Radioaktivita - dobrý sluha, zlý pán

Rozměr: px
Začít zobrazení ze stránky:

Download "Radioaktivita - dobrý sluha, zlý pán"

Transkript

1 Radioaktivita - dobrý sluha, zlý pán Science Cafe v Písku 2014 S.Valenta & Z.Drásal

2 Objevy 1896 H.Becquerel objevuje radioaktivitu

3 Objevy 1896 H.Becquerel objevuje radioaktivitu 1897 J.J.Thomson objevuje elektron a navrhuje pudinkový model atomu

4 Objevy 1896 H.Becquerel objevuje radioaktivitu 1897 J.J.Thomson objevuje elektron a navrhuje pudinkový model atomu 1909 E.Rutherford rozptyluje α částice na zlaté fólii a navrhuje planetární model atomu

5 Objevy 1896 H.Becquerel objevuje radioaktivitu 1897 J.J.Thomson objevuje elektron a navrhuje pudinkový model atomu 1909 E.Rutherford rozptyluje a částice na zlaté fólii a navrhuje planetární model atomu 1913 F.Soddy objevuje izotopickou povahu prvků a N.Bohr představuje kvantování energií elektronů v atomech

6 Objevy 1896 H.Becquerel objevuje radioaktivitu 1897 J.J.Thomson objevuje elektron a navrhuje pudinkový model atomu 1909 E.Rutherford rozptyluje a částice na zlaté fólii a navrhuje planetární model atomu 1913 F.Soddy objevuje izotopickou povahu prvků a N.Bohr představuje kvantování energií elektronů v atomech 1917 E.Rutherford 14N+α 17O+p

7 Objevy 1917 E.Rutherford 14N+α 17O+p 1932 J.Chadwick objevuje neutron 9 12 Be+α C+n

8 Objevy 1917 E.Rutherford 14N+α 17O+p 1932 J.Chadwick objevuje neutron 9 12 Be+α C+n 1938 O.Hahn objevuje štěpení n+92u 56Ba+36Kr

9 Objevy 1917 E.Rutherford 14N+α 17O+p 1932 J.Chadwick objevuje neutron 9 12 Be+α C+n 1938 O.Hahn objevuje štěpení n+92u 56Ba+36Kr 1939 tým na Columbia University měří energii produktů a zjišťuje, že se štěpí 235U

10 Objevy 1917 E.Rutherford 14N+α 17O+p 1932 J.Chadwick objevuje neutron 9 12 Be+α C+n 1938 O.Hahn objevuje štěpení n+92u 56Ba+36Kr 1939 tým na Columbia University měří energii produktů a zjišťuje, že se štěpí 235U Téhož roku F.Joliot-Curie,inspirován Leo Szilárdem, ukazuje uvolnění n ve štěpení

11 První jaderný reaktor 1942 v Chicagu pod vedením E.Fermiho

12 První jaderný výbuch 1945 v Novém Mexiku

13 Periodická tabulka prvků

14 Periodická tabulka jader

15 Oblast lehkých prvků

16 α rozpad: Be He + He 8 4 4

17 β rozpad: C B + e + ν

18 β rozpad: H He + e + ν 3 3 -

19 7 6 Emise p nebo n: B Be + p

20 14 14 N+n C+p

21 C+n C+γ 13 14

22 C N+e +ν

23 Křemíkové oko do nitra radioaktivity 256x256 = pixelů 1 pixel: 55 um x 55 um 14 mm??? Tloušťka 300 um Elektronika Jednoho pixelu

24 Jaký je princip detekce? Radioaktivní záření α, β, γ ionizuje materiál, kterým prolétá (principy ionizace se liší pro různé typy záření) Co se v detektoru ve skutečnosti děje? Princip tzv. p-in-n Si stripového detektoru

25 Jak to vypadá v praxi? Co měříme? Polohu průletu + energii + počet částic pozičně sensitivní detektor + spektrometr + counter Detektor záření? Rad. zdroj

26 Radioaktivita uranového skla Měřené sklo (barvené Ur 0.1-2%) Co vidíme... Jaké zdroje radioaktivního záření vidíme? α, β, γ? Jak se interakce s hmotou vzájemně liší pro různé typy záření? Vidíme efekty speciální teorie relativity?

27 Kinetická energie absorbovaná v čipu, rychlosti částic Co nám říká speciální teorie relativity o celkové energii částice? Einstenův vztah: Etotal = Eklid + Ekin Označme Eklid: E0 a Ekin: Ek rychlost částice pak vypadá takto: v = c 1 1 Ek 1 + E0 2 E0 (α) = x 106 kev ; E0 (β) = 511 kev Jsou částice relativistické?

28 Radioaktivita wolframové svářecí elektrody s příměsí thoria WT-40 WT-20 Co vidíme... Jaké zdroje radioaktivního záření vidíme? α, β, γ?

29 Americium zdroj α záření Co vidíme... Jaké vlastnosti má α záření? Alfa rozpad americia:

30 Draslík K zdroj β záření 40 Co vidíme... Jaké vlastnosti má β záření? Beta mínus rozpad: K-záchyt:

31 Ukažme si jednu z možných aplikací γ defektoskopie Použijme zdroj γ záření k nedestruktivní analýze vzorku... Otázka zní, co je skryto ve vzorku? +

32 Ukažme si jednu z možných aplikací γ defektoskopie - výsledek Maska versus výsledek Proč nevidíme čistý obraz? Limity metody + zpracování obrazu... Jak tuto metodu vylepšit, abychom viděli 3D obraz?

