APLIKACE SIMULAČNÍHO PROGRAMU ANSYS PRO VÝUKU MIKROELEKTROTECHNICKÝCH TECHNOLOGIÍ

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "APLIKACE SIMULAČNÍHO PROGRAMU ANSYS PRO VÝUKU MIKROELEKTROTECHNICKÝCH TECHNOLOGIÍ"

Transkript

1 APLIKACE SIMULAČNÍHO PROGRAMU ANSYS PRO VÝUKU MIKROELEKTROTECHNICKÝCH TECHNOLOGIÍ 1. ÚVOD Ing. Psota Boleslav, Doc. Ing. Ivan Szendiuch, CSc. Ústav mikroelektroniky, FEKT VUT v Brně, Technická 10, Brno, Česká republika Tel: Výzkum mikroelektronických struktur jde stále kupředu, neustále se vyvíjejí technologické postupy, vytváří speciální materiály a dochází k výrobě nových prototypů. Většina takovýchto objevů je však spojena s velkou časovou náročností, přitom však často dochází k opakování jednotlivých úkonu, či k drobným změnám parametrů, které však mohou mít kritický vliv na konečný výsledek. Jednou z možností, jak lze ve zmíněných situacích ušetřit čas, případně zlepšit stávající proces, je využití PC simulace. Oblast simulací, ačkoli se jeví jako nová, je rozšířena mezi odborníky již řadu let. I přes tuto skutečnost jsme však nebyli schopni dostatečně přesně simulovat jisté jevy, v důsledku jejich složitosti. Popřípadě čas, potřebný pro výpočet, byl téměř srovnatelný s experimentálním ověřením. S vývojem počítačových systémů a se zvyšováním rychlostí procesorů se dostáváme do stádia, kdy jsme schopni simulovat téměř všechny jevy, a jsme tak omezeni jen našimi zkušenosti, respektive schopnostmi daného pracovníka v oblasti simulací. K prvnímu seznámení s problematikou simulací dochází ve většině případů až v zaměstnání, kdy musí člověk věnovat tomuto tématu drahocenný čas a ve většině případů se neobejde bez patřičného zaškolení externí firmou. Daleko snadnější by přitom bylo, pokud by docházelo k výuce simulací již na vysoké škole. Studenti by si tak mohli osvojit základy každého typu analýzy a následně by byli schopni ověřovat si výsledky svých závěrečných prací. Díky takovémuto základu by získaly na kvalifikaci a také by se zvýšilo jejich uplatnění v praxi. 2. TEORIE MODELOVÁNÍ MIKROELEKTRONICKÝCH STRUKTUR Prvním krokem, ještě před samotným modelováním jakéhokoli systému, je zjištění teoretických základů dané problematiky. Většina simulačních programů je postavena na metodě konečných prvků (FEM Finite Element Method), případně na metodě okrajových elementů (BEM Boundary Element Method) [1]. Pro výuku byl zvolen simulační program ANSYS, který využívá metodu konečných prvků, její teoretické základy jsou popsány v následující kapitole.

2 2.1 Metoda konečných prvků Fyzikální vlastnosti tělesa, posunutí, napětí, teplota atd. lze nahradit funkcí prostorových souřadnic. Tato funkce se nazývá aproximační funkcí nebo také funkcí tvaru. Na Obr. 1 je funkce T(x,y), která charakterizuje rozložení teploty na rovinné obdélníkové desce. Obr. 1: Pro vysvětlení MKP [2] Tuto neznámou funkci nahradíme v jednotlivých uzlech aproximační funkcí Φ, která musí mít tolik členů, kolik má prvek uzlů. Pro trojúhelníkový prvek tak vznikne např. polynom třetího stupně [2]:, (1.1) který se snaží přiblížit k funkci T(x,y). Koeficienty a i rovnice (1.1) získáme na základě řešení polynomu pro všechny tři uzly trojúhelníkového prvku, tj. řešíme soustavu tří rovnic o třech neznámých [2]:. (1.2) Obdélníkový prvek se čtyřmi uzly má polynom o řád vyšší [2]: Polynomy pro prvky s více uzly získáme z Pascalova trojúhelníku (Obr. 2).. (1.3) Obr. 2: Pascalův trojúhelník [2]

