Problémové vyučování

Rozměr: px
Začít zobrazení ze stránky:

Download "Problémové vyučování"

Transkript

1 Problémové vyučování Jiřina Novotná Abstract. The importance of problem teaching methods among other teaching ones is justified. As the example three solved problems are presented to give variety to physics and mathematics lessons (two of them remember part of fairy stories). 1. Úvod V běžném životě je člověk neustále nucen řešit situace, které jsou v pedagogické literatuře (2, 4, 11) označovány termínem problémové, a o kterých nemá kolikrát úplné informace. Ve škole by se měl člověk naučit nejen řešit problémy, ale i opatřit si co nejvíce informací, které potřebuje k řešení problému, a to pokud možno co nejefektivněji. Rozvoj tvořivého myšlení je spojen s každodenní aktivitou jednotlivce, u dítěte s hrou a učením se, u dospělého člověka především s prací.všeobecně je známo, že úspěšnost tvořivé činnosti je závislá především na motivačních činitelích vnitřních i vnějších (4, 12), na charakterových vlastnostech a na úrovni rozvoje kreativních schopností jedince. Práce psychologů zkoumajících tvořivé myšlení,uveďme aspoň některé z nich:j. P. Guilford, K. Taylor a A. Osborn (tvůrce metody brainstormingu), podnítily rozsáhlé výzkumy mnoha odborníků ( např. Angličané S. Robertson a P. Richter, Rusové M. I. Machmutov a A. M. Maťuškin, Poláci W. Okoň a C.Kupisiewicz, na Slovensku manželé Zelinovi a u nás např. J. Hlavsa a M. Jurčová (1). Podle Skalkové (12) patří problémové vyučování k nejaktivnější metodě, klasifikujeme-li metody z hlediska aktivity žáků. Domnívám se, že spojení problémového vyučování s kooperativním, ve kterém se zdůrazňuje, že kognitivní aspekty a osobnostně sociální dimenze se spojují v úkolech a cílech skupinové práce (2), by mohlo změnit naši školu k lepšímu. 2. Řešené úlohy Uvedeme nyní tři řešené problémové úlohy pro žáky ZŠ, respektive i SŠ, které by mohly být řešeny též ve skupinách, případně by je mohl vyučující použít jako samostatnou práci pro šikovné žáky, když by se věnoval slabším žákům. Úloha 1 Ostrov obrů má stejně obyvatel jako Ostrov trpaslíků. Ani na jednom z těchto ostrovů nežijí dvě stejně těžké bytosti. Kromě dvou obrů a dvou trpaslíků má každý na svém ostrově dva kamarády,z nichž je jeden o 2 kg těžší a druhý o 2 kg lehčí. Dva nejtěžší trpaslíci váží dohromady tolik jako nejlehčí obr, tři prostřední trpaslíci váží dohromady jako prostřední obr a čtyři nejlehčí trpaslíci tolik, co osmý nejtěžší obr. Zjistěte, kolik obyvatel má ostrov trpaslíků a o kolik kilogramů je nejtěžší obr těžší než nejlehčí trpaslík. Řešení.Výpočet se značně zjednoduší, když hmotnost prostředního obra označíme M a hmotnost prostředního trpaslíka m, místo abychom za neznámé považovali krajní hodnoty, tedy buď hmotnost nejtěžších nebo nejlehčích obyvatel daných dvou ostrovů. Počet obrů a

2 rovněž počet trpaslíků označíme x. Ze zadání je zřejmé, že x je liché číslo. Dříve než sestavíme matematický model úlohy, vypočtěme hmotnosti nejtěžších, prostředních a nejlehčích obyvatel obou ostrovů. trpaslík obr nejtěžší m + ((x -1)/2)2 = m + x - 1 M + x - 1 prostřední m M nejlehčí m - ((x -1)/2)2 = m - x + 1 M x + 1 Podmínky úlohy zapíšeme užitím rovnic a obdržíme soustavu I: (1) (m + x 1) + (m + x -1 2) = M x + 1 (2) (m 2) + m + (m + 2) = M (3) (m x+1) + (m x+1+2)+ (m x+1+4)+ (m x+1+6) = M + x (1 ) 2m +2x 4 = M x + 1 ( 2 ) 3m = M (3 ) 4m 4x + 16 = M + x 15 Dosazením (2 ) do (1 ) a (3 ) a jednoduchými ekvivalentními úpravami vznikne následující soustava dvou lineárních rovnic o dvou neznámých. (1 ) 2m + 3x 5 = 3m (3 ) 4m 5x + 31 = 3m - m + 3x = 5 m 5x = -31-2x = -26 x = 13 m = 34 M = 102 Na každém z ostrovů žije 13 obyvatel. Prostřední trpaslík váží 34kg a prostřední obr 102kg. Nejlehčí trpaslík má hmotnost (34 6.2)kg = 22kg, nejtěžší obr ( )kg = 114kg. Rozdíl hmotností nejtěžšího obra a nejlehčího trpaslíka je (114 22)kg = 92kg. Poznámka: Kdybychom písmenem m označili hmotnost nejtěžšího trpaslíka a symbolem M hmotnost nejtěžšího obra, význam x je stejný jako v předchozím výpočtu, tedy x udává počet obyvatel na každém z uvažovaných ostrovů, obdrželi bychom následující soustavu II: m + m 2 = M 2(x - 1) 3(m + m 2(x 1))/2 = (M + M 2(x 1))/2 (m 2(x 1))+(m 2(x 1)+2)+(m 2(x 1)+4)+(m 2(x 1)+6) = M 14, jejíž řešení je numericky náročnější než řešení soustavy I.

