivu V případech, kdy je emisivita malá, vzdálenost mezi objektem a kamerou velká a teplota objektu je blízká odražené teplotě, hraje parametr odražené teploty v měření velkou roli. Pro samotné měření si vybereme jeden z připravených objektů. Rozložení teplotních polí na jeho povrchu se bude průběžně zobrazovat na LCD obrazovce kamery, přičemž jednotlivé barvy budou představovat určitou teplotu. Zde je důležité si uvědomit, že obraz je ovlivněn nastavením emisivity pro celý obrázek (v případě, že jsou zobrazeny objekty o různé emisivitě, nebudou všechny teploty odpovídat skutečné hodnotě). Pro další zpracování budou data z kamery přenesena v digitální podobě do počítače, kde posléze provedeme zpracování pomocí softwaru ThermaCAM TM Reporter TM. Měření a vypracování Před začátkem měření byly parametry v termokameře nastaveny následujícím způsobem: emisivita 0,96 vzdálenost objektu 2,4 m odražená teplota 8.0 C teplota vzduchu 24 C atm. propustnost 0,99 vlhkost vzduchu 50% Všechny parametry kromě emisivity odpovídaly podmínkám v laboratoři, za kterých bylo měření prováděno. Vedoucí cvičení pořídil termokamerou snímky několika připravených objektů. Naše skupina dostala ke zpracování ocelovou desku umístěnou na indukční plotýnce, která byla rovnoměrně zahřátá kalibrovaným zdrojem tepla na teplotu 240 C. Ocelová deska umístěná na indukční plotýnce byla rozdělena na tři části, přičemž spodní část byla natřena černou barvou, pravá horní část stříbrnou a levá horní část byla bez nátěru. I přesto, že deska byla zahřátá na konstantní teplotu, na první pohled byly na snímku patrné teplotní rozdíly mezi jednotlivými částmi desky. Je zřejmé, že tyto rozdíly byly způsobeny právě rozdílnou emisivitou jednotlivých povrchů. Dále jsme si všimli, že od středu ke kraji teplota všeobecně klesá, což bylo s největší pravděpodobností způsobeno vlivem okolního prostředí (teplota v laboratoři: 24 C). Po úvodní analýze jsme snímek přenesený do počítače zpracovali pomocí výše zmíněného softwaru. Samotné zpracování jsme rozdělili do tří částí, z nichž každá má svůj grafický výstup, který obsahuje snímky, grafy a výsledkové tabulky.
5 1. část zpracování stanovení emisivit a zobrazení teplotního průběhu Nejprve jsme umístili bod v blízkosti středu do oblasti natřené černou barvou. Předpokládali jsme, že v tomto bodě je teplota právě 240 C. Teplota se ve zmíněném bodě lehce lišila, a proto jsme provedli korekci emisivity na 0,95 (při této teplotě je již teplota ve zvoleném bodě 240,1 C). Dále jsme do každé ze tří oblastí ocelové desky umístili úsečku, podle níž jsme vykreslili teplotní průběh. Předpokládali jsme, že teplota v okolí středu desky je konstantní, a porovnáním průběhů (zejména jejich počátků) jsme stanovili emisivitu zbývajících dvou povrchů. Z grafu je patrné, že průběh teploty v oblasti s černým nátěrem (červeně) je velmi podobný průběhu v oblasti bez nátěru (zeleně). Narozdíl od toho průběh teploty v oblasti se stříbrným nátěrem (modře) je zcela odlišný. Zde totiž nepozorujeme žádné výrazné snížení teploty u kraje desky, což může být dáno odlišnými fyzikálními vlastnostmi nátěru (např. rozdílná tepelná kapacita). 2. část zpracování histogramy jednotlivých teplotních polí Při tomto zpracování jsme do snímku umístili tři plochy, které odpovídají jednotlivým oblastem ocelové desky. Každé z těchto ploch jsme přiřadili odpovídající emisivitu zjištěnou v předchozí části. Následně jsme pro každou vyznačenou plochu sestrojili histogram. Ty pouze potvrdili naše předchozí pozorování, a to že oblast se stříbrným lakem se chová poněkud odlišně než zbývající dvě části ocelové desky. 