3 V simulačním programu je tedy nutné zadat okrajové podmínky, které aplikujeme na vytvořený model se sítí konečných prvků. Z těchto podmínek potom program automaticky rovnice sestaví a vyřeší. Čas potřebný pro výpočet dané simulace záleží na podstatě úlohy, která může být lineární či nelineární a dále také na počtu vytvořených uzlů. Obecně lze konstatovat, že vyšší počet uzlů znamená větší přesnost, ale také delší dobu potřebnou pro výpočet. Výsledná doba také záleží na kvalitě hardwaru, avšak i při použití nejlepší počítačové konfigurace, trvá výpočet u složitějších modelů několik hodin. Vytvoření sítě konečných prvků je lépe vidět na Obr. 3. Obr. 3: Tvorba sítě konečných prvků [3] 3. VYUŽITÍ SIMULACÍ VE VÝUKOVÉM PROCESU Abychom využili maximálního potenciálu programu ANSYS, byly ve výuce použity tři základní typy simulací: mechanická, elektrická a teplotní. Pro lepší pochopitelnost bylo využito modulu Workbench, který pracuje s grafickým rozhraním, namísto složitějších textových příkazů, jak je tomu například u programu ANSYS Classic [4]. 3.1 Mechanická analýza V první úloze mělo být pomocí simulace testováno mechanické namáhání jednotlivých substrátů. Jako materiály byly použity Al 2 O 3, FR4 a Bismaleimide-Triazine (BT). Tyto vzorky byly postupně zatěžovány teplotou, přičemž byla sledována jejich deformace v průběhu takového cyklu. Následně byla vyhodnocena použitelnost jednotlivých substrátů v mikroelektronických aplikacích. Na Obr. 4 lze vidět celková deformace u zmíněných vzorků.

4 Obr. 4: Deformace substrátů (FR4, BT, Al 2 O 3 ) 1.1 Elektrická analýza Ačkoli byl program ANSYS primárně vyvíjen pro mechanické aplikace, v posledních letech byl modifikován pro řadu aplikací. Jednou z takových je elektrická analýza. Ve výukovém procesu byla tato analýza použita pro výpočet a stanovení správných hodnot u tlustovrstvých (TLV) rezistorů. Obr. 5: Zobrazení elektrického pole pro sériové a paralelní řazení TLV rezistorů Pro řešení bylo využito obvodu se sériovou a paralelní kombinací při zobrazení elektrického pole (viz. Obr. 5). Z těchto výsledků byl stanoven úbytek napětí na jednotlivých odporech, pomocí kterého jsme byly schopni ověřit navržené parametry rezistorů. 1.1 Teplotní analýza Posledním typem analýzy byla teplotní. Vzhledem k elektrotechnickému zaměření studia, byla tato simulace kombinována právě s elektrickou, kdy bylo ověřováno chování termočlánku. Na modelu, ukázaném na Obr. 6, jsme nastavili teplotní rozdíl a sledovali jsme elektrický potenciál mezi konci termočlánku, který je dán Seebeckovým jevem. Obr. 6: Rozložení napětí na termočlánku

5 2. ZÁVĚR Využití simulací se začíná uplatňovat stále více v celé řadě oborů. Výjimkou není ani oblast mikroelektroniky, a to jak ve výzkumné části, tak i v běžné praxi. Abychom tomuto trendu vyhověli, je nutné položit základy počítačových simulací již na vysoké škole. Právě tato problematika je v textu rozepsána a jsou zde uvedeny příklady, na kterých si studenti jsou schopni ověřit získané znalosti a zároveň se tak lépe seznámit s programem. Ve výsledku tak získají schopnost simulovat jakoukoli problematiku z dané oblasti, případně vytvářet vlastní simulace pro své projekty a závěrečné práce. 4. POUŽITÁ LITERATURA: [1] HUNTER, P; PULLAN, A. FEM/BEM NOTES. [online]. s. 153 [vid ]. Dostupné z: < [2] Hrubý, J.; Metoda konečných prvků [online], 2002 [cit ], Dostupné na < [3] SVS FEM s.r.o. : FEM Specialista pro ANSYS, LS-DYNA, CFD, Fluent. [vid ]. Dostupné z: < [4] Ansys, Inc Family.; Help 10. Dostupné v programu Ansys 10.

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,

Více

Stavba hmoty. Název školy. Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm

Stavba hmoty. Název školy. Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Stavba hmoty Popis podstaty elektrických jevů, vyplývajících ze stavby hmoty Stavba hmoty VY_32_INOVACE_04_01_01 Materiál slouží k podpoře výuky předmětu v 1. ročníku oboru Elektronické zpracování informací.