3 Jestliže označíme písmenem m hmotnost nejlehčího trpaslíka a písmenem M hmotnost nejlehčího obra, x udává opět počet trpaslíků a počet obrů, obdržíme soustavu III: m + 2(x - 1) + m + 2(x - 1) 2 = M 3(m + m + 2(x 1))/2 = (M + M + 2(x 1))/2 m + (m + 2)+(m + 4) + (m + 6) = M + 2(x - 1) 6, jejíž řešení je opět numericky náročnější než řešení soustavy I. Při žákovských řešeních bychom se mohli ještě setkat s těmito dvěma označeními: a) M... hmotnost nejtěžšího obra, m... hmotnost nejlehčího trpaslíka b) M... hmotnost nejlehčího obra m... hmotnost nejtěžšího trpaslíka. Soustavy rovnic příslušné k těmto označením již neuvádíme, protože vzniknou ze soustav II a III. V případě a) vezmeme levé strany rovnic soustavy II a položíme je rovny příslušným pravým stranám soustavy III, v případě b) obráceně. Jestliže úlohu zadáme na SŠ po probrání aritmetické posloupnosti, ztrácí do jisté míry problémový charakter, neboť studenti mohou při řešení využít odvozené vztahy mezi členy aritmetické posloupnosti. Úloha 2 Za jakou nejkratší dobu je možné opéct tři topinky, vejdou-li se nám na pánev jen dvě. Topinka se musí smažit z každé strany půl minuty. Řešení. Při řešení problémových úloh tohoto typu se často setkáváme s tím, že řešitel musí překonat určité psychologické zábrany. Zde je onou zábranou fakt, že můžeme topinku opéci jen z jedné strany, dát ji bokem a později se zase k ní vrátit. Pokud si tento fakt uvědomíme, je řešení úlohy snadné. Může nám k tomu pomoci rozbor úlohy. Máme osmažit topinky co v nejkratším čase, to znamená, že by bylo nejlépe mít na pánvi vždy dvě topinky. Dáme tedy na pánev dvě topinky, po 30 s jsou po jedné straně osmažené, obrátíme-li je, zbude nám jedna topinka, která se bude smažit samotná. Není tedy racionální obě topinky obrátit, ale musíme obrátit jen jednu Topinku, a druhou nahradit neosmaženým chlebem. Nyní se smaží opět dvě topinky, po 30 s hotovou topinku nahradíme topinkou, kterou jsme předtím odebrali, a druhou topinku na pánvi obrátíme. Po dalších 30 s jsou všechny topinky hotovy. Odpověď: Topinky osmažíme nejrychleji za 90 s ( 3.30 = 90 ). Úloha 3 Princ Jan se vracel na svém bělouši z cest domů a na rameni mu odpočíval jeho sokol. Když jim k rodnému hradu zbývalo půlstovky kilometrů, což bylo asi dvě hodiny jízdy, sokol se radostně vznesl a letěl k hradu. Jakmile byl u něho otočil se a letěl vstříc princi Janovi, když byl nad ním, opět se otočil a letěl k hradu. Takto létal od prince k hradu a obráceně, dokud princ nedorazil do svého sídla. Kolik kilometrů sokol nalétal? Řešení. Žáci budou muset zjistit průměrnou rychlost letu sokola, což je přibližně při překonávání větších vzdáleností 125 km. hod -1. V nižších ročnících si žáci mohou nakreslit obrázek hradu, sokola, či koně. Údaj o vzdálenosti hradu je při jednoduchém řešení nadbytečný, neboť sokol létal uvedenou rychlostí tak dlouho, dokud princ Jan nedorazil do