3. část zpracováníní zobrazení izotermy V závěrečné části jsme pod sebe umístili tři snímky a u každého z nich nastavili emisivitu zjištěnou v první části. Následně jsme do každého snímku přidali izotermu oblast o teplotách v rozmezí 230 C 245 C a pozorovali vždy právě tu oblast, která odpovídala nastavené emisivitě snímku. Na snímcích, kde jsme pozorovali oblast s černým lakem a oblast bez laku, vznikly podle našeho předpokladu kruhové výseče v okolí středu desky. Na snímku, který odpovídá stříbrnému laku je výstup poněkud odlišný a opět potvrzuje naše předchozí pozorování. Závěr Pomocí softwaru ThermaCAM TM Reporter TM jsme provedli analýzu rozložení teplotních polí ocelové desky umístěné na indukční plotýnce. Na základě známé teploty jsme stanovili emisivity jednotlivých povrchů ocelové desky: Povrch Emisivita matná černá barva 0,95 neupravená ocel 0,70 stříbrná barva 0,32 Tyto hodnoty jsou velmi blízké známým tabulkovým hodnotám, přičemž je třeba si uvědomit, že každý nátěr je trochu jiný, a proto jsou odchylky od tabulkových hodnot přijatelné. Dále jsme vykreslili průběh teploty na zvolených úsečkách a histogramy ve zvolených oblastech. Na závěr jsme pozorovali oblasti o konstantních teplotách (viz grafické výstupy). Ze všech těchto výstupů jsme vyvodili závěr, že stříbrný lak má poněkud odlišné fyzikální vlastnosti ve srovnání se zbývajícími dvěma povrchy, jelikož jsme u něj nepozorovali charakteristický pokles teploty od středu ke kraji způsobený nízkou teplotou okolního prostředí.
6 1. část měření teplotního průběhu a emisivit Li2 Li1 Sp1 Li C Min Max Li Li Li Object Parameter Value Emissivity 0.95 Object Distance 2.4 m Reflected Temperature 8.0 C Atmospheric Temperature 24.0 C Atmospheric Transmission 0.99 Relative Humidity 50.0 % Value Sp C Li1 Emissivity 0.32 Li2 Emissivity 0.70 Li3 Emissivity 0.95
7 2. část měření rozložení teplot v jednotlivých polích Ar2 Ar1 Ar Object Parameter Value Emissivity 0.95 Object Distance 2.4 m Reflected Temperature 8.0 C Atmospheric Temperature 24.0 C Atmospheric Transmission 0.99 Relative Humidity 50.0 % Value Ar1 Emissivity 0.32 Ar2 Emissivity 0.70 Ar3 Emissivity 0.95 % % % C C C Min Max Ar Min Max Ar Min Max Ar
8 3. část měření izoterma Ar Object Parameter Value Emissivity 0.32 Isotherm 230 C 245 C Ar Object Parameter Value Emissivity 0.70 Isotherm 230 C 245 C Ar Object Parameter Value Emissivity 0.95 Isotherm 230 C 245 C
Teplota je nepřímo měřená veličina!!!
TERMOVIZE V PRAXI Roman Vavřička ČVUT v Praze, Fakulta strojní Ústav techniky prostředí 1/48 Teplota je nepřímo měřená veličina!!! Základní rozdělení senzorů teploty: a) dotykové b) bezdotykové 2/48 1
ZPRÁVA Z TERMOGRAFICKÉHO MĚŘENÍ
ZPRÁVA Z TERMOGRAFICKÉHO MĚŘENÍ TM09139 Měřená zařízení: Vybrané části rodinného domu v Blansku Objednatel: Yvetta Hlaváčová Popis práce: Mimořádné termovizní měření Datum měření: 15.12. 09 Nebylo měřeno:
25 A Vypracoval : Zdeněk Žák Pyrometrie υ = -40 C.. +10000 C. Výhody termovize Senzory infračerveného záření Rozdělení tepelné senzory
25 A Vypracoval : Zdeněk Žák Pyrometrie Bezdotykové měření Pyrometrie (obrázky viz. sešit) Bezdotykové měření teplot je měření povrchové teploty těles na základě elektromagnetického záření mezi tělesem
Školení CIUR termografie
Školení CIUR termografie 7. září 2009 Jan Pašek Stavební fakulta ČVUT v Praze Katedra konstrukcí pozemních staveb Část 1. Teorie šíření tepla a zásady nekontaktního měření teplot Terminologie Termografie
Fyzikální podstata DPZ
Elektromagnetické záření Vlnová teorie vlna elektrického (E) a magnetického (M) pole šíří se rychlostí světla (c) Charakteristiky záření: vlnová délka (λ) frekvence (ν) Fyzikální podstata DPZ Petr Dobrovolný
Bezdotykové měření teploty
MĚŘENÍ PROVOZNÍCH VELIČIN V CUKROVARNICTVÍ Bezdotykové měření teploty MEASUREMENT OF PROCESS VARIABLES IN SUGAR INDUSTRY: NON-CONTACT TEMPERATURE MEASUREMENT Karel Kadlec Vysoká škola chemicko-technologická
Snímkování termovizní kamerou
AB Solartrip,s.r.o. Na Plavisku 1235 755 01 Vsetín www.solarniobchod.cz mobil 777 642 777, e-mail: r.ostarek@volny.cz AKCE: Termovizní diagnostika vnitřní prostory rodinného domu č. p. 197 Ústí u Vsetína
Ústav technologie, mechanizace a řízení staveb. Teorie měření a regulace. emisivní p. ZS 2015/ Ing. Václav Rada, CSc.