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Fyzika I. Obvody. Petr Sadovský. ÚFYZ FEKT VUT v Brně. Fyzika I. p. 1/36

Fyzika I. Obvody. Petr Sadovský. ÚFYZ FEKT VUT v Brně. Fyzika I. p. 1/36 Fyzika I. p. 1/36 Fyzika I. Obvody Petr Sadovský petrsad@feec.vutbr.cz ÚFYZ FEKT VUT v Brně Zdroj napětí Fyzika I. p. 2/36 Zdroj proudu Fyzika I. p. 3/36 Fyzika I. p. 4/36 Zdrojová a spotřebičová orientace

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

Mechanika s Inventorem

Mechanika s Inventorem Mechanika s Inventorem 1. Úvodní pojednání CAD data FEM výpočty Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Optimalizace Tomáš MATOVIČ, publikace 1 Obsah přednášky: Cíl projektu

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

Mechanika s Inventorem

Mechanika s Inventorem Mechanika s Inventorem 2. Základní pojmy CAD data FEM výpočty Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Optimalizace Tomáš MATOVIČ, publikace 1 Obsah přednášky: Lagrangeův

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVOD DO MODELOVÁNÍ V MECHANICE PRUŽNOST A PEVNOST Přednáška č. 5 Prof. Ing. Vladislav Laš. CSc. MECHANIKA PODDAJNÝCH TĚLES Úkolem PP z inženýrského hlediska je navrhnout součásti nebo konstrukce, které

Více

Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky

Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky Konference ANSYS 2009 Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky J. Štěch Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení jstech@kke.zcu.cz

Více

FSI analýza brzdového kotouče tramvaje

FSI analýza brzdového kotouče tramvaje Konference ANSYS 2011 FSI analýza brzdového kotouče tramvaje Michal Moštěk TechSoft Engineering, s.r.o. Abstrakt: Tento příspěvek vznikl ze vzorového příkladu pro tepelný výpočet brzdových kotoučů tramvaje,

Více

1.1 Shrnutí základních poznatků

1.1 Shrnutí základních poznatků 1.1 Shrnutí základních poznatků Pojmem nádoba obvykle označujeme součásti strojů a zařízení, které jsou svým tvarem a charakterem namáhání shodné s dutými tělesy zatíženými vnitřním, popř. i vnějším tlakem.sohledemnatopovažujemezanádobyrůznápotrubíakotlovátělesa,alenapř.i

Více

Mechanika s Inventorem

Mechanika s Inventorem CAD Mechanika s Inventorem 1. Úvodní pojednání Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Tomáš MATOVIČ, publikace 1 Obsah přednášky: Cíl projektu 3 Význam mechanických analýz

Více

Autodesk Inventor Professional 9

Autodesk Inventor Professional 9 časopis pro moderní konstruktéry Recenze grafických karet Metoda konečných prvků Tipy a triky DWF Coposer MITCalc Autodesk Inventor Professional 9 3/2004 Vážení čtenáři, před řadou z vás stojí upgrade

Více

Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií

Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v rně Fakulta elektrotechniky a komunikačních technologií Kolejní 906/4 6 00 rno http://www.utee.feec.vutbr.cz ELEKTOTECHNK (EL) lok nalýza obvodů - speciální metody doc. ng. Jiří

Více

Fyzikální laboratoř. Kamil Mudruňka. Gymnázium, Pardubice, Dašická /8

Fyzikální laboratoř. Kamil Mudruňka. Gymnázium, Pardubice, Dašická /8 Středoškolská technika 2015 Setkání a prezentace prací středoškolských studentů na ČVUT Fyzikální laboratoř Kamil Mudruňka Gymnázium, Pardubice, Dašická 1083 1/8 O projektu Cílem projektu bylo vytvořit

Více

Simulace oteplení typového trakčního odpojovače pro různé provozní stavy

Simulace oteplení typového trakčního odpojovače pro různé provozní stavy Konference ANSYS 2009 Simulace oteplení typového trakčního odpojovače pro různé provozní stavy Regina Holčáková, Martin Marek VŠB-TUO, FEI, Katedra elektrických strojů a přístrojů Abstract: Paper focuses

Více

SIMULACE V KONFEKČNÍ VÝROBĚ S VYUŽITÍM METODY KONEČNÝCH PRVKŮ (MKP, FEM)

SIMULACE V KONFEKČNÍ VÝROBĚ S VYUŽITÍM METODY KONEČNÝCH PRVKŮ (MKP, FEM) SIMULACE V KONFEKČNÍ VÝROBĚ S VYUŽITÍM METODY KONEČNÝCH PRVKŮ (MKP, FEM) D POČÍTAČOVÁ SIMULACE KONFEKČNÍ DÍLNY VIRTUÁLNÍ REALITA - WITNESS VR COMPUTER INTEGRATED MANUFACTURING CIM výroba integrovaná pomocí

Více

ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME

ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME 1. Úvod ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME Michal Feilhauer, Miroslav Varner V článku se

Více

Miroslav Stárek. Brno, 16. prosince 2010. 2010 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Miroslav Stárek. Brno, 16. prosince 2010. 2010 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary Autodesk Academia Forum 2010 Simulace a optimalizace návrhu a význam pro konstrukční návrh Miroslav Stárek Brno, 16. prosince 2010 2010 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary Nástroj