4 hradu. Princ Jan jel k hradu dvě hodiny od okamžiku, kdy se sokol vznesl. Sokol tedy létal dvě hodiny zjištěnou průměrnou rychlostí a nalétal tedy s = v.t = km = 250 km. Je zajímavé, že při prezentaci této úlohy na SŠ ji studenti neřešili jednoduše, ale počítali místa a časy setkání prince a sokola. Jejich řešení vypadala přibližně takto: Označme t i,s i příslušný čas a dráhu, kterou uletěl sokol při i-tém setkání s koněm, T i a S i příslušný čas a dráhu, kterou ujel kůň při i-tém setkání se sokolem, rychlost sokola označme v s a rychlost koně v k.. Je zřejmé, že T 1 = S 1 /v k a t 1 = s 1 /v s a dále t 1 = T 1, tedy s 1 /v s = S 1 /v k, z tohoto vztahu vyjádříme s 1 = v s.( S 1 /v k ) = S 1 (v s /v k ) = S 1 (125 / 25) = 5S 1, obdobně s 2 = v s.( S 2 /v k ) = S 2 (v s /v k ) = S 2 (125 / 25) = 5S s i = v s.( S i /v k ) = S i (v s /v k ) = S i (125 / 25) = 5S Σ s i = Σ 5S i = 5 Σ S i = = 250. Pokud bychom, jako někteří studenti stanovili, že sokol přestane létat, až vzdálenost koně od hradu bude nulová, řešení bychom nenašli, neboť bychom se dopustili stejné chyby jako Zenon v úloze O želvě a Achillovi. Výpočet studentů vypadal takto: Za t 1 = d / v s sokol doletěl k hradu, princ ujel l 1 = t 1. v k = ( d / v s ). v k kilometrů a k hradu mu zbývalo d l 1 = d - ( d / v s ). v k = d. ( 1 v k / v s ) = d. ( v s v k ) / v s kilometrů, což je také vzdálenost koně a sokola, setkají se za čas t, platí: v s.t + v k.t = d. ( v s v k ) / v s t.( v s + v k ) = d. ( v s v k ) / v s t = d. ( v s v k ) / ( v s. (v s + v k )) Princ se setká se sokolem ve vzdálenosti, kterou uletí sokol za dobu t od hradu, označme ji d 1, d 1 = v s. d. ( v s v k ) / ( v s. (v s + v k )) = d. (v s v k ) / (v s + v k ) (*). Při dalším setkání budou sokol a kůň vzdáleni od hradu d 2 kilometrů, d 2 vypočítáme jednoduše tak, že do (*) dosadíme místo d výraz d 1 = d. (v s v k ) / (v s + v k ), neboť situace je obdobná jako když sokol vzlétl, jen s tím rozdílem, že jeho vzdálenost od hradu je d 1, a nikoliv d. d 1 = d. (v s v k ) 2 / (v s + v k ) 2 Označíme-li d i vzdálenost koně od hradu při i- tém setkání, máme d i = d. (v s v k ) i / (v s + v k ) i a d n = 0 pro n, což je nesprávný výsledek. 3. Závěr V publikacích (5 až 9) se pokouším problémově zpracovat dané téma za využití optimálního matematického aparátu. K pochopení problému je mnohdy potřeba vyvinout

5 značné úsilí, proto by neměla chybět vhodná motivace. Jak ukázal výzkum kolegů ze Slovenska (10), vhodnou motivací mohou být části pohádkových příběhů, proto jsem zařadila do článku dvě úlohy s pohádkovým motivem. Literatura 1. JURČOVÁ, M. Dve fázy brainstormingu: generovanie a hodnotenie nápadov ilustrávia vo vyučovanou fysiky. In Tvořivostí učitele k tvořivosti žáků. Brno, Paido KASÍKOVÁ, H. Kooperativní učení, kooperativní škola. Portal, Praha MAŇÁK, J. Nárys didaktiky. Masarykova univerzita, Brno MAŇÁK, J. Pedagogické otázky tvořivosti. In Kolektiv autorů: Tvořivost v práci učitele a žáků. Brno, Paido NOVOTNÁ, J. Aplikace matic v chemii. In Aktuální otázky výuky chemie. Hradec Králové: Universita Hradec Králové, NOVOTNÁ, J. Některé aplikace matic ve fyzice. In Ciele vyučovania fyziky v novom miléniu. Nitra : Univerzita Konštantína Filozofa v Nitre, NOVOTNÁ, J. Paradoxy v pravděpodobnosti. In XIX. Vědecké kolokvium o řízení osvojovacího procesu. Vyškov: VVŠ PV Vyškov, NOVOTNÁ, J. Markovovy řetězy. In XVII. Mezinárodní kolokvium o řízení osvojovacího procesu. Vyškov: Vysoká vojenská škola pozemního vojska ve Vyškově, NOVOTNÁ, J. Stromy v kombinatorice. In Problematika výchovy dětí a mládeže ke zdravému způsobu života. Brno: Masarykova univerzita Brno, SABOLOVÁ, I., BIRČÁK, J. Prvky ludovej slovesnosti vo výučbe fyziky 11. SKALKOVÁ, J. Obecná didaktika. ISV nakladatelství, Praha ŠŤÁVA,, J. Brainstorming (metoda pro tvořivé učení a řízení). Pedagogická orientace, Česká pedagogická společnost při AVČR č. 15, Brno 1995 PhDr. Jiřina Novotná, Ph.D. Katedra matematiky Pedagogická fakulta Masarykovy Univerzity Poříčí Brno tel. č.:

materiál č. šablony/č. sady/č. materiálu: Autor:

materiál č. šablony/č. sady/č. materiálu: Autor: Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVACE_

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Řešení slovních úloh pomocí lineárních rovnic

Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)

Více

Digitální učební materiál

Digitální učební materiál Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

Tento materiál byl vytvořen v rámci projektu. Inovace studijních oborů na PdF UHK reg. č. CZ.1.07/2.2.00/28.0036.