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace emisivní - 2 18-2p. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Přímé pokračování - 2. díl o A emisivních principech snímačů VR -
Teoretické základy bezdotykového měření
Teoretické základy bezdotykového měření Z podkladů: Ing. Jana Dvořáka Vedoucí cvičení: Ing. Daniela Veselá Speciální technika a měření v oděvní výrobě Zákony vyzařování popisují vlastnosti tepelného záření
TECHNICKÁ ZPRÁVA Z TERMOVIZNÍHO MĚŘENÍ PRO
ENCO group, s.r.o. ENERGY CONSULTING Kosmonautů 989/8; 772 11 OLOMOUC Držitel certifikátu ISO 9001:2001 TECHNICKÁ ZPRÁVA Z TERMOVIZNÍHO MĚŘENÍ PRO AISE, s.r.o. Termovizní diagnostika systému vytápění infrazářiči
PROCESY V TECHNICE BUDOV 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 12 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
TERMOGRAFICKÉ MĚŘENÍ LOPATEK ROTAČNÍHO STROJE "FROTOR"
TERMOMECHANIKA TECHNOLOGICKÝCH PROCESŮ VÝZKUMNÁ ZPRÁVA TERMOGRAFICKÉ MĚŘENÍ LOPATEK ROTAČNÍHO STROJE "FROTOR" Autoři: Ing. Pavel Litoš Ing. Jiří Tesař Číslo projektu: Číslo zprávy: Odpovědný pracovník
I. diskusní fórum. Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) VZDĚLÁVACÍ MATERIÁL O DISKUTOVANÉM TÉMATU
I. diskusní fórum K projektu Cesty na zkušenou Na téma Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) které se konalo dne 30. září 2013 od 12:30 hodin v místnosti H108
Termovizní měření. 1 Teoretický úvod. Cíl cvičení: Detekce lidské kůže na snímcích z termovizní i klasické kamery
Termovizní měření Cíl cvičení: Detekce lidské kůže na snímcích z termovizní i klasické kamery 1 Teoretický úvod Termovizní měření Termovizní kamera je přístroj pro bezkontaktní měření teplotních polí na
SNÍMAČE PRO MĚŘENÍ TEPLOTY
SNÍMAČE PRO MĚŘENÍ TEPLOTY 10.1. Kontaktní snímače teploty 10.2. Bezkontaktní snímače teploty 10.1. KONTAKTNÍ SNÍMAČE TEPLOTY Experimentální metody přednáška 10 snímač je připevněn na měřený objekt 10.1.1.
EMISCALC (Emissivity Calculator)
ODBOR TERMOMECHANIKA TECHNOLOGICKÝCH PROCESŮ AUTORIZOVANÝ SOFTWARE EMISCALC (Emissivity Calculator) SOFTWARE PRO AUTOMATICKÝ VÝPOČET EMISIVITY ZE ZNÁMÉ TEPLOTY VZORKU Autor: Ing. Jiří Tesař Ing. Petra
Projekt FRVŠ č: 389/2007
Závěrečné oponentní řízení 7.2.2007 Projekt FRVŠ č: 389/2007 Název: Řešitel: Spoluřešitelé: Pracoviště: TO: Laboratoř infračervené spektrometrie Doc. Ing. Milan Honner, Ph.D. Ing. Petra Vacíková, Ing.