33 Přirozená radioaktivita 14 C, lze použít k datování! Rozpadové řady thoria a uranu (měření radonu ve vzduchu) Kosmické záření 40 K v biosféře (4000 rozpadů/s/osobu) A další...

34 (Ne)přirozená radioaktivita dávky

35 Oblast aktinidů

36 Oblast aktinidů

37 Thoriová a Uranové řady

38 Thoriová a Uranové řady

39 Thoriová a Uranové řady

40 Thoriová a Uranové řady

41 Thoriová a Uranové řady

42 Thoriová a Uranové řady

43 Thoriová a Uranové řady

44 Radon je plyn! Vysávejme!

45 Thoriová a Uranové řady

46 Thoriová a Uranové řady

47 Thoriová a Uranové řady

48 Thoriová a Uranové řady

49 Thoriová a Uranové řady

50 Thoriová a Uranové řady

51 Thoriová a Uranové řady

52 Thoriová a Uranové řady

53 Thoriová a Uranové řady

54 Thoriová a Uranové řady

55 Thoriová a Uranové řady

56 Thoriová a Uranové řady

57 Thoriová a Uranové řady

58 Thoriová a Uranové řady

59 Thoriová a Uranové řady

60 Thoriová a Uranové řady

61 Hahn: Uran je štěpitelný neutrony H.L.Anderson, E.T.Booth, J.R. Dunning, E.Fermi, G.N.Glasoe, a F.G.Slack upřesňuje, že jde o 235U a uvolňuje se E F.Joliot-Curie, H. von Halban a L.Kowarski ukazují uvolnění ~3 neutronů na štěpení běží na 28 minut první jaderný reaktor na univerzitě v Chicagu vybuchuje první jaderná puma Trinity test

62 235 Uran je štěpitelný neutrony

63 Štěpení je žádoucí proces

64 Vznikají izotopy v okolí A=95 a 140

65 238 Uran není štěpitelný

66 A tak dá vznikat dalším aktinidům

67 A tak dá vznikat dalším aktinidům

68 A tak dá vznikat dalším aktinidům

69 A tak dá vznikat dalším aktinidům

70 239 Plutonium je fajn!

71 240 Plutonium už moc ne...

72 Ale...

73 241 Plutonium opět ano!!

74 Výsledkem je jaderný odpad

75 Výsledkem je jaderný odpad

76 Co s tím? Jaderný odpad uložme a počkejme. Jaderný odpad použijme ADS. A začněmě používat bezodpadní zdroje! - na stejném principu Thoriový cyklus - na principu fúze tokamak a jiné.

77 Thoriový cyklus

78 Dostaneme se ke štěpení?

79 Protaktinium nám radost nedělá

80 Ani 234 Thorium ne...

81 Ale! 233 Uran se štěpí!

82 A jak už víme...

83 A jak už víme...

84 A jak už víme...

85 Uran též!

86 No a ty sudé urany?!

87 234 Uran se...

88 štěpí také, sláva!

89 štěpí také, sláva! (a přinejhorším se dostaneme na 235Uran)

90 Na další aktinidy se nedostane.

91 Thoriový cyklus a odpad iniciální aktivita 100x menší! v předkonečném období srovnatelná

92 Thoriový cyklus a odpad iniciální aktivita 100x menší! v předkonečném období srovnatelná

93 Urychlovačem řízený systém ADS

94 Urychlovačem řízený systém ADS urychlíme protony

95 Urychlovačem řízený systém ADS urychlíme protony střelíme do olova

96 Urychlovačem řízený systém ADS urychlíme protony střelíme do olova neutrony nepotřebujeme ze štěpení uranu,plutonia

97 Urychlovačem řízený systém ADS urychlíme protony střelíme do olova neutrony nepotřebujeme ze štěpení uranu/plutonia vypneme urychlovač vypne se reaktor ale reaktor je otevřený Project MYRRHA

98 Kam s ním? aneb perspektivy štěpení Reakce Th cyklu intenzivně studovány CERN, LANL, JIRN,... Reaktory na bázi Th-U mixu fungují V SCK Mol v Belgii se staví prototyp ADS MYRRHA

Jaderná fyzika. Zápisy do sešitu

Jaderná fyzika. Zápisy do sešitu Jaderná fyzika Zápisy do sešitu Vývoj modelů atomu 1/3 Antika intuitivně zavedli pojem atomos nedělitelná část hmoty Pudinkový model J.J.Thomson (1897) znal elektron a velikost atomu 10-10 m v celém atomu

Více

Křemíkovým okem do nitra hmoty, radioaktivita

Křemíkovým okem do nitra hmoty, radioaktivita Křemíkovým okem do nitra hmoty, radioaktivita BaBar SLAC Zbyněk Drásal 1 Historie diodového jevu v polovodičích Objev tzv. Halbleiteru (polovodiče) bodový kontakt kovu a krystalu (PbS) usměrňuje proud

Více

Prvek, nuklid, izotop, izobar

Prvek, nuklid, izotop, izobar Prvek, nuklid, izotop, izobar A = Nukleonové (hmotnostní) číslo A = počet protonů + počet neutronů A = Z + N Z = Protonové číslo, náboj jádra Frederick Soddy (1877-1956) NP za chemii 1921 Prvek = soubor

Více

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Hvězdy zblízka Složení hvězdy Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Plazma zcela nebo částečně ionizovaný plyn,

Více

Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

PRO VAŠE POUČENÍ. Kdo se bojí radiace? ÚVOD CO JE RADIACE? Stanislav Kočvara *, VF, a.s. Černá Hora

PRO VAŠE POUČENÍ. Kdo se bojí radiace? ÚVOD CO JE RADIACE? Stanislav Kočvara *, VF, a.s. Černá Hora Kdo se bojí radiace? Stanislav Kočvara *, VF, a.s. Černá Hora PRO VAŠE POUČENÍ ÚVOD Od počátků lidského rodu platí, že máme strach především z neznámého. Lidé měli v minulosti strach z ohně, blesku, zatmění

Více

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření.