Tento materiál byl vytvořen v rámci projektu. Inovace studijních oborů na PdF UHK reg. č. CZ.1.07/2.2.00/28.0036. 1. Podstata aktivizačních metod výuky, kritického myšlení a konstruktivistického pojetí výuky Aktivizační metody výuky Aktivizační metody výuky jsou vyučovací postupy, kdy žáci aktivně získávají nové poznatky

Více

Digitální učební materiál

Digitální učební materiál Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

MATEMATIKA STŘEDNÍ ŠKOLA EKONOMIKY, OBCHODU A SLUŽEB SČMSD BENEŠOV, S.R.O. Mgr. Miloslav Janík. Výukový materiál zpracován v rámci operačního projektu

MATEMATIKA STŘEDNÍ ŠKOLA EKONOMIKY, OBCHODU A SLUŽEB SČMSD BENEŠOV, S.R.O. Mgr. Miloslav Janík. Výukový materiál zpracován v rámci operačního projektu Výukový materiál zpracován v rámci operačního projektu EU peníze školám REGISTRAČNÍ ČÍSLO PROJEKTU: CZ.1.07/1.5.00/34.0512 STŘEDNÍ ŠKOLA EKONOMIKY, OBCHODU A SLUŽEB SČMSD BENEŠOV, S.R.O. MATEMATIKA SLOVNÍ

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot.

Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot. Průměr Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot. Co je to průměr # Průměrem se rozumí klasický aritmetický průměr sledovaných hodnot. Můžeme si pro

Více

1. Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? 2. Jana uspořila dvakrát více než Jitka,

1. Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? 2. Jana uspořila dvakrát více než Jitka, 1. Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? 2. Jana uspořila dvakrát více než Jitka, Alena o 27 Kč méně než Jana. Celkem uspořily 453 Kč. Kolik

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Slovní úlohy v učivu matematiky 1. stupně základní školy

Slovní úlohy v učivu matematiky 1. stupně základní školy Slovní úlohy v učivu matematiky 1. stupně základní školy V každé matematické úloze jde o to, abychom dokázali platnost (pravdivost) nějakého výroku. Podle toho, o jaký výrok jde, máme různé druhy úloh.

Více

7. Slovní úlohy na lineární rovnice

7. Slovní úlohy na lineární rovnice @070 7. Slovní úlohy na lineární rovnice Slovní úlohy jsou často postrachem studentů. Jenţe Všechno to, co se učí mimo slovní úlohy, jsou postupy, jak se dopracovat k řešení nějaké sestavené (ne)rovnice.

Více

Funkce. Úkol: Uveďte příklady závislosti dvou veličin.

Funkce. Úkol: Uveďte příklady závislosti dvou veličin. Funkce Pojem funkce Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Funkce vyjadřuje závislost

Více

Rovnice ve slovních úlohách

Rovnice ve slovních úlohách Rovnice ve slovních úlohách Při řešení slovních úloh postupujeme obvykle takto (matematizace): 1. V textu úlohy vyhledáme veličinu, která je neznámá, a její číselnou hodnotu označíme vhodným písmenem (

Více

2.3.17 Slovní úlohy vedoucí na soustavy rovnic I

2.3.17 Slovní úlohy vedoucí na soustavy rovnic I .3.7 Slovní úlohy vedoucí na soustavy rovnic I Předpoklady: 34 Pedagogická poznámka: Jak už bylo uvedeno dříve slovní úlohy tvoří specifickou část matematiky jednoduše proto, že nestačí sledovat dříve

Více

Matematika I. dvouletý volitelný předmět

Matematika I. dvouletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Matematika I O7A, C3A, O8A, C4A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem usnadnit absolventům gymnázia přechod na vysoké školy

Více

PROČ PRÁVĚ ZAČÍT SPOLU?

PROČ PRÁVĚ ZAČÍT SPOLU? ZAČÍT SPOLU ZÁKLADNÍ INFORMACE program Začít spolu (Step by Step) je realizován ve více než 30 zemích v ČR od 1994 v MŠ, 1996 v ZŠ pedagogický přístup orientovaný na dítě spojuje v sobě moderní poznatky

Více

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování.