Šíření tepla. Obecnéprincipy
Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření
1 Bezkontaktní měření teplot a oteplení
1 Bezkontaktní měření teplot a oteplení Cíle úlohy: Cílem úlohy je seznámit se s technologií bezkontaktního měření s vyhodnocováním tepelné diagnostiky provozu elektrických zařízení. Součastně se seznámit
ThermaCAM TM Researcher. Software pro zpracování a analýzu IR obrazů termokamer firmy FLIR.
ThermaCAM TM Researcher Software pro zpracování a analýzu IR obrazů termokamer firmy FLIR. rozložení obrazovky programu Dvě základní využití programu ovládání kamery a pořizování IR snímků přes počítač
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA TECHNOLOGIÍ A MĚŘENÍ BAKALÁŘSKÁ PRÁCE
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA TECHNOLOGIÍ A MĚŘENÍ BAKALÁŘSKÁ PRÁCE Termovizní měření budov Marek Špiroch 2014 Abstrakt Předkládaná bakalářská práce se zabývá termovizním
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ Fakulta dopravní Úvod do teorie termovizního měření Petr Brynda sk. 370 2 Úvod do teorie termovizního měření Anotace Práce se zabývá zprvu historickým vývojem oblasti optiky
Spektrální charakteristiky
Spektrální charakteristiky Cíl cvičení: Měření spektrálních charakteristik filtrů a zdrojů osvětlení 1 Teoretický úvod Interakcí elektromagnetického vlnění s libovolnou látkou vzniká optický jev, který
Certifikované termodiagnostické měření.
Certifikované termodiagnostické měření. Název měření : VZOR Měřeno pro : XXXXXXXXXX Adresa : XXXXXXXXXX 000 00 XXXXXXXXXX Datum měření : Měření provedl : 00. 00. 0000 Stanislav Hofman Měření provedeno
DZDDPZ1 - Fyzikální základy DPZ (opakování) Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava
DZDDPZ1 - Fyzikální základy DPZ (opakování) Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava Elektromagnetické záření Nositelem informace v DPZ je EMZ elmag vlna zvláštní případ elmag pole,
Termodiagnostika pro úsporu nákladů v průmyslových provozech
Termodiagnostika pro úsporu nákladů v průmyslových provozech SpektraVision s.r.o. Štěpán Svoboda Vidíme svět v celém spektru Zaměření společnosti Analyzátory kvality elektrické energie Zásahové termokamery
Zpráva z termovizního měření Rodinný dům v lokalitě, Ostrava Vítkovice
- Ložiska s. r. o. Zpráva z termovizního měření Rodinný dům v lokalitě, Ostrava Vítkovice Objednatel: ISOTRA a.s. Bílovická 2411/1 746 01 Opava Zhotovitel: KOMA Ložiska, s.r.o. Ruská 514 / 41 706 02 Ostrava
Fyzikální praktikum II
Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum II Úloha č. 18 Název úlohy: Přechodové jevy v RLC obvodu Jméno: Ondřej Skácel Obor: FOF Datum měření: 2.11.2015 Datum odevzdání:... Připomínky opravujícího:
Historie bezdotykového měření teplot
Historie bezdotykového měření teplot Jana Kuklová, 3 70 2008/2009 FD ČVUT v Praze Ústav aplikované matematiky K611 Softwarové nástroje pro zpracování obrazu z termovizních měření Osnova prezentace Úvod
Použití termokamery v technické praxi
Rok / Year: Svazek / Volume: Číslo / Number: 20 3 Použití termokamery v technické praxi Practical use of thermocamera in technics Petr Švábeník Lucie Dordová xsvabe03@stud.feec.vutbr.cz dordova@feec.vutbr.cz
Infračervená termografie ve stavebnictví
Infračervená termografie ve stavebnictví Autor: Ing. Marcela POČINKOVÁ, Ph.D., Ing. Olga RUBINOVÁ, Ph.D. Termografické měření a následná diagnostika je metodou pro bezkontaktní a poměrně rychlý průzkum
Faktory ovlivňující intenzitu záření. Spektrální chování objektů. Spektrální odrazivost. Spektrální chování. Spektrální chování objektů [ ]
Faktory ovlivňující intenzitu záření Elektromagnetické záření je při průchodu atmosférou i po svém dopadu na zemský povrch významně modifikováno. Intenzita odraženého krátkovlnného záření, ale i intenzita
CW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 6.1a 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace emisivní