Více

Elektronické obvody analýza a simulace

Elektronické obvody analýza a simulace Elektronické obvody analýza a simulace Jiří Hospodka katedra Teorie obvodů, 804/B3 ČVUT FEL 4. října 2006 Jiří Hospodka (ČVUT FEL) Elektronické obvody analýza a simulace 4. října 2006 1 / 7 Charakteristika

Více

Průběh řešení a dosažené výsledky v oblasti návrhu a měření spolehlivosti mikroelektronických 3D struktur

Průběh řešení a dosažené výsledky v oblasti návrhu a měření spolehlivosti mikroelektronických 3D struktur Průběh řešení a dosažené výsledky v oblasti návrhu a měření spolehlivosti mikroelektronických 3D struktur Úkol je možno rozdělit na teoretickou a praktickou část. V rámci praktické části bylo řešeno, 1)

Více

TECHNICKÁ DOKUMENTACE

TECHNICKÁ DOKUMENTACE Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace TECHNICKÁ DOKUMENTACE Rozmístění a instalace prvků a zařízení Ing. Pavel Chmiel, Ph.D. OBSAH VÝUKOVÉHO MODULU 1. Součástky v elektrotechnice

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr.

Více

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni Abstrakt Současný trend snižování počtu kontaktních hodin ve výuce nutí vyučující

Více

SILNOPROUDÁ ELEKTROTECHNIKA A ELEKTROENERGETIKA. www.uvee.feec.vutbr.cz www.ueen.feec.vutbr.cz

SILNOPROUDÁ ELEKTROTECHNIKA A ELEKTROENERGETIKA. www.uvee.feec.vutbr.cz www.ueen.feec.vutbr.cz SILNOPROUDÁ ELEKTROTECHNIKA A ELEKTROENERGETIKA www.uvee.feec.vutbr.cz www.ueen.feec.vutbr.cz FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ Bakalářský studijní program B-SEE Bakalářský studijní program

Více

Studentská 1402/2 461 17 Liberec 1 tel.: +420 485 353 006 cxi.tul.cz

Studentská 1402/2 461 17 Liberec 1 tel.: +420 485 353 006 cxi.tul.cz Pokročilé simulace pro komplexní výzkum a optimalizace Ing. Michal Petrů, Ph.D. Studentská 1402/2 461 17 Liberec 1 tel.: +420 485 353 006 cxi.tul.cz Stránka: 2 Modelové simulace pro komplexní výzkum Mechanických

Více

15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu

15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu 15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu 1. Definice elektrického proudu 2. Jednoduchý elektrický obvod a) Ohmův zákon pro část elektrického obvodu b) Elektrický spotřebič

Více

Mechanika s Inventorem

Mechanika s Inventorem CAD data Mechanika s Inventorem Optimalizace FEM výpočty 4. Prostředí aplikace Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Tomáš MATOVIČ, publikace 1 Obsah cvičení: Prostředí

Více

Náhradní ohybová tuhost nosníku

Náhradní ohybová tuhost nosníku Náhradní ohybová tuhost nosníku Autoři: Doc. Ing. Jiří PODEŠVA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB - Technická univerzita Ostrava, e-mail: jiri.podesva@vsb.cz Anotace: Výpočty ocelových výztuží

Více

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe

Více

Výpočet napětí malé elektrické sítě

Výpočet napětí malé elektrické sítě AB5EN - Výpočet úbytků napětí MUN a metodou postupného zjednodušování Výpočet napětí malé elektrické sítě Elektrická stejnosměrná soustava je zobrazená na obr.. Vypočítejte napětí v uzlech, a a uzlový

Více

Komplexní správa technických dat. PDM základní pojmy. Ing. Martin Nermut, 2012

Komplexní správa technických dat. PDM základní pojmy. Ing. Martin Nermut, 2012 Komplexní správa technických dat PDM základní pojmy Ing. Martin Nermut, 2012 Projektování - konstrukční a technologické procesy součást životního cyklu výrobku (PLM - Product Lifecycle Management) Nárůst

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Komentovaný metodický list č. 1/4 Vytvořil: Ing. Oldřich Ševeček & Ing. Tomáš Profant, Ph.D.