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační výzkum Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu

Více

ŠABLONY INOVACE OBSAH UČIVA

ŠABLONY INOVACE OBSAH UČIVA ŠABLONY INOVACE OBSAH UČIVA Číslo a název projektu CZ.1.07/1.5.00/34. 0185 Moderní škola 21. století Číslo a název šablony IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické klíčové aktivity

Více

V tomto prostředí jsou postupně zaváděny různé typy úloh.

V tomto prostředí jsou postupně zaváděny různé typy úloh. Matematické prostředí Děda Lesoň umožňuje dětem pracovat s veličinou zapsanou ikonicky (nikoliv číslem). Uvedeno je příběhem o dědovi Lesoňovi, ochránci zvířátek. Nejprve jsou u Lesoně pouze tři druhy

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

2. LMP SP 3. LMP SP + 2. LMP NSP. operace. Závislosti, vztahy a práce s daty. Závislosti, vztahy a práce s daty. v prostoru

2. LMP SP 3. LMP SP + 2. LMP NSP. operace. Závislosti, vztahy a práce s daty. Závislosti, vztahy a práce s daty. v prostoru ŠVP LMP Charakteristika vyučovacího předmětu Matematika Obsahové, časové a organizační vymezení vyučovacího předmětu Matematika Vzdělávací obsah předmětu Matematika je utvořen vzdělávacím obsahem vzdělávacího

Více

Postup při řešení matematicko-fyzikálně-technické úlohy

Postup při řešení matematicko-fyzikálně-technické úlohy Postup při řešení matematicko-fyzikálně-technické úlohy Michal Kolesa Žádná část této publikace NESMÍ být jakkoliv reprodukována BEZ SOUHLASU autora! Poslední úpravy: 3.7.2010 Úvod Matematicko-fyzikálně-technické

Více

Praktické využití Mathematica CalcCenter. Ing. Petr Kubín, Ph.D. xkubin@fel.cvut.cz www.powerwiki.cz Katedra elektroenergetiky, ČVUT v Praze, FEL

Praktické využití Mathematica CalcCenter. Ing. Petr Kubín, Ph.D. xkubin@fel.cvut.cz www.powerwiki.cz Katedra elektroenergetiky, ČVUT v Praze, FEL Praktické využití Mathematica CalcCenter Ing. Petr Kubín, Ph.D. xkubin@fel.cvut.cz www.powerwiki.cz Katedra elektroenergetiky, ČVUT v Praze, FEL Obsah Popis Pojetí Vlastnosti Obecná charakteristika Ovladače

Více

1.1.4 Poměry a úměrnosti I

1.1.4 Poměry a úměrnosti I 1.1.4 Poměry a úměrnosti I Předpoklady: základní početní operace Poznámka: Následující látka patří mezi nejdůležitější, probírané na základní škole. Bohužel patří také mezi ty, kde je nejvíce rozšířené

Více

Autodiagnostika učitele

Autodiagnostika učitele Autodiagnostika učitele Přednáška PdF MU Jana Kratochvílová Autodiagnostika učitele Co si představíme pod daným pojmem? Autodiagnostika učitele V nejširším smyslu jako způsob poznávání a hodnocení vlastní

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

PROGRAM MAXIMA. KORDEK, David, (CZ) PROGRAM MAXIMA

PROGRAM MAXIMA. KORDEK, David, (CZ) PROGRAM MAXIMA PROGRAM MAXIMA KORDEK, David, (CZ) Abstrakt. Co je to Open Source Software? Příklady některých nejpoužívanějších software tohoto typu. Výhody a nevýhody Open Source Software. Jak získat program Maxima.

Více

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Měření modulů pružnosti G a E z periody kmitů pružiny

Měření modulů pružnosti G a E z periody kmitů pružiny Měření modulů pružnosti G a E z periody kmitů pružiny Online: http://www.sclpx.eu/lab2r.php?exp=2 V tomto experimentu vycházíme z pojetí klasického pokusu s pružinovým oscilátorem. Z periody kmitů se obvykle

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

Přijímací řízení zohledňující specifika nekvalifikovaných učitelů s dlouhodobou praxí (metodika)

Přijímací řízení zohledňující specifika nekvalifikovaných učitelů s dlouhodobou praxí (metodika) Přijímací řízení zohledňující specifika nekvalifikovaných učitelů s dlouhodobou praxí (metodika) Studijní program Učitelství pro základní školy, Učitelství pro střední školy (navazující magisterské studium,

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

Milí rodiče a prarodiče,

Milí rodiče a prarodiče, Milí rodiče a prarodiče, chcete pomoci svým dětem, aby se jim dobře počítalo se zlomky? Procvičujte s nimi. Tento text je pokračováním publikace Mami, tati, já těm zlomkům nerozumím. stupeň ZŠ, ve které

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma V..1 Posloupnosti a finanční matematika Kapitola

Více

Malá didaktika innostního u ení.