3.1 Laboratorní úlohy z osvětlovacích soustav
Osvětlovací soustavy. Laboratorní cvičení 11 3.1 Laboratorní úlohy z osvětlovacích soustav 3.1.1 Měření odraznosti povrchů Cíl: Cílem laboratorní úlohy je porovnat spektrální a integrální odraznosti různých
MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis
MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis Ivana Krestýnová, Josef Zicha Abstrakt: Absolutní vlhkost je hmotnost
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) Elektromagnetické vlnění SVĚTLO Charakterizace záření Vlnová délka - (λ) : jednotky: m (obvykle nm) λ Souvisí s povahou fotonu Charakterizace záření
Moderní metody rozpoznávání a zpracování obrazových informací 15
Moderní metody rozpoznávání a zpracování obrazových informací 15 Hodnocení transparentních materiálů pomocí vizualizační techniky Vlastimil Hotař, Ondřej Matúšek Katedra sklářských strojů a robotiky Fakulta
Infračervený teploměr 759-016
Vlastnosti: 759-016 - Přesné bezdotykové měření - Vestavěné laserové ukazovátko - Volitelný údaj ve stupních Celsia nebo Fahrenheita - Údaj maximální a minimální naměřené teploty - Zajištění spouště -
ANALÝZA VYBRANÝCH DETAILŮ STAVEBNÍ KONSTRUKCE OBVODOVÉHO PLÁŠTĚ STAVBY SUPERMARKETU GLOBUS V LIBERCI
ČVUT FSV KTZB ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov Centrum pro diagnostiku a optimalizaci energetických systémů budov ANALÝZA VYBRANÝCH DETAILŮ STAVEBNÍ
DPZ - IIa Radiometrické základy
DPZ - IIa Radiometrické základy Ing. Tomáš Dolanský Definice DPZ DPZ = dálkový průzkum Země Remote Sensing (Angl.) Fernerkundung (Něm.) Teledetection (Fr.) Informace o objektu získává bezkontaktním měřením
BEZDOTYKOVÉ MĚŘENÍ TEPLOTY
BEZDOTYKOVÉ MĚŘENÍ TEPLOTY Termovize je procesem spočívajícím v přeměně infračerveného záření, čili tepla vydávaného objekty, na viditelný objekt, což umožňuje ohodnotit rozložení teploty na povrchu pozorovaného
Abstrakt. fotodioda a fototranzistor) a s jejich základními charakteristikami.
Název a číslo úlohy: 9 Detekce optického záření Datum měření: 4. května 2 Měření provedli: Vojtěch Horný, Jaroslav Zeman Vypracovali: Vojtěch Horný a Jaroslav Zeman společnými silami Datum: 4. května 2
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. Fakulta Elektrotechnická Katedra Energetiky. bakalářská práce
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta Elektrotechnická Katedra Energetiky Závislost oteplení přechodového odporu na velikosti protékajícího proudu Current Dependence of Temperature Rise of Contact
Fyzikální praktikum II
Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum II Úloha č. 9 Název úlohy: Charakteristiky termistoru Jméno: Ondřej Skácel Obor: FOF Datum měření: 16.11.2015 Datum odevzdání:... Připomínky opravujícího:
Termografie - měření povrchu železobetonového mostu
Název diagnostiky: Termografie - měření povrchu železobetonového mostu Datum provedení: duben 2014 Provedl: Centrum dopravního výzkumu. v.v.i. Stručný popis: Termografické měření a vyhodnocení železobetonového
TERMOMECHANIKA 15. Základy přenosu tepla
FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný
Základy práce s IČT kamerou. Ing. Jan Sova, Centrum termografie
Základy práce s IČT kamerou Ing. Jan Sova, Centrum termografie Program školení Fyzikální principy termografie Principy a funkce IČT kamery Nejistoty termografického měření ČSN EN 13187 a ČSN EN 18434-1
Základy pyrometrie. - pyrometrie = bezkontaktní měření teploty. 0.4 µm... 25 µm - 40 0 C... 10 000 0 C
Základy pyrometrie - pyrometrie = bezkontaktní měření teploty 0.4 µm... 25 µm - 40 0 C... 10 000 0 C výhody: zanedbatelný vliv měřící techniky na objekt možnost měření rotujících nebo pohybujících se těles
Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země
Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země strana 2 Co je DPZ Dálkový průzkum je umění rozdělit svět na množství malých barevných čtverečků, se kterými si lze hrát na počítači a odhalovat jejich neuvěřitelný
ZÁKLADY STAVEBNÍ FYZIKY
ZÁKLADY STAVEBNÍ FYZIKY Doc.Ing.Václav Kupilík, CSc. První termodynamická věta představuje zákon o zachování energie. Podle tohoto zákona nemůže energie samovolně vznikat nebo zanikat, ale může se pouze
1 ÚVOD 2 TEORETICKÉ POZADÍ INFRAČERVENÉ TERMOGRAFIE
1 ÚVOD Podle oficiálních údajů se v zemích Evropské unie spotřebuje v budovách 40-50% z celkové vyrobené energie [1]. Ročně je v České Republice zatepleno zhruba 16 mil. m 2 ploch obvodových stěn za zhruba
Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN
Stanovení požární odolnosti NAVRHOVÁNÍ OCELOVÝCH KONSTRUKCÍ NA ÚČINKY POŽÁRU ČSN EN 1993-1-2 Ing. Jiří Jirků Ing. Zdeněk Sokol, Ph.D. Prof. Ing. František Wald, CSc. 1 2 Přestup tepla do konstrukce v ČSN
Spektroskopie Vegy. e hc/k BλT. λ 5 1. L =4πR 2 σt 4, (2)
Spektroskopie Vegy Jako malý kluk jsem celkem pravidelně sledoval jeden televizní pořad jmenoval se Vega. Šlo o pásmo několika seriálů a rozhovorů s různými osobnostmi. Jakábylamojeradost,kdyžjsemsedozvěděl,ževtomtopraktikusebudeme
Solární kolektory - konstrukce
1/70 Solární kolektory - konstrukce základní typy části kolektoru materiály statistiky Solární kolektory - rozdělení 2/70 1 Solární tepelný kolektor 3/70 Transparentní kryt - zasklení Absorbér Sběrná trubka
A5M13VSO MĚŘENÍ INTENZITY A SPEKTRA SLUNEČNÍHO ZÁŘENÍ
MĚŘENÍ INTENZITY A SPEKTRA SLUNEČNÍHO ZÁŘENÍ Zadání: 1) Pomocí pyranometru SG420, Light metru LX-1102 a měřiče intenzity záření Mini-KLA změřte intenzitu záření a homogenitu rozložení záření na povrchu
Úloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy
Úloha č. pomůcky Šíření tepla v ustáleném stavu záklaní vztahy Veení Fourriérův zákon veení tepla, D: Hustota tepelného toku je úměrná změně teploty ve směru šíření tepla, konstantou úměrnosti je součinitel
Analýza sálavého toku podlahového a stropního vytápění Výzkumná zpráva
Analýza sálavého toku podlahového a stropního vytápění Výzkumná zpráva Ing. Daniel Adamovský, Ph.D. Ing. Martin Kny, Ph.D. 20. 8. 2018 OBSAH 1 PŘEDMĚT ZAKÁZKY... 3 1.1 Základní údaje zakázky... 3 1.2 Specifikace
102FYZB-Termomechanika
České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH
Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.
Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Na čem závisí účinnost vedení? účinnost vedení závisí na činiteli útlumu β a na činiteli odrazu
Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou:
Pracovní úkol: 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,5-10 µf, R = 0 Ω). Výsledky měření zpracujte graficky
Report termografické prohlídky
Report termografické prohlídky Spolecnost GESTO Products s.r.o. Zpracoval dr. Bílek Datum 31st January 2010 Hlavní poznámka Protokol z termovizní diagnostiky Rodinný dům objekt A Název firmy : Adresa :
Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály
FP 1 Měření a analýza mechanických vlastností materiálů a konstrukcí Úkoly : 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály 2. Určete moduly pružnosti vzorků nepřímo pomocí měření rychlosti
A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení)
A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A8B268P A:Měření odporových teploměrů v ultratermostatu
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Mikrovlny
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 25.3.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Mikrovlny Abstrakt V úloze je
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 5: Měření teploty wolframového vlákna Datum měření: 1. 4. 2016 Doba vypracovávání: 12 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání
Ústav technologie, mechanizace a řízení staveb. Teorie měření a regulace. emisivní p. ZS 2015/ Ing. Václav Rada, CSc.