Více

Návrh a simulace zkušební stolice olejového čerpadla. Martin Krajíček

Návrh a simulace zkušební stolice olejového čerpadla. Martin Krajíček Návrh a simulace zkušební stolice olejového čerpadla Autor: Vedoucí diplomové práce: Martin Krajíček Prof. Michael Valášek 1 Cíle práce 1. Vytvoření specifikace zařízení 2. Návrh zařízení včetně hydraulického

Více

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Výpočty v elektrických obvodech VY_32_INOVACE_F0208.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Výpočty v elektrických obvodech VY_32_INOVACE_F0208. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ..07/.5.00/34.02 Zlepšení podmínek

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, řazení rezistorů

Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, řazení rezistorů Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, řazení rezistorů Pracovní list - příklad vytvořil: Ing. Lubomír Kořínek Období vytvoření VM: listopad 203 Klíčová slova: rezistor,

Více

Pruty nam ahan e na vzpˇ er Martin Fiˇser Martin Fiˇ ser Pruty nam ahan e na vzpˇ er

Pruty nam ahan e na vzpˇ er Martin Fiˇser Martin Fiˇ ser Pruty nam ahan e na vzpˇ er Obsah Úvod Eulerova teorie namáhání prutů na vzpěr První případ vzpěru zde Druhý případ vzpěru zde Třetí případ vzpěru zde Čtvrtý případ vzpěru zde Shrnutí vzorců potřebných pro výpočet Eulerovy teorie

Více

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr 11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Otázky k úloze (domácí příprava): Pro jakou teplotu je U = 0 v případě použití převodníku s posunutou nulou dle obr. 1 (senzor Pt 100,

Více

Cvičení 9 (Výpočet teplotního pole a teplotních napětí - Workbench)

Cvičení 9 (Výpočet teplotního pole a teplotních napětí - Workbench) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návody do cvičení) Cvičení 9 (Výpočet teplotního pole a teplotních napětí - Workbench)

Více

Přehled vhodných metod georeferencování starých map

Přehled vhodných metod georeferencování starých map Přehled vhodných metod georeferencování starých map ČVUT v Praze, katedra geomatiky 12. 3. 2015 Praha Georeferencování historická mapa vs. stará mapa georeferencování umístění obrazu mapy do referenčního

Více

Metoda konečných prvků Úvod (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Metoda konečných prvků Úvod (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Úvod (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr. Eva Hrubešová, Ph.D.

Více

STATISTICAL DESIGN OF EXPERIMENT FOR SOLDER JOINTS QUALITY EVALUATION STATISTICKÉ PLÁNOVÁNÍ EXPERIMENTŮ PRO ÚČELY VYHODNOCOVÁNÍ KVALITY PÁJENÝCH SPOJŮ

STATISTICAL DESIGN OF EXPERIMENT FOR SOLDER JOINTS QUALITY EVALUATION STATISTICKÉ PLÁNOVÁNÍ EXPERIMENTŮ PRO ÚČELY VYHODNOCOVÁNÍ KVALITY PÁJENÝCH SPOJŮ STATISTICAL DESIGN OF EXPERIMENT FOR SOLDER JOINTS QUALITY EVALUATION STATISTICKÉ PLÁNOVÁNÍ EXPERIMENTŮ PRO ÚČELY VYHODNOCOVÁNÍ KVALITY PÁJENÝCH SPOJŮ Bc. Radim Havlásek Magisterský studijní program, Fakulta

Více

Identifikátor materiálu: VY_32_INOVACE_344

Identifikátor materiálu: VY_32_INOVACE_344 Identifikátor materiálu: VY_32_INOVACE_344 Anotace Autor Jazyk Očekávaný výstup Výuková prezentace. Na jednotlivých snímcích jsou postupně odkrývány informace, které žák zapisuje či zakresluje do sešitu.

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.2 Diagnostická měření (pracovní listy) Kapitola

Více

FLUENT přednášky. Metoda konečných objemů (MKO)

FLUENT přednášky. Metoda konečných objemů (MKO) FLUENT přednášky Metoda konečných objemů (MKO) Pavel Zácha zdroj: [Bakker, 2008], [Vodička, 2011], [Runchal, 2008], [Kozubková, 2008] Historie - zřejmě nestarší způsob řešení parciálních diferenciálních

Více

Aplikace metody konečných prvků

Aplikace metody konečných prvků Aplikace metody konečných prvků (, okrajové, vyhodnocování ) Pplk. Doc. Ing. Pavel Maňas, Ph.D. Univerzita obrany Fakulta vojenských technologií Katedra ženijních technologií http://user.unob.cz/manas

Více

KONSTRUKČNÍ INŽENÝRSTVÍ. Učíme věci jinak

KONSTRUKČNÍ INŽENÝRSTVÍ. Učíme věci jinak KONSTRUKČNÍ INŽENÝRSTVÍ Učíme věci jinak Abyste mohli dělat věci jinak, musíte je jinak i vidět. Paul Allaire OBOR KONSTRUKČNÍ INŽENÝRSTVÍ Konstrukční inženýrství je obor kombinující teoretické znalosti

Více

Propojení matematiky, fyziky a počítačů

Propojení matematiky, fyziky a počítačů Propojení matematiky, fyziky a počítačů Název projektu: Věda pro život, život pro vědu Registrační číslo: CZ..7/.3./45.9 V Ústí n. L., únor 5 Ing. Radek Honzátko, Ph.D. Propojení matematiky, fyziky a počítačů

Více

Mikroelektronika a technologie součástek

Mikroelektronika a technologie součástek FAKULTA ELEKTROTECHNKY A KOMUNKAČNÍCH TECHNOLOGÍ VYSOKÉ UČENÍ TECHNCKÉ V BRNĚ Mikroelektronika a technologie součástek laboratorní cvičení Garant předmětu: Doc. ng. van Szendiuch, CSc. Autoři textu: ng.