Malá didaktika innostního u ení. 1. Malá didaktika činnostního učení. / Zdena Rosecká. -- 2., upr. a dopl. vyd. Brno: Tvořivá škola 2006. 98 s. -- cze. ISBN 80-903397-2-7 činná škola; vzdělávání; vyučovací metoda; vzdělávací program;

Více

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k,

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k, Řešení 1. série Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy h = 1 2 v d, h = 1 2 s k, kde h je počet hran, v je počet vrcholů, d je stupeň vrcholu, s je počet stěn a k je počet úhlů

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gmnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

4 Rovnice a nerovnice

4 Rovnice a nerovnice 36 Rovnice a nerovnice 4 Rovnice a nerovnice 4.1 Lineární rovnice a jejich soustavy Požadované dovednosti řešit lineární rovnice o jedné neznámé vyjádřit neznámou ze vzorce užít lineární rovnice při řešení

Více

Rovnice s neznámou pod odmocninou a jejich užití

Rovnice s neznámou pod odmocninou a jejich užití Rovnice s neznámou pod odmocninou a jejich užití Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, okruh Rovnice a nerovnice Pracovní list vytvořil: Mgr. Helena Korejtková Období

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

METODICKÉ POZNÁMKY ke školním projektům environmentální výchovy

METODICKÉ POZNÁMKY ke školním projektům environmentální výchovy METODICKÉ POZNÁMKY ke školním projektům environmentální výchovy Tyto metodické poznámky mají napomoci k uskutečnění několika různých školních projektů environmentální výchovy. Proto jsou psány tak, aby

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01 matematických pojmů a vztahů, k poznávání základě těchto vlastností k určování a zařazování pojmů matematického aparátu Zapisuje a počítá mocniny a odmocniny racionálních čísel Používá pro počítání s mocninami

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Základy statistiky, kombinační úsudek v úlohách Klíčová slova: tabulky, grafy, diagramy Autor: Mlynářová 1 Základy statistiky Statistika je vědní obor, který se zabývá

Více

Nonverbální úlohy - - tepelně děje, optika

Nonverbální úlohy - - tepelně děje, optika Nonverbální úlohy - - tepelně děje, optika Jiří Tesař Katedra fyziky PF JU Č. Budějovice KDF MFF UK PRAHA 1. 3. 2007 Zahřívání vody 11 o C Obr. 1a Obr. 1b Zahřívání vody Obr. 2b Obr. 2a Jaké otázky vyvolá

Více

Konstruktivistické přístupy. Mnohočleny, lomené algebraické výrazy.

Konstruktivistické přístupy. Mnohočleny, lomené algebraické výrazy. Konstruktivistické přístupy. Mnohočleny, lomené algebraické výrazy. Mgr. Irena Budínová, Ph.D. Konstruktivismus Zjednodušeně můžeme říci, že konstruktivismus představuje směr, který zdůrazňuje aktivní

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Slovní úlohy řešené rovnicemi I. procvičování

Svobodná chebská škola, základní škola a gymnázium s.r.o. Slovní úlohy řešené rovnicemi I. procvičování METODICKÝ LIST DA75 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Slovní úlohy řešené rovnicemi I. procvičování Astaloš Dušan Matematika devátý frontální, fixační samostatná

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_02 ŠVP Podnikání RVP 64-41-L/51

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Křížové pravidlo Používá se pro výpočet poměru hmotnostních dílů dvou výchozích roztoků jejichž smícháním vznikne nový roztok. K výpočtu musí

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Lesní pedagogika. jako nástroj realizace průřezových témat organická část vyučování. Ing. Alice Palacká, SLŠ Trutnov

Lesní pedagogika. jako nástroj realizace průřezových témat organická část vyučování. Ing. Alice Palacká, SLŠ Trutnov Lesní pedagogika jako nástroj realizace průřezových témat organická část vyučování Ing. Alice Palacká, SLŠ Trutnov Co to jsou průřezová témata? 1 jsou důležitým formativním prvkem vzdělávání pomáhají rozvíjet

Více

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika)

Více

Zápis z jednání poroty

Zápis z jednání poroty Kategorie: K1 Seminární práce Doc. RNDr. Ivan Trenčanský, CSc. PhDr. Jana Cachová, PhD. Mgr. Derek Pilous Martina Babinská: Súčasný stav a možnosti e-learningovej podpory vzdelávania na všetkých typoch

Více

9. Soustavy rovnic DEFINICE SOUSTAVY LINEÁRNÍCH ROVNIC O DVOU NEZNÁMÝCH. Soustava lineárních rovnic o dvou neznámých je:

9. Soustavy rovnic DEFINICE SOUSTAVY LINEÁRNÍCH ROVNIC O DVOU NEZNÁMÝCH. Soustava lineárních rovnic o dvou neznámých je: 9. Soustavy rovnic Správný nadpis této kapitoly by měl znít soustavy lineárních rovnic o dvou neznámých, z důvodu přehlednosti jsem jej zkrátil. Hned v úvodu čtenáře potěším teorie bude tentokrát krátká.