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace emisivní - 1 18-1p. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Úvodní pokračování - 1. díl o A emisivních principech snímačů VR -
TERMOVIZNÍ ZOBRAZOVAČE V TECHNICKÉ DIAGNOSTICE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF CONTROL AND INSTRUMENTATION
2 Nd:YAG laser buzený laserovou diodou
2 Nd:YAG laser buzený laserovou diodou 15. května 2011 Základní praktikum laserové techniky Zpracoval: Vojtěch Horný Datum měření: 12. května 2011 Pracovní skupina: 1 Ročník: 3. Naměřili: Vojtěch Horný,
Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3
Balmerova série F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Grepl.F@seznam.cz Abstrakt: Metodou dělených svazků jsme určili lámavý
Termovizní snímkování tepelných ostrovů v Hradci Králové
Termovizní snímkování tepelných ostrovů v Hradci Králové Ve dnech 18. a 19. srpna mezi 11. a 14. hodinou se uskutečnilo termovizní snímkování některých veřejných prostorů bezpilotním prostředkem dronem
VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ
VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro
BEZDOTYKOVÉ MĚŘENÍ TEPLOTY
bezdotykového měření teploty Tento dokument je k disposici na internetu na adrese: http://www.vscht.cz/ufmt/kadleck.html ÚSTAV FYZIKY A MĚŘICÍ TECHNIKY VŠCHT PRAHA BEZDOTYKOVÉ MĚŘENÍ TEPLOTY Pohled do
Spektrální chování objektů
Spektrální chování objektů Faktory ovlivňující intenzitu záření Elektromagnetické záření je při průchodu atmosférou i po svém dopadu na zemský povrch významně modifikováno. Intenzita odraženého krátkovlnného
Vyjadřování přesnosti v metrologii
Vyjadřování přesnosti v metrologii Měření soubor činností, jejichž cílem je stanovit hodnotu veličiny. Výsledek měření hodnota získaná měřením přisouzená měřené veličině. Chyba měření výsledek měření mínus
Základy pyrometrie. - pyrometrie = bezkontaktní měření teloty
Základy pyrometrie - pyrometrie bezkontaktní měření teloty výhody: zanedbatelný vliv měříí tehniky na objekt možnost měření rotujííh nebo pohybujííh se těles možnost měření ryhlýh teplotníh změn lze snímat
Jihočeská univerzita v Českých Budějovicích. Měření termokamerou
Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra fyziky a techniky Měření termokamerou Bakalářská práce Vedoucí práce: RNDr. Pavel Kříž, Ph.D. Autor: Zdeněk Frank Anotace: Tématika
PRINCIP MĚŘENÍ TEPLOTY spočívá v porovnání teploty daného tělesa s definovanou stupnicí.
1 SENZORY TEPLOTY TEPLOTA je jednou z nejdůležitějších veličin ovlivňujících téměř všechny stavy a procesy v přírodě Ke stanovení teploty se využívá závislosti určitých fyzikálních veličin na teplotě (A
Zobrazení v IR oblasti s využitím termocitlivých fólií
Zobrazení v IR oblasti s využitím termocitlivých fólií ZDENĚK BOCHNÍČEK Přírodovědecká fakulta MU, Brno, Kotlářská 2, 611 37 Úvod Pokusy s infračerveným zářením se staly tématem již několika příspěvků
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK FYZIKÁLNÍ PRAKTIKUM III Úloha číslo: 16 Název: Měření indexu lomu Fraunhoferovou metodou Vypracoval: Ondřej Hlaváč stud. skup.: F dne:
Středoškolská technika 2016 ÚSPORA ENERGIE PŘI ZATEPLENÍ
Středoškolská technika 2016 Setkání a prezentace prací středoškolských studentů na ČVUT ÚSPORA ENERGIE PŘI ZATEPLENÍ Radim Jelínek Střední škola stavební Třebíč Kubišova 1214/9, 674 01 Třebíč 1 ENERSOL
9 OHŘEV NOSNÍKU VYSTAVENÉHO LOKÁLNÍMU POŽÁRU (řešený příklad)
9 OHŘEV NOSNÍKU VYSTAVENÉHO LOKÁLNÍMU POŽÁRU (řešený příklad) Vypočtěte tepelný tok dopadající na strop a nejvyšší teplotu průvlaku z profilu I 3 při lokálním požáru. Výška požárního úseku je 2,8 m, plocha
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: II Název: Měření odporů Pracoval: Pavel Brožek stud. skup. 12 dne 28.11.2008 Odevzdal
Detekce interakčních sil v proudu vozidel
Detekce interakčních sil v proudu vozidel (ANEB OBECNĚJŠÍ POHLED NA POJEM VZDÁLENOSTI V MATEMATICE) Doc. Mgr. Milan Krbálek, Ph.D. Katedra matematiky Fakulta jaderná a fyzikálně inženýrská České vysoké