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření. FYZIKA pracovní sešit pro ekonomické lyceum. 1 Jiří Hlaváček, OA a VOŠ Příbram, 2015 FYZIKA MIKROSVĚTA Kvantové vlastnosti světla (str. 241 257) Fotoelektrický jev je uvolňování elektronů z látky vlivem

Více

Jaderná energie. Obrázek atomů železa pomocí řádkovacího tunelového mikroskopu

Jaderná energie. Obrázek atomů železa pomocí řádkovacího tunelového mikroskopu Jaderná energie Atom Všechny věci kolem nás se skládají z atomů. Atom obsahuje jádro (tvořené protony a neutrony) a obal tvořený elektrony. Protony a elektrony jsou částice elektricky nabité, neutron je

Více

CZ.1.07/1.1.30/01.0038

CZ.1.07/1.1.30/01.0038 Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 29 Téma: RADIOAKTIVITA A JADERNÝ PALIVOVÝ CYKLUS Lektor: Ing. Petr Konáš Třída/y: 3ST,

Více

JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník JADERNÁ FYZIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Základní pojmy Jaderná síla - drží u sebe nukleony, velmi krátký dosah, nasycení Vazebná energie jádra: E V = ( Z m p + N

Více

Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011

Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011 Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011 OCHRANA PŘED ZÁŘENÍM Přednáška pro stáže studentů MU, podzimní semestr 2010-09-08 Ing. Oldřich Ott Osnova přednášky Druhy ionizačního záření,

Více

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO

Více

Relativistická dynamika

Relativistická dynamika Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte

Více

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie je klinický obor využívající účinků ionizujícího záření v léčbě jak zhoubných, tak nezhoubných nádorů

Více

1 Měření na Wilsonově expanzní komoře

1 Měření na Wilsonově expanzní komoře 1 Měření na Wilsonově expanzní komoře Cíle úlohy: Cílem této úlohy je seznámení se základními částicemi, které způsobují ionizaci pomocí Wilsonovi mlžné komory. V této úloze studenti spustí Wilsonovu mlžnou

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní

Více

Referát z Fyziky. Detektory ionizujícího záření. Vypracoval: Valenčík Dušan. MVT-bak.

Referát z Fyziky. Detektory ionizujícího záření. Vypracoval: Valenčík Dušan. MVT-bak. Referát z Fyziky Detektory ionizujícího záření Vypracoval: Valenčík Dušan MVT-bak. 2 hlavní skupiny detektorů používaných v jaderné a subjaderné fyzice 1) počítače interakce nabitých částic je převedena

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 RADIOAKTIVITA Mgr. DAGMAR AUTERSKÁ,

Více

Koronové a jiskrové detektory

Koronové a jiskrové detektory Koronové a jiskrové detektory Charakteristika elektrického výboje v plynech Jestliže chceme použít ionizační účinky na detekci jaderného záření, je třeba poznat jednotlivé fáze ionizace plynu a zjistit

Více

Rozměr a složení atomových jader

Rozměr a složení atomových jader Rozměr a složení atomových jader Poloměr atomového jádra: R=R 0 A1 /3 R0 = 1,2 x 10 15 m Cesta do hlubin hmoty Složení atomových jader: protony + neutrony = nukleony mp = 1,672622.10 27 kg mn = 1,6749272.10

Více

Studium produkce neutronů v tříštivých reakcích a jejich využití pro transmutaci jaderného odpadu

Studium produkce neutronů v tříštivých reakcích a jejich využití pro transmutaci jaderného odpadu Studium produkce neutronů v tříštivých reakcích a jejich využití pro transmutaci jaderného odpadu Pouze budoucnost může rozhodnout, jestli jsme vybrali právě tu jedinou správnou cestu a nalezli to nejlepší

Více

Autonomní hlásiče kouře

Autonomní hlásiče kouře Autonomní hlásiče kouře Povinnost obstarat, instalovat a udržovat v provozuschopném stavu požárně bezpečnostní zařízení vyplývá právnickým a podnikajícím fyzickým osobám zejména z ustanovení 5 odst. 1

Více

36 RADIOAKTIVITA. Rozpadový zákon Teorie radioaktivního rozpadu Umělá radioaktivita

36 RADIOAKTIVITA. Rozpadový zákon Teorie radioaktivního rozpadu Umělá radioaktivita 433 36 RADIOAKTIVITA Rozpadový zákon Teorie radioaktivního rozpadu Umělá radioaktivita Radioaktivita je jev, při kterém se jádra jednoho prvku samovolně mění na jádra jiného prvku emisí částic alfa, neutronů,