Více

Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte.

Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte. Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte. Pozn.: Na konci je uvedena stručná verze výpočtu, aby se vešla na jednu stránku. Začneme silovým rozborem. Na první

Více

ANOTACE nově vytvořených/inovovaných materiálů

ANOTACE nově vytvořených/inovovaných materiálů ANOTACE nově vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.1017 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Posloupnosti

Více

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu.

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu. Vyučovací předmět: CVIČENÍ Z MATEMATIKY A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu Základem vzdělávacího obsahu předmětu Cvičení z matematiky je vzdělávací

Více

ROZVOJ PŘÍRODOVĚDNÉ GRAMOTNOSTI ŽÁKŮ POMOCÍ INTERAKTIVNÍ TABULE

ROZVOJ PŘÍRODOVĚDNÉ GRAMOTNOSTI ŽÁKŮ POMOCÍ INTERAKTIVNÍ TABULE ROZVOJ PŘÍRODOVĚDNÉ GRAMOTNOSTI ŽÁKŮ POMOCÍ INTERAKTIVNÍ TABULE Eva HEJNOVÁ, Růţena KOLÁŘOVÁ Abstrakt V příspěvku je prezentováno další z řady CD (Vlastnosti látek a těles) určených pro učitele základních

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Milí rodiče a prarodiče,

Milí rodiče a prarodiče, Milí rodiče a prarodiče, chcete pomoci svým dětem, aby se jim dobře počítalo se zlomky? Procvičujte s nimi. Tento text je určen rodičům a prarodičům dětí, které si samy nevědí rady při počítání se zlomky.

Více

Identifikace nadání z pohledu poradenské praxe. PhDr. Pavla Picková PPP pro Prahu 1,2 a 4

Identifikace nadání z pohledu poradenské praxe. PhDr. Pavla Picková PPP pro Prahu 1,2 a 4 Identifikace nadání z pohledu poradenské praxe PhDr. Pavla Picková PPP pro Prahu 1,2 a 4 Koordinátoři péče o mimořádně nadané v ČR Od roku 2003 působí v každém kraji ČR krajští koordinátoři péče o nadané

Více

Matematika stavebního spoření

Matematika stavebního spoření Matematika stavebního spoření Výpočet salda ve stacionárním stavu a SKLV Petr Kielar Stavební spořitelny se od klasických bank odlišují tím, že úvěry ze stavebního spoření poskytují zásadně z primárních

Více

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ÚLOHY

Více

file:///c /Documents%20and%20Settings/zdenek/Plocha/novy_descartes/kalendar.htm

file:///c /Documents%20and%20Settings/zdenek/Plocha/novy_descartes/kalendar.htm ID školení Název školení Datum konání ČJ 42 Olomouc Co nás čeká - aneb nová maturita z českého jazyka 26.10.2009 26.10.2009 Z 13 ČB Klimatické změny: propojení předmětů 3.12.2009 3.12.2009 PP 47 HK Sebepoznání

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

Operační výzkum. Přiřazovací problém.

Operační výzkum. Přiřazovací problém. Operační výzkum Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ..7/2.2./28.326

Více

Volitelné předměty Matematika a její aplikace

Volitelné předměty Matematika a její aplikace Vzdělávací oblast : Vyučovací předmět: Volitelné předměty Matematika a její aplikace Cvičení z matematiky Charakteristika předmětu: Vzdělávací obsah: Základem vzdělávacího obsahu předmětu Cvičení z matematiky

Více

EXPONENCIÁLNÍ ROVNICE

EXPONENCIÁLNÍ ROVNICE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol EXPONENCIÁLNÍ

Více

Hry v matematice aneb Jak procvičovat probrané učivo

Hry v matematice aneb Jak procvičovat probrané učivo Hry v matematice aneb Jak procvičovat probrané učivo Mgr. Hana Tesařová, ZŠ Lysice Opakování a procvičování učiva v matematice je jednoznačně nutností. Už naši předkové tvrdili, že opakování je matkou

Více

Příprava lekce v knihovně o informační bezpečnosti pro děti a seniory

Příprava lekce v knihovně o informační bezpečnosti pro děti a seniory Příprava lekce v knihovně o informační bezpečnosti pro děti a seniory Pavla Kovářová Kabinet informačních studií a knihovnictví Filozofická fakulta Masarykovy univerzity Kdo z vás by teď přijal žádost

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

MATEMATIKA+ MAIPD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA+ MAIPD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA+ DIDAKTICKÝ TEST MAIPD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického

Více

Determinanty a matice v theorii a praxi

Determinanty a matice v theorii a praxi Determinanty a matice v theorii a praxi 1. Lineární závislost číselných soustav In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých

Více

Milí studenti, Vaši zkoušející.

