Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků

Rozměr: px
Začít zobrazení ze stránky:

Download "Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků"

Transkript

1 Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele,

2 Obsah Variační principy Princip metody konečných prvků Příklad jednoosá napjatost Petr Kabele,

3 Variační principy (vybrané) Uvažujme deformovatelné těleso vystavené působení vnějších objemových sil bv objemu V, vnějších povrchových sil t na části povrchu S t a předepsaným posunům na části povrchu S u. u t b V t S t t b Princip virtuálních prací S u S u Virtuální práce je práce, kterou vykonají všechny vnější síly působící na deformovatelné těleso, je-li tomuto tělesu uděleno malé hypotetické přemístění u, které je v souladu s předepsanými kinematickými vazbami virtuální přemístění. Předpokládáme, že síly zůstávají během virtuálního přemístění konstantní. T T Wvirt bu dv tuds V S t Petr Kabele,

4 Nutná a dostačující podmínka rovnováhy pole napětí : virtuální práce staticky kompatibilních vnějších sil ( tb, ) je rovna virtuální práci sil vnitřních (napětí) pro jakékoliv kinematicky přípustné a kompatibilní pole virtuálního přemístění a deformace (u, ). uε, u: T T T σε tu bu dv ds dv V S V t virt. práce vnitř. sil virt. práce vnějších sil Pozn.: staticky kompatibilní síly mechaniky tuhých těles. tb, - v celkové rovnováze z pohledu Petr Kabele,

5 Princip celkové potenciální energie Definujeme potenciální energii vnějších sil (zatížení): Postulujeme existenci pozitivně definitní hustoty energie deformace : Definujeme energii deformace tělesa: Definujeme celkovou potenciální energii tělesa: Aby těleso bylo v rovnováze, musí být první variace E pot rovna nule: 0 E E E pot int ext Nutnou a dostačující podmínkou, aby bylo těleso v rovnováze je: 1. tb, jsou staticky kompatibilní T T Eext b u dv t u ds V St σ T ε E dv d dv 2. Pole deformace, jehož vztah k poli napětí je určen fyzikálními rovnicemi int elastického materiálu, minimalizuje celkovou potenciální energii E pot vzhledem k všem kinematicky kompatibilním a přípustným polím deformace. V V σ ε E E E pot int ext Petr Kabele,

6 geometrické rovnice statické rovnice Princip metody konečných prvků (MKP) Řídící rovnice pro úlohu elasticity přemístění u b vnější síly εu T σb0 deformace (zobecněná deformace) σdε fyzikální rovnice napětí (zobecněné napětí) Petr Kabele,

7 Úloha s okrajovými podmínkami u T Dub0 silný tvar b uu nσt on S u on S okrajové podmínky t t b t S t t b řešením úlohy s o.p. je/jsou funkce přemístění definované na oblasti úlohy pole, např. u(x, y, z), v(x, y, z), w(x, y, z) MKP nám umožňuje vypočítat přibližné numerické řešení úlohy s okrajovými podmínkami S u S u Petr Kabele,

8 Řešení úlohy s o. p. pomocí MKP uxnxd Oblast řešení se rozdělí na prvky konečné velikosti (diskretizace) Na každém prvku se přemístění aproximuje vhodnými funkcemi (např. lineárními, kvadratickými)... tvarové funkce N(x) Koeficienty těchto funkcí d (obyčejně jejich hodnoty v jistých bodech prvku uzlech) budou primárními neznámými úlohy Petr Kabele,

9 uxnxd ε u Deformace se vyjádří z aproximovaného přemístění pomocí geometrických rovnic Protože pouze tvarové funkce závisí na x, derivace se vztahují pouze na ně a nikoliv na d εx Bxd Petr Kabele,

10 uxnxd ε u Z aproximované deformace se vypočte napětí pomocí fyzikálních rovnic εx Bxd σ Dε σx DBxd Petr Kabele,

11 uxnxd ε Statické rovnice se nepoužijí přímo. Místo nich se podmínky rovnováhy vyjádří pomocí některého z variačních principů (např. principu virtuálních prací, principu u celkové potenciální energie, atd.) bx T σb0 εx Bxd σ Dε σx DBxd Petr Kabele,

12 uxnxd Tím získáme tzv. slabý tvar úlohy bx ε u u, ε u: T T T σ ε dv t uds b udv V S V t εx Bxd σ Dε σx DBxd Petr Kabele,