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

Atomová a jaderná fyzika

Atomová a jaderná fyzika Mgr. Jan Ptáčník Atomová a jaderná fyzika Fyzika - kvarta Gymnázium J. V. Jirsíka Atom - historie Starověk - Démokritos 19. století - první důkazy Konec 19. stol. - objev elektronu Vznik modelů atomu Thomsonův

Více

Prvek, nuklid, izotop, izobar, izoton

Prvek, nuklid, izotop, izobar, izoton Prvek, nuklid, izotop, izobar, izoton A = Nukleonové (hmotnostní) číslo A = počet protonů + počet neutronů A = Z + N Z = Protonové číslo, náboj jádra Prvek = soubor atomů se stejným Z Nuklid = soubor atomů

Více

Vizualizace radioaktivity pro sekundu s detektorem MX-10

Vizualizace radioaktivity pro sekundu s detektorem MX-10 Vizualizace radioaktivity pro sekundu s detektorem MX-10 VLADIMÍR VÍCHA Gymnázium Pardubice, Dašická, ÚTEF ČVUT Praha MX-10 je unikátní detektor radioaktivity, který může sloužit jako radiační kamera s

Více

Dvě strany jedné mince - Dvě strany jedné mince - jaderná fyzika pomáhá v lékařství a technologie jaderných zbraní

Dvě strany jedné mince - Dvě strany jedné mince - jaderná fyzika pomáhá v lékařství a technologie jaderných zbraní Dvě strany jedné mince - Dvě strany jedné mince - jaderná fyzika pomáhá v lékařství a technologie jaderných zbraní Anna Macková Ústav jaderné fyziky AV ČR, Řež 250 68 Základní představy - atom a atomové

Více

2 Primární zdroje energie. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín

2 Primární zdroje energie. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín 2 Primární zdroje energie Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín Obsah přednášky 1. Zdroje energie rozdělení 2. Fosilní paliva 3. Solární

Více

212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium

212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium Pracovní list - Jaderné reakce 1. Vydává-li radionuklid záření alfa: a) protonové číslo se zmenšuje o 4 a nukleonové číslo se nemění b) nukleonové číslo se změní o 4 a protonové se nemění c) protonové

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_379 Jméno autora: Mgr. Alena Krejčíková Třída/ročník:

Více

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (II) (Bl) ČESKOSLOVENSKÁ SOCIALISTICKÁ ( 1S ) (51) lat Cl. 4 С 21 D 1/09

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (II) (Bl) ČESKOSLOVENSKÁ SOCIALISTICKÁ ( 1S ) (51) lat Cl. 4 С 21 D 1/09 ČESKOSLOVENSKÁ SOCIALISTICKÁ R E P U B L I K A ( 1S ) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ (22) Přihlášeno 25 03 85 (21) pv 2131-85 252201 (II) (Bl) (51) lat Cl. 4 С 21 D 1/09 ÚRAD NO VYNÁLEZY A OBJEVY

Více

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí

Více

Kateřina Fišerová - Seminární práce k předmětu Didaktika fyziky

Kateřina Fišerová - Seminární práce k předmětu Didaktika fyziky Kateřina Fišerová - Seminární práce k předmětu Didaktika fyziky Problémová situace První jaderný reaktor spustil 2. prosince 942 na univerzitě v Chicagu italský fyzik Enrico Fermi se svými spolupracovníky.

Více

JADERNÁ ENERGIE. Při chemických reakcích dochází ke změnám v elektronových obalech atomů. Za určitých podmínek mohou změnám podléhat i jádra atomů.

JADERNÁ ENERGIE. Při chemických reakcích dochází ke změnám v elektronových obalech atomů. Za určitých podmínek mohou změnám podléhat i jádra atomů. JADERNÁ ENERGIE Při chemických reakcích dochází ke změnám v elektronových obalech atomů. Za určitých podmínek mohou změnám podléhat i jádra atomů. HISTORIE Profesor pařížské univerzity Sorbonny Antoine

Více

Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 19

Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 19 Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň Monitorovací indikátor: 06.43.10

Více

Radioaktivita,radioaktivní rozpad

Radioaktivita,radioaktivní rozpad Radioaktivita,radioaktivní rozpad = samovolná přeměna jader nestabilních nuklidů na jiná jádra, za současného vyzáření neviditelného radioaktivního záření Výskyt v přírodě v přírodě se vyskytuje 264 stabilních

Více

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Gama spektroskopie Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Teoretický úvod ke spektroskopii Produkce a transport neutronů v různých materiálech, které se v daných zařízeních vyskytují (urychlovačem

Více

Jaderná energie Jaderné elektrárny. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.

Jaderná energie Jaderné elektrárny. Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Jaderná energie Jaderné elektrárny Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Obsah prezentace Energie jaderná Vývoj energetiky Dělení jaderných reaktorů I. Energie jaderná Uvolňuje se při jaderných reakcích

Více

3. Radioaktivita. Při radioaktivní přeměně se uvolňuje energie. X Y + n částic. Základní hmotnostní podmínka radioaktivity: M(X) > M(Y) + M(ČÁSTIC)

3. Radioaktivita. Při radioaktivní přeměně se uvolňuje energie. X Y + n částic. Základní hmotnostní podmínka radioaktivity: M(X) > M(Y) + M(ČÁSTIC) 3. Radioaktivita >2000 nuklidů; 266 stabilních radioaktivita samovolná přeměna na jiný nuklid (neplatí pro deexcitaci jádra) pro Z 20 N / Z 1, poté postupně až 1,52 pro 209 Bi, přebytek neutronů zmenšuje