Více

Pružnost a pevnost I

Pružnost a pevnost I Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická

Více

5. Statika poloha střediska sil

5. Statika poloha střediska sil 5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny

Více

Abyste mohli dělat věci jinak, musíte je jinak i vidět Paul Allaire

Abyste mohli dělat věci jinak, musíte je jinak i vidět Paul Allaire Abyste mohli dělat věci jinak, musíte je jinak i vidět Paul Allaire Projektově orientovaná výuka Ústav konstruování Odbor metodiky konstruování Fakulta strojního inženýrství Vysoké učení technické v Brně

Více

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou:

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou: Pracovní úkol: 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,5-10 µf, R = 0 Ω). Výsledky měření zpracujte graficky

Více

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3 . STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. 5 5 U 6 Schéma. = 0 V = 0 Ω = 0 Ω = 0 Ω = 60 Ω 5 = 90 Ω 6 = 0 Ω celkový

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.2 Diagnostická měření (pracovní listy) Kapitola

Více

Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23

Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23 Obsah PŘEDMLUVA... 11 ÚVOD... 13 0.1. Jak teoreticky řešíme elektrotechnické projekty...13 0.2. Dvojí význam pojmu pole...16 0.3. Elektromagnetické pole a technické projekty...20 1. Základní pojmy a zákony

Více

Software ANSYS pro návrh a optimalizaci elektrických strojů a zařízení, možnosti multifyzikálních analýz

Software ANSYS pro návrh a optimalizaci elektrických strojů a zařízení, možnosti multifyzikálních analýz Konference ANSYS 2011 Software ANSYS pro návrh a optimalizaci elektrických strojů a zařízení, možnosti multifyzikálních analýz Jakub Hromádka, Jindřich Kubák Techsoft Engineering spol. s.r.o., Na Pankráci

Více

Matematické modely a způsoby jejich řešení. Kateřina Růžičková

Matematické modely a způsoby jejich řešení. Kateřina Růžičková Matematické modely a způsoby jejich řešení Kateřina Růžičková Rovnice matematické fyziky Přednáška převzata od Doc. Rapanta Parciální diferencíální rovnice Diferencialní rovnice obsahujcí parcialní derivace

Více

13 Měření na sériovém rezonančním obvodu

13 Měření na sériovém rezonančním obvodu 13 13.1 Zadání 1) Změřte hodnotu indukčnosti cívky a kapacity kondenzátoru RC můstkem, z naměřených hodnot vypočítej rezonanční kmitočet. 2) Generátorem nastavujte frekvenci v rozsahu od 0,1 * f REZ do

Více

Únosnost kompozitních konstrukcí

Únosnost kompozitních konstrukcí ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav letadlové techniky Únosnost kompozitních konstrukcí Optimalizační výpočet kompozitních táhel konstantního průřezu Technická zpráva Pořadové číslo:

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů

základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky

Více

Fyzikální praktikum...

Fyzikální praktikum... Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum... Úloha č.... Název úlohy:... Jméno:...Datum měření:... Datum odevzdání:... Připomínky opravujícího: Možný počet bodů Udělený počet bodů Práce při

Více

Numerická simulace sdílení tepla v kanálu mezikruhového průřezu

Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Konference ANSYS 2009 Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Petr Kovařík Západočeská univerzita v Plzni, Univerzitní 22, 306 14 Plzeň, kovarikp@ntc.zcu.cz Abstract: The paper

Více

ITO. Semestrální projekt. Fakulta Informačních Technologií

ITO. Semestrální projekt. Fakulta Informačních Technologií ITO Semestrální projekt Autor: Vojtěch Přikryl, xprikr28 Fakulta Informačních Technologií Vysoké Učení Technické v Brně Příklad 1 Stanovte napětí U R5 a proud I R5. Použijte metodu postupného zjednodušování

Více

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD F-1 Fyzika hravě ( k sadě 20 materiálů) Poř. 1. F-1_01 KLID a POHYB 2. F-1_02 ROVNOVÁŽNÁ POLOHA Prezentace obsahuje látku 1 vyučovací hodiny. materiál slouží k opakování látky na téma relativnost klidu

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Speciální praktikum z abc

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Speciální praktikum z abc Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Speciální praktikum z abc Zpracoval: Jan Novák Naměřeno: 1. ledna 2001 Obor: F Ročník: IV Semestr: IX Testováno:

Více

Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická

Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Číslicová filtrace FIR filtry IIR filtry Tyto materiály vznikly za podpory Fondu rozvoje

Více

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm b) Početní řešení Na rozdíl od grafického řešení určíme při početním řešení bod, kterým nositelka výslednice bude procházet. Mějme soustavu sil, která obsahuje n - sil a i - silových dvojic obr.36. Obr.36.