Milí studenti, Vaši zkoušející. Milí studenti, rádi bychom se vyjádřili k vašim připomínkám. Předně, v žádném případě naše nároky nejsou přehnané. Rozsah látky jen mírně překračuje to, co by měl znát absolvent slušné střední školy. Vyžaduje

Více

Hurá na pohádku. Žáci dostanou dominové karty. První žák s kartou START přečte příklad

Hurá na pohádku. Žáci dostanou dominové karty. První žák s kartou START přečte příklad Hurá na pohádku Cíl: Procvičit a upevnit dovednosti v oboru přirozených čísel do 7 - posloupnost čísel 0 7 - počítání předmětů v daném souboru - porovnávání čísel 0 7 - součet a rozdíl čísel v oboru do

Více

KINEMATIKA 4. PRŮMĚRNÁ RYCHLOST. Mgr. Jana Oslancová VY_32_INOVACE_F1r0204

KINEMATIKA 4. PRŮMĚRNÁ RYCHLOST. Mgr. Jana Oslancová VY_32_INOVACE_F1r0204 KINEMATIKA 4. PRŮMĚRNÁ RYCHLOST Mgr. Jana Oslancová VY_32_INOVACE_F1r0204 OPAKOVÁNÍ Otázka 1: Jak se vypočítá změna veličiny (např. dráhy, času) mezi dvěma měřeními? Otázka 2: Jak se vypočítá velikost

Více

Výběr z nových knih 9/2013 pedagogika

Výběr z nových knih 9/2013 pedagogika Výběr z nových knih 9/2013 pedagogika 1. 100 aktivit, her a učebních strategií ve výuce cizích jazyků : praktické návody, jak zpříjemnit výuku studentům i sobě / Amy Buttner ; [překlad Irena Ellis] --

Více

CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT

CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Autor Mgr. Lenka Střelcová Tematický celek Posloupnosti Cílová skupina 3. ročník SŠ Anotace Materiál má podobu výkladového a pracovního listu s úlohami, pomocí nichž si žáci osvojí a procvičí využití geometrické

Více

RVP v širších souvislostech

RVP v širších souvislostech RVP v širších souvislostech Bílá kniha Národní program rozvoje vzdělávání základní koncepční materiál, na kterém byla nalezena společenská shoda popisuje vztah kurikulárních dokumentů mezi sebou, jejich

Více

MATEMATIKA. Statistika

MATEMATIKA. Statistika MATEMATIKA Statistika Během těchto vyučovacích hodin změří žáci pomocí senzorů Pasco svoji klidovou tepovou frekvenci a tepovou frekvenci po námaze. Získané výsledky budou v další hodině zpracovávat do

Více

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621 ŘEŠENÉ PŘÍKLADY Z MA+ULA ČÁST Příklad Bod má vůči souřadné soustavě souřadnice uvedené níže. Vypočtěte jeho souřadnice vzhledem k soustavě, která je vůči otočená dle zadání uvedeného níže. Výsledky zaokrouhlete

Více

Matematika drsně a svižně -- nekonvenční projekt výuky a učebnice www.math.muni.cz/matematika_drsne_svizne

Matematika drsně a svižně -- nekonvenční projekt výuky a učebnice www.math.muni.cz/matematika_drsne_svizne Matematika drsně a svižně -- nekonvenční projekt výuky a učebnice www.math.muni.cz/matematika_drsne_svizne 1 Jak vlastně studenti vnímají matematiku? počítání s čísly? pravidla na přerovnávání písmenek?

Více

Rozhodování žáků absolventských ročníků základních škol o další vzdělávací a profesní dráze

Rozhodování žáků absolventských ročníků základních škol o další vzdělávací a profesní dráze 21. 11. 2013, Bratislava Inovatívne technológie včasnej prevencie v poradenských systémoch a preventívnych programoch Rozhodování žáků absolventských ročníků základních škol o další vzdělávací a profesní

Více

2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY

2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2. 2 Cvičení z matematiky Časová dotace 7. ročník 1 hodina 8. ročník 1 hodina 9. ročník 1 hodina Charakteristika: Předmět cvičení z matematiky doplňuje vzdělávací

Více

Komisionální přezkoušení 1T (druhé pololetí) 2 x. 1) Z dané rovnice vypočtěte neznámou x:. 2) Určete, pro která x R není daný výraz definován:

Komisionální přezkoušení 1T (druhé pololetí) 2 x. 1) Z dané rovnice vypočtěte neznámou x:. 2) Určete, pro která x R není daný výraz definován: 1) Z dané rovnice vypočtěte neznámou :. ) Určete, pro která R není daný výraz definován: 3) Určete obor hodnot funkce Komisionální přezkoušení 1T (druhé pololetí) f : y 4 3. 4 8 5 1 4) Vyšetřete vzájemnou

Více