Více

ZÁŘIVÝ TOK - Φ e : Podíl zářivé energie E e a doby t, za kterou projde záření s touto energií danou plochou:

ZÁŘIVÝ TOK - Φ e : Podíl zářivé energie E e a doby t, za kterou projde záření s touto energií danou plochou: ZÁŘIVÝ TOK - Φ e : Podíl zářivé energie E e a doby t, za kterou projde záření s touto energií danou plochou: ZÁŘIVOST - I e : Podíl té části zářivého toku Φ e, který vychází ze zdroje do malého prostorového

Více

5. RADIAČNÍ OCHRANA I Jiří Konečný

5. RADIAČNÍ OCHRANA I Jiří Konečný 5. RADIAČNÍ OCHRANA I Jiří Konečný 5.1 Před čím chceme člověka ochránit Živé organismy na Zemi vznikly a vyvíjely se v podmínkách stálého působení přírodnino radioaktivního pozadí. Zdroje záření můžeme

Více

Typy interakcí. Obsah přednášky

Typy interakcí. Obsah přednášky Co je to inteligentní a progresivní materiál - Jaderné analytické metody-využití iontových svazků v materiálové analýze Anna Macková Ústav jaderné fyziky AV ČR, Řež 250 68 Obsah přednášky fyzikální princip

Více

Prvek, nuklid, izotop, izobar, izoton

Prvek, nuklid, izotop, izobar, izoton Prvek, nuklid, izotop, izobar, izoton A = Nukleonové (hmotnostní) číslo A = počet protonů + počet neutronů A = Z + N Z = Protonové číslo, náboj jádra Prvek = soubor atomů se stejným Z Nuklid = soubor atomů

Více

Základy fyzikálněchemických

Základy fyzikálněchemických Základy fyzikálněchemických metod Fyzikálně-chemické metody optické metody elektrochemické metody separační metody kalorimetrické metody radiochemické metody ostatní metody Optické metody Oko je citlivé

Více

Jaderné systémy I (JS1) & Jaderné reaktory a parogenerátory (JR)

Jaderné systémy I (JS1) & Jaderné reaktory a parogenerátory (JR) Jaderné systémy I (JS1) & Jaderné reaktory a parogenerátory (JR) Pavel Zácha G3-126 Základní jednotky QF=1 pro β, γ QF=3-10 pro n (v závislosti na energii neutronu) QF=20 pro α Pro pochopení, jaká dávka

Více

4.5. Atomové jádro. 4.5.1. Neutron protonový model jádra

4.5. Atomové jádro. 4.5.1. Neutron protonový model jádra 4.5. tomové jádro 4.5.. Neutron protonový model jádra. nát složení jádra atomu, hmotnostní jednotku, hmotnosti a náboje částic atomu (protonu, neutronu a elektronu).. Umět napsat a vysvětlit rovnice přeměny

Více

5 Měření absorpce ionizujícího záření v závislosti na tlaku vzduchu

5 Měření absorpce ionizujícího záření v závislosti na tlaku vzduchu 5 Měření absorpce ionizujícího záření v závislosti na tlaku vzduchu Cíle úlohy: Cílem této úlohy je seznámení se s lineárním absorpčním koeficientem a jeho závislostí na tlaku vzduchu a použitých stínících

Více

Jaderné reakce a radioaktivita

Jaderné reakce a radioaktivita Střední průmyslová škola Hranice - - Jaderné reakce a radioaktivita Radioaktivita Je vlastností atomových jader, která se samovolně přeměňují na jiná a vyzařují při tom pronikavé neviditelné záření. Jádra

Více

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka

Více

JÁDRO ATOMU. m jádra je menší než součet

JÁDRO ATOMU. m jádra je menší než součet JÁDRO ATOMU Stavba a vlastnosti: Rozěry ádra so řádově 5. Jádro e tvořeno nkleony (protony a netrony). A z X Sybol ádra: Z počet protonů N počet netronů A počet nkleonů A = Z+N Nklid e látka složená ze

Více

postaven náš svět CERN

postaven náš svět CERN Standardní model elementárních částic a jejich interakcí aneb Cihly a malta, ze kterých je postaven náš svět CERN Jiří Rameš, Fyzikální ústav AV ČR, v.v.i. Czech Teachers Programme, CERN, 3.-7. 3. 2008

Více

ÈÁST VII - K V A N T O V Á F Y Z I K A

ÈÁST VII - K V A N T O V Á F Y Z I K A Kde se nacházíme? ÈÁST VII - K V A N T O V Á F Y Z I K A 29 Èásticové vlastnosti elektromagnetických vln 30 Vlnové vlastnosti èástic 31 Schrödingerova formulace kvantové mechaniky Kolem roku 1900-1915

Více

Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

1. Proveďte energetickou kalibraci gama-spektrometru pomocí alfa-zářiče 241 Am.

1. Proveďte energetickou kalibraci gama-spektrometru pomocí alfa-zářiče 241 Am. 1 Pracovní úkoly 1. Proveďte energetickou kalibraci gama-spektrometru pomocí alfa-zářiče 241 Am. 2. Určete materiál několika vzorků. 3. Stanovte závislost účinnosti výtěžku rentgenového záření na atomovém

Více

Prvek, nuklid, izotop, izobar, izoton

Prvek, nuklid, izotop, izobar, izoton Prvek, nuklid, izotop, izobar, izoton A = Nukleonové (hmotnostní) číslo A = počet protonů + počet neutronů A = Z + N Z = Protonové číslo, náboj jádra Prvek = soubor atomů se stejným Z Nuklid = soubor atomů