Více

Experimentální ověření možností stanovení příčné tuhosti flexi-coil pružin

Experimentální ověření možností stanovení příčné tuhosti flexi-coil pružin Jaromír Zelenka 1, Jakub Vágner 2, Aleš Hába 3, Experimentální ověření možností stanovení příčné tuhosti flexi-coil pružin Klíčová slova: vypružení, flexi-coil, příčná tuhost, MKP, šroubovitá pružina 1.

Více

SNÍMAČE PRO MĚŘENÍ TEPLOTY

SNÍMAČE PRO MĚŘENÍ TEPLOTY SNÍMAČE PRO MĚŘENÍ TEPLOTY 10.1. Kontaktní snímače teploty 10.2. Bezkontaktní snímače teploty 10.1. KONTAKTNÍ SNÍMAČE TEPLOTY Experimentální metody přednáška 10 snímač je připevněn na měřený objekt 10.1.1.

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

MĚŘENÍ PARAMETRŮ FOTOVOLTAICKÉHO ČLÁNKU PŘI ZMĚNĚ SÉRIOVÉHO A PARALELNÍHO ODPORU

MĚŘENÍ PARAMETRŮ FOTOVOLTAICKÉHO ČLÁNKU PŘI ZMĚNĚ SÉRIOVÉHO A PARALELNÍHO ODPORU MĚŘENÍ PARAMETRŮ FOTOVOLTAICKÉHO ČLÁNKU PŘI ZMĚNĚ SÉRIOVÉHO A PARALELNÍHO ODPORU Zadání: 1. Změřte voltampérovou charakteristiku fotovoltaického článku v závislosti na hodnotě sériového odporu. Jako přídavné

Více

Výzkumné centrum spalovacích motorů a automobilů Josefa Božka - Kolokvium Božek 2010, Praha 7.12.2011 -

Výzkumné centrum spalovacích motorů a automobilů Josefa Božka - Kolokvium Božek 2010, Praha 7.12.2011 - 53A107 Systematický výzkum vlastností vybraného konstrukčního materiálu (litina, slitiny lehkých kovů) typického pro teplotně exponované díly motoru (hlava, blok, skříně turbodmychadla ) s ohledem na kombinované

Více

Základní definice el. veličin

Základní definice el. veličin Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek Oddíl 1 Určeno pro studenty komb. formy FBI předmětu 452081 / 06 Elektrotechnika Základní definice el. veličin Elektrický

Více

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec,

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec, BUM - 7 Únava materiálu Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec, Úkoly k řešení 1. Vysvětlete stručně co je únava materiálu.

Více

Perspektiva simulačních a trenažérových technologií v AČR

Perspektiva simulačních a trenažérových technologií v AČR Perspektiva simulačních a trenažérových technologií v AČR Pět let inženýrských simulací pplk. doc. Ing. Pavel MAŇAS, Ph.D. Univerzita obrany Fakulta vojenských technologií http://user.unob.cz/manas Pavel.Manas@unob.cz

Více

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu.

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu. Vyučovací předmět: CVIČENÍ Z MATEMATIKY A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu Základem vzdělávacího obsahu předmětu Cvičení z matematiky je vzdělávací

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 17. 10. 2012 Pořadové číslo 05 1 Kmitavý pohyb Předmět: Ročník: Jméno autora:

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více

PRUŽNOST A PEVNOST II

PRUŽNOST A PEVNOST II VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ PRUŽNOST A PEVNOST II Navazující magisterské studium, 1. ročník Alois Materna (přednášky) Jiří Brožovský (cvičení) Kancelář: LP C 303/1

Více

Úvod do přesnosti MKP, generace sítí a metod řešení soustav lineárních rovnic

Úvod do přesnosti MKP, generace sítí a metod řešení soustav lineárních rovnic ENumerická analýza transportních procesů - NTP2 Přednáška č. 8 Úvod do přesnosti MKP, generace sítí a metod řešení soustav lineárních rovnic Úvod do přesnosti metody konečných prvků Úvod do přesnosti metody

Více

VÝPOČET RELATIVNÍCH POSUVŮ TURBINY

VÝPOČET RELATIVNÍCH POSUVŮ TURBINY VÝPOČET RELATIVNÍCH POSUVŮ TURBINY Ing. Miroslav Hajšman, Ph.D. Anotace : Důležitou součástí návrhu každého stroje je výpočet relativních posuvů turbiny (axiální posuv rotorové části mínus axiální posuv