Měření optických vlastností materiálů
E Měření optických vlastností materiálů Úkoly : 1. Určete spektrální propustnost vybraných materiálů různých typů stavebních skel a optických filtrů pomocí spektrofotometru 2. Určete spektrální odrazivost
Prezentace projektů Softwarové nástroje pro zpracování obrazu z termovizních měření
Prezentace projektů 16.4.2010 Jana Kuklová kuklojan@fd.cvut.cz Softwarové nástroje pro zpracování obrazu z termovizních měření Osnova prezentace Úvod do světa termovize Využití termovize v praxi Termokamera
Jméno a příjmení. Ročník. Měřeno dne. 11.3.2013 Příprava Opravy Učitel Hodnocení. Charakteristiky optoelektronických součástek
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek 38 ID 155793 Spolupracoval Měřeno dne Odevzdáno dne Ladislav Šulák 25.2.2013 11.3.2013 Příprava Opravy
Defektoskopie. 1 Teoretický úvod. Cíl cvičení: Detekce měřicího stavu a lokalizace objektu
Defektoskopie Cíl cvičení: Detekce měřicího stavu a lokalizace objektu 1 Teoretický úvod Defektoskopie tvoří v počítačovém vidění oblast zpracování snímků, jejímž úkolem je lokalizovat výrobky a detekovat
VYUŽITÍ TERMOVIZNÍ TECHNIKY PŘI VÝSTUPNÍ KONTROLE NAPÁJECÍCH ZDROJŮ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV STROJÍRENSKÉ TECHNOLOGIE FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MANUFACTURING TECHNOLOGY VYUŽITÍ
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úlohač.III. Název: Mřížkový spektrometr
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úlohač.III Název: Mřížkový spektrometr Vypracoval: Petr Škoda Stud. skup.: F14 Dne: 17.4.2006 Odevzdaldne: Hodnocení:
Bezkontaktní termografie
Bezkontaktní termografie Biofyzikální ústav LF MU Elektromagnetické spektrum http://cs.wikipedia.org/wiki/soubor:elmgspektrum.png Bezkontaktní termografie 2 Zdroje infračerveného záření Infračervené záření
Fyzikální praktikum III
Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum III Úloha č. 19 Název úlohy: Měření indexu lomu Jaminovým interferometrem Jméno: Ondřej Skácel Obor: FOF Datum měření: 24.2.2016 Datum odevzdání:...
Měření optických vlastností materiálů
E Měření optických vlastností materiálů Úkoly : 1. Určete spektrální propustnost vybraných materiálů různých typů stavebních skel a optických filtrů pomocí spektrofotometru 2. Určete spektrální odrazivost
vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291
Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených
EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek
EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření Jan Krystek 9. května 2019 CHYBY A NEJISTOTY MĚŘENÍ Každé měření je zatíženo určitou nepřesností způsobenou nejrůznějšími negativními vlivy,
PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM... Úloha č. Název: Pracoval: stud. skup. dne Odevzdal dne: Možný počet bodů Udělený počet bodů Práce při měření 0 5 Teoretická
Bezkontaktní me ř ení teploty
Bezkontaktní me ř ení teploty I když je bezkontaktní měření teploty velmi jednoduché - opravdu stačí "namířit na měřený objekt a na displeji odečíst teplotu" - pro dosažení správných hodnot, co nejvyšší
Technologie a procesy sušení dřeva
strana 1 Technologie a procesy sušení dřeva 3. Teplotní pole ve dřevě během sušení Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ.
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ. Protokol o provedeném měření Druh měření Měření vodivosti elektrolytu číslo úlohy 2 Měřený předmět Elektrolyt Měřil Jaroslav ŘEZNÍČEK třída
Geometrická optika. Vnímání a měření barev. světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem
Vnímání a měření barev světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem fyzikální charakteristika subjektivní vjem světelný tok subjektivní jas vlnová
Úloha 3: Mřížkový spektrometr
Petra Suková, 2.ročník, F-14 1 Úloha 3: Mřížkový spektrometr 1 Zadání 1. Seřiďte spektrometr pro kolmý dopad světla(rovina optické mřížky je kolmá k ose kolimátoru) pomocí bočního osvětlení nitkového kříže.