Více

VY_32_INOVACE_06_III./7._STAVBA ATOMOVÉHO JÁDRA

VY_32_INOVACE_06_III./7._STAVBA ATOMOVÉHO JÁDRA VY_32_INOVACE_06_III./7._STAVBA ATOMOVÉHO JÁDRA Fyzika atomového jádra Stavba atomového jádra Protonové číslo Periodická soustava prvků Nukleonové číslo Neutron Jaderné síly Úkoly zápis Stavba atomového

Více

Vlastnosti nejenergetičtějších částic ve vesmíru

Vlastnosti nejenergetičtějších částic ve vesmíru Vlastnosti nejenergetičtějších částic ve vesmíru Radomír Šmída Fyzikální ústav AV ČR smida@fzu.cz 1/50 Kosmické záření a Astročásticová fyzika 2/50 Objev kosmického záření Zkoumání radioaktivity (1896

Více

Kam kráčí současná fyzika

Kam kráčí současná fyzika Kam kráčí současná fyzika Situace před II. světovou válkou Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie velkého

Více

44.1 ATOM A JEHO JÁDRO 44.2 JADERNÉ ŠTĚPENÍ: ZÁKLADNÍ PROCES. Hlubší pohled na štěpení

44.1 ATOM A JEHO JÁDRO 44.2 JADERNÉ ŠTĚPENÍ: ZÁKLADNÍ PROCES. Hlubší pohled na štěpení 44 Energie z j dra Obraz, kter ohromil svït po 2. svïtovè v lce. Robert Oppenheimer vedl vïdeck t m, kter vyvinul atomovou bombu; kdyû byl svïdkem prvnìho jadernèho v buchu, citoval posv tn hinduistick

Více

VY_52_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen

VY_52_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen VY_52_INOVACE_VK64 Jméno autora výukového materiálu Věra Keselicová Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace 8. ročník

Více

Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická. Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE.

Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická. Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE. Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE Studijní texty 2010 Struktura předmětu 1. ÚVOD 2. EKOSYSTÉM MODELOVÁ JEDNOTKA 3.

Více

2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A

2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A 2. Jaderná fyzika 9 2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A V této kapitole se dozvíte: o historii vývoje modelů stavby atomového jádra od dob Rutherfordova experimentu;

Více

RUZNYCH DRUHU ZÁRENí

RUZNYCH DRUHU ZÁRENí Tomáš Fukátko DETEKCE A MERENí o, o RUZNYCH DRUHU ZÁRENí Praha 2007 "'(ECHNICI(4 I (/1"ERATUf\P- It I~~ @ ~~č~~ nékolietody rem béako ucekapitoly "zárení". odrobné pak preo vznik ní nabit hledat mi na

Více

KINETICKÁ TEORIE STAVBY LÁTEK

KINETICKÁ TEORIE STAVBY LÁTEK KINETICKÁ TEORIE STAVBY LÁTEK Látky kteréhokoliv skupenství se skládají z částic. Prostor, který těleso zaujímá, není částicemi beze zbytku vyplněn (diskrétní struktura látek). Rozměry částic jsou řádově

Více

Základy toxikologie a bezpečnosti práce: část bezpečnost práce

Základy toxikologie a bezpečnosti práce: část bezpečnost práce Základy toxikologie a bezpečnosti práce: část bezpečnost práce T1ZA 2017 Přednášející: Ing. Jaroslav Filip, Ph.D. (U1/210, jfilip@utb.cz) Garant + přednášející části toxikologie: Ing. Marie Dvořáčková,

Více

1. STANOVENÍ RADIONUKLIDŮ - ZÁŘIČŮ GAMA - VE VZORCÍCH ŽIVOTNÍHO PROSTŘEDÍ

1. STANOVENÍ RADIONUKLIDŮ - ZÁŘIČŮ GAMA - VE VZORCÍCH ŽIVOTNÍHO PROSTŘEDÍ 1. STANOVENÍ RADIONUKLIDŮ - ZÁŘIČŮ GAMA - VE VZORCÍCH ŽIVOTNÍHO PROSTŘEDÍ Jedná se o úlohu, demonstrující principy stanovení umělých i přirozených radionuklidů v objemových vzorcích životního prostředí

Více

Zkoušení materiálů prozařováním

Zkoušení materiálů prozařováním Zkoušení materiálů prozařováním 1 Elektromagnetické vlnění Energie elektromagnetického vlnění je dána jeho frekvencí nebo vlnovou délkou. Čím kratší je vlnová délka, tím vyšší je frekvence. c T c f Př:

Více

Vyhořelé jaderné palivo

Vyhořelé jaderné palivo Vyhořelé jaderné palivo Jaderné palivo - složení Jaderné palivo je palivo, z něhož se energie uvolňuje prostřednictvím jaderných reakcí Nejběžnějším typem jaderného paliva je obohacený uran ve formě oxidu

Více

RADIOAKTIVITA RADIOAKTIVITA

RADIOAKTIVITA RADIOAKTIVITA Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 20. říjen 2012 Název zpracovaného celku: RADIOAKTIVITA Přirozená radioaktivita: RADIOAKTIVITA Atomová jádra některých nuklidů (zejména těžká