Více

Určeno pro posluchače všech bakalářských studijních programů FS

Určeno pro posluchače všech bakalářských studijních programů FS rčeno pro posluchače všech bakalářských studijních programů FS. STEJNOSMĚNÉ OBVODY pravil ng. Vítězslav Stýskala, Ph D. září 005 Příklad. (výpočet obvodových veličin metodou postupného zjednodušováni a

Více

Směřování aplikovaného výzkumu ČR v oblasti svařování a tepelného zpracování. Jaromír Moravec

Směřování aplikovaného výzkumu ČR v oblasti svařování a tepelného zpracování. Jaromír Moravec Směřování aplikovaného výzkumu ČR v oblasti svařování a tepelného zpracování. Jaromír Moravec Orientace aplikovaného výzkumu v ČR 1) Privátní vývoj realizovaný v rámci jednotlivých společností. Inovace

Více

SIMULACE TEPELNÝCH VLASTNOSTÍ POUZDER QFN A BGA

SIMULACE TEPELNÝCH VLASTNOSTÍ POUZDER QFN A BGA 2 B. Psota, I. Szendiuch: Simulace tepelných vlastností SIMULACE TEPELNÝCH VLASTNOSTÍ POUZDER QFN A BGA Ing. Boleslav Psota 1, doc. Ing. Ivan Szendiuch, CSc. 2 Ústav mikroelektroniky; Fakulta elektrotechnicky

Více

OPTIMALIZACE PROVOZU OTOPNÉ SOUSTAVY BUDOVY PRO VZDĚLÁVÁNÍ PO JEJÍ REKONSTRUKCI

OPTIMALIZACE PROVOZU OTOPNÉ SOUSTAVY BUDOVY PRO VZDĚLÁVÁNÍ PO JEJÍ REKONSTRUKCI Konference Vytápění Třeboň 2015 19. až 21. května 2015 OPTIMALIZACE PROVOZU OTOPNÉ SOUSTAVY BUDOVY PRO VZDĚLÁVÁNÍ PO JEJÍ REKONSTRUKCI Ing. Petr Komínek 1, doc. Ing. Jiří Hirš, CSc 2 ANOTACE Většina realizovaných

Více

ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI

ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE, FAKULTA ELEKTROTECHNICKÁ, KATEDRA ŘÍDICÍ TECHNIKY Modelování a simulace systémů cvičení 9 ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI Petr Hušek (husek@fel.cvut.cz)

Více

ELT1 - Přednáška č. 6

ELT1 - Přednáška č. 6 ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,

Více

KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ

KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ Radim Pišan, František Gazdoš Fakulta aplikované informatiky, Univerzita Tomáše Bati ve Zlíně Nad stráněmi 45, 760 05 Zlín Abstrakt V článku je představena knihovna

Více

Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení

Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení Úkoly měření: 1. Měření na digitálním osciloskopu a přenosném dataloggeru LabQuest 2. 2. Ověřte Faradayovy zákony pomocí pádu magnetu skrz trubici

Více

Zapojení odporových tenzometrů

Zapojení odporových tenzometrů Zapojení odporových tenzometrů Zadání 1) Seznamte se s konstrukcí a použitím lineárních fóliových tenzometrů. 2) Proveďte měření na fóliových tenzometrech zapojených do můstku. 3) Zjistěte rovnici regresní

Více

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01 matematických pojmů a vztahů, k poznávání základě těchto vlastností k určování a zařazování pojmů matematického aparátu Zapisuje a počítá mocniny a odmocniny racionálních čísel Používá pro počítání s mocninami

Více

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic

Více

Měření teploty, tlaku a vlhkosti vzduchu s přenosem dat přes internet a zobrazování na WEB stránce

Měření teploty, tlaku a vlhkosti vzduchu s přenosem dat přes internet a zobrazování na WEB stránce ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Katedra mikroelektroniky Měření teploty, tlaku a vlhkosti vzduchu s přenosem dat přes internet a zobrazování na WEB stránce Zadání Stávající

Více

1 Zdroj napětí náhradní obvod

1 Zdroj napětí náhradní obvod 1 Zdroj napětí náhradní obvod Příklad 1. Zdroj napětí má na svorkách naprázdno napětí 6 V. Při zatížení odporem 30 Ω klesne napětí na 5,7 V. Co vše můžete o tomto zdroji říci za předpokladu, že je v celém

Více

Diskrétní řešení vzpěru prutu

Diskrétní řešení vzpěru prutu 1 z 5 Diskrétní řešení vzpěru prutu Discrete solution of beam buckling Petr Frantík Abstract Here is described discrete method for solution of beam buckling. The beam is divided into a number of tough

Více