Více

PRAKTIKUM IV Jaderná a subjaderná fyzika

PRAKTIKUM IV Jaderná a subjaderná fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Jaderná a subjaderná fyzika Úloha č. A5 Název: Spektrometrie záření α Pracoval: Radim Pechal dne 27. října 2009 Odevzdal

Více

29. Atomové jádro a jaderné reakce

29. Atomové jádro a jaderné reakce 9. tomové jádro a jaderné reakce tomové jádro je složeno z nukleonů, což jsou protony (p + ) a neutrony (n o ). Průměry atomových jader jsou řádově -5 m. Poznámka: Poloměr atomového jádra je dán vztahem:

Více

Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas Třída: 9. C

Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas Třída: 9. C Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití Jméno: Ondřej Lukas Třída: 9. C Co to je Radioaktivita/Co je radionuklid Radioaktivita = Samovolná přeměna atomových jader Objev 1896

Více

MĚŘENÍ PŘIROZENÉ RADIACE HORNIN NA DĚČÍNSKU

MĚŘENÍ PŘIROZENÉ RADIACE HORNIN NA DĚČÍNSKU MĚŘENÍ PŘIROZENÉ RADIACE HORNIN NA DĚČÍNSKU Autorský kolektiv Marie Freibergová Jan Kmínek Klára Petrovická Gymnázium Děčín Komenského náměstí 4, Děčín 1; PSČ 405 01 Vedoucí práce: Mgr. Olga Kouřimská

Více

Ullmann V.: Jaderná a radiační fyzika

Ullmann V.: Jaderná a radiační fyzika Radionuklidové metody Jsou založeny na studiu přirozené, respektive uměle vzbuzené radioaktivity hornin. Radiometrické metody využívají přirozenou radioaktivitu hornin při vyhledávacím průzkumu a při geologickém

Více

FYZIKA ATOMOVÉHO JÁDRA

FYZIKA ATOMOVÉHO JÁDRA FYZIKA ATOMOVÉHO JÁDRA Je to nejstarší obor fyziky Stručně jaderná nebo nukleární fyzika Zabývá se strukturou jader, jadernými ději a jejich využití v praxi JÁDRO ATOMU Tvoří centrální část atomu o poloměru

Více

Detekční trubice typu A ke geigeru ALPHA ix Kat. číslo 109.0601

Detekční trubice typu A ke geigeru ALPHA ix Kat. číslo 109.0601 Detekční trubice typu A ke geigeru ALPHA ix Kat. číslo 109.0601 Obsah: 1. Měření velikosti dávky detekční trubicí typu A... 2 2. Statistická chyba měření... 2 3. Mez průkaznosti (NWG)...3 4. Měření kontaminace...

Více

Radioaktivní záření, jeho druhy, detekce a základní vlastnosti

Radioaktivní záření, jeho druhy, detekce a základní vlastnosti Radioaktivní záření, jeho druhy, detekce a základní vlastnosti M. Vohralík vohralik.m@email.cz Gymnázium Dr. Emila Holuba, Holice D. Horák dombas1999@gmail.com Reálné Gymnázium a základní škola města Prostějova

Více

Gamaspektrometrická charakteristika hornin z okolí ložiska uranu Rožná

Gamaspektrometrická charakteristika hornin z okolí ložiska uranu Rožná MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV GEOLOGICKÝCH VĚD Gamaspektrometrická charakteristika hornin z okolí ložiska uranu Rožná Rešerše k bakalářské práci Gabriela Pospěchová VEDOUCÍ PRÁCE:

Více

9. Fyzika mikrosvěta

9. Fyzika mikrosvěta Elektromagnetické spektrum 9.1.1 Druy elektromagnetickéo záření 9. Fyzika mikrosvěta Vlnění různýc vlnovýc délek mají velmi odlišné fyzikální vlastnosti. Různé druy elektromagnetickéo záření se liší zejména

Více

Přírodní radioaktivita

Přírodní radioaktivita Přírodní radioaktivita Náš celý svět, naše Země, je přirozeně radioaktivní, a to po celou dobu od svého vzniku. V přírodě můžeme najít několik tisíc radionuklidů, tj. prvků, které se samovolně rozpadají

Více

Nebezpečí ionizujícího záření

Nebezpečí ionizujícího záření Nebezpečí ionizujícího záření Radioaktivita versus Ionizující záření Radioaktivita je schopnost jader prvků samovolně se rozpadnout na jádra menší stabilnější. Rozeznáváme pak radioaktivitu přírodní (viz.

Více

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace) Referát z atomové a jaderné fyziky Detekce ionizujícího záření (principy, technická realizace) Měřicí a výpočetní technika Šimek Pavel 5.7. 2002 Při všech aplikacích ionizujícího záření je informace o

Více

Letní škola RADIOAKTIVNÍ LÁTKY a možnosti detoxikace

Letní škola RADIOAKTIVNÍ LÁTKY a možnosti detoxikace Letní škola 2008 RADIOAKTIVNÍ LÁTKY a možnosti detoxikace 1 Periodická tabulka prvků 2 Radioaktivita radioaktivita je schopnost některých atomových jader odštěpovat částice, neboli vysílat záření jádro

Více

$ %&#! '! ( $ )* +, '!'!!,!! )" )!)' -!!! 9# )# ) 8)!# ) )! 2 %,"$ +#""#!,!, )!#!:6 8)! ) )! ' '! -. +#""#!!# )!!# '!#! ) )),#!#

$ %&#! '! ( $ )* +, '!'!!,!! ) )!)' -!!! 9# )# ) 8)!# ) )! 2 %,$ +##!,!, )!#!:6 8)! ) )! ' '! -. +##!!# )!!# '!#! ) )),#!# ! "#! $%!!"# $ %&#! '! ( $ )* +, '!'!!,!! )" )!)' -!!! &#./01 + # +! &' () '!,! # 2#!!!! 3!#! +-+!#,! #! 4 *" "! # #!! #!!,! # ' ") ) " # 5'!! "!! &"!#!!!.0678'# 9# )# +#"+""+! ' ) 8)!# ) )! 2 %,"$ +#""#!,!,

Více

Potřebné pomůcky Sešit, učebnice, pero

Potřebné pomůcky Sešit, učebnice, pero Potřebné pomůcky Druh interaktivity Cílová skupina Stupeň a typ vzdělání Potřebný čas Velikost Zdroj Sešit, učebnice, pero Výklad, aktivita žáků 9. ročník 2. stupeň, ZŠ 45 minut 754 kb Viz použité zdroje

Více

RADIOAKTIVITA TEORIE. Škola: Masarykovo gymnázium Vsetín Mgr.Milan Staněk MGV_F_SS_3S2_D12_Z_MIKSV_Radioaktivita_PL

RADIOAKTIVITA TEORIE. Škola: Masarykovo gymnázium Vsetín Mgr.Milan Staněk MGV_F_SS_3S2_D12_Z_MIKSV_Radioaktivita_PL Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr.Milan Staněk MGV_F_SS_3S2_D12_Z_MIKSV_Radioaktivita_PL Člověk a příroda Fyzika Jaderná fyzika Radioaktivita RADIOAKTIVITA

Více

K MOŽNOSTEM STANOVENÍ OLOVA

K MOŽNOSTEM STANOVENÍ OLOVA K MOŽNOSTEM STANOVENÍ OLOVA 210 Jaroslav Vlček Státní ústav radiační ochrany, Bartoškova 1450/28, 140 00 Praha 4 Radionuklid 210 Pb v přírodě vzniká postupnou přeměnou 28 U (obr. 1) a dále se mění přes

Více

RADIUM - 223 - fyzikální vlastnosti a radiobiologické účinky -

RADIUM - 223 - fyzikální vlastnosti a radiobiologické účinky - RADIUM - 223 - fyzikální vlastnosti a radiobiologické účinky - Radium důležitý radioaktivní prvek Radium 226 Ra a 223 Ra Radiobiologické účinky a využití v nukleární medicíně Ullmann V., Koláček M., Pekárek

Více

8.1 Elektronový obal atomu

8.1 Elektronový obal atomu 8.1 Elektronový obal atomu 8.1 Celkový náboj elektronů v elektricky neutrálním atomu je 2,08 10 18 C. Který je to prvek? 8.2 Dánský fyzik N. Bohr vypracoval teorii atomu, podle níž se elektron v atomu

Více

Anotace Metodický list

Anotace Metodický list ZÁKLADNÍ ŠKOLA a MATEŘSKÁ ŠKOLA STRUPČICE, okres Chomutov Autor výukového Materiálu Datum (období) vytvoření materiálu Ročník, pro který je materiál určen Vzdělávací obor tématický okruh Název materiálu,

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

POČÍTAČOVÁ TOMOGRAFIE V ZOBRAZOVÁNÍ MALÝCH ZVÍŘAT ÚVOD. René Kizek. Název: Školitel: Datum: 20.09.2013

POČÍTAČOVÁ TOMOGRAFIE V ZOBRAZOVÁNÍ MALÝCH ZVÍŘAT ÚVOD. René Kizek. Název: Školitel: Datum: 20.09.2013 Název: Školitel: POČÍTAČOVÁ TOMOGRAFIE V ZOBRAZOVÁNÍ MALÝCH ZVÍŘAT ÚVOD René Kizek Datum: 20.09.2013 Základy počítačové tomografie položil W. C. Röntgen, který roku 1895 objevil paprsky X. Tyto paprsky,

Více

Využití metod atomové spektrometrie v analýzách in situ

Využití metod atomové spektrometrie v analýzách in situ Využití metod atomové spektrometrie v analýzách in situ Oto Mestek Úvod Termínem in situ označujeme výzkum prováděný na místě původního výskytu analyzovaného vzorku nebo jevu (opakem je analýza ex situ,

Více

vysokoteplotního plazmatu na tokamaku GOLEM

vysokoteplotního plazmatu na tokamaku GOLEM Měření základních parametů vysokoteplotního plazmatu na tokamaku GOLEM J. Krbec 1 1 České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská U3V Fyzika přátelsky / Aplikované přírodní

Více

1 Tepelné kapacity krystalů

1 Tepelné kapacity krystalů Kvantová a statistická fyzika 2 Termodynamika a statistická fyzika) 1 Tepelné kapacity krystalů Statistická fyzika dokáže vysvětlit tepelné kapacity látek a jejich teplotní závislosti alespoň tehdy, pokud

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Fyzika atomu - model atomu struktura elektronového obalu atomu z hlediska energie atomu - stavba atomového jádra; základní nukleony

Více

Kosmické záření a astročásticová fyzika

Kosmické záření a astročásticová fyzika Kosmické záření a astročásticová fyzika Jan Řídký Fyzikální ústav AV ČR Obsah Kosmické záření a současná fyzika. Historie pozorování kosmického záření. Současné znalosti o kosmickém záření. Jak jej pozorujeme?

Více