13 Po dosazení aproximací, získáme diskretizovaný uxnxd slabý tvar bx d : TTT T T dbdbdtndbnd dv ds dv V S V t εx Bxd σ Dε σx DBxd Petr Kabele,

14 matice uxtuhosti Nxd K T konstrukce vektor vnějších uzlových sil f T ext bx d : TTT T T dbdbdtndbnd dv ds dv V S V t εx Bxd σ Dε σx DBxd Petr Kabele,

15 uxnxd Kd f ext bx d : TTT Diskretizovaný slabý tvar Tvede na soustavu T dbdbdtndbnd dv ds dv lineárních algebraických rovnic... jejich V S V primárním řešením jsou t diskrétní uzlové hodnoty d (přemístění) εx Bxd σ Dε σx DBxd Petr Kabele,

16 Příklad 1 jednoosá napjatost Úloha s okrajovými podmínkami y x pro jednoduchost označíme z bx x x bbtt,,, x x x x Petr Kabele,

17 Řídící rovnice dσ x b x = 0 dx du x x dx (1) (2) E x (3) x t okrajové podmínky, např. n 1 x x x ul=u (4) 10 t (5)... silný tvar úlohy s o. p. Petr Kabele,

18 Princip virtuálních prací slabý tvar dv b u dv t u ds V V S t dv Adx L x0 x0 L Adx b u Adx t u A x x t virt. práce vnitř. sil virt. práce vnějších sil... musí být splněno pro libovolné virtuální přemístění a kompatibilní deformaci u, splňující řídící rovnice okrajové podmínky u x = u, u x = 0 u u Petr Kabele,

19 15 MN/m2 Konkrétní zadání úlohy Pomocí MKP určete pole přemístění, deformace a napětí. Uvažujte jednoosou napjatost. 12 MN/m3 bx x 2 m 36 MN/m3 E=konst.=2000 MPa x 0,3 m 0,3 m Petr Kabele,

20 Aproximace pole přemístění Oblast diskretizujeme pomocí 4 prvků: (1)u (2)u (3)u (4)u (5)u x Značení: el.1 el.2 el.3 el.4 (globální č. uzlu) glob. st. volnosti č. prvku č. prvku, st. v. na prvku č. prvku, (uzel prvku) d... stupeň volnosti (např. složka přemístění) Např.: udd d d (2)21,22,1223,T Petr Kabele,

21 Tvarové funkce a prvková matice tvarových funkcí (s... lokální souřadnice prvku) N N N e,1 e,2 s s s 1 l s l s N s, N s e e e,1 e,2 e s 1, le s l e 1.0 N1 N s Aproximace posunů na prvku u s s s de,1 Nesde 1, l l d e e e,2 Petr Kabele,

22 Matice derivací tvarových funkcí B d dx d ds ds dx s N s, N s N s, N s e e,1 e,2 e,1 e,2 d ds s s 1 1 1,, ds dx le l e le l e Aproximace přetvoření na prvku s 1 1 de,1 Besde, l l d e e e,2 Aproximace napětí na prvku 1 1 de,1 s Es EBesde E, l l d e e e,2 Petr Kabele,

23 Princip virtuálních prací L x0 x0 L Adx b u Adx t u A x x t L 4 el dx x0 e 1s0.. ds... integrační oblast je rozdělena na prvky 1d 2d 3d 4d 5d el.1 el.2 el.3 el.4 x Petr Kabele,

24 L x0 x0 L Adx b u Adx t u A x x t 1d 2d 3d 4d 5d el.1 el.2 el.3 el.4 x např. na prvku 1: d1,1 1d d1,2 2d d1,1 1d d1,2 2d u s s s 1 N 2d s d 1 B 2d d d u s s 1d 2d s 2d 1 T N, N d 2d 1 T s Bs d, db s 1 2 s E s d 1 B 2d Petr Kabele,

25 L x0 x0 L Adx b u Adx t u A x x t 1d 2d 3d 4d 5d el.1 el.2 el.3 el.4 x např. na prvku 1: 1 2 T, B 1 2 l 1 d d B s EA s ds s0 T d, d N s b ( s) Ads 1 2 l e s0 1 2 d d 3 d, d 1 2 At 0 Petr Kabele,

26 L x0 x0 L Adx b u Adx t u A x x t 1d 2d 3d 4d 5d el.1 el.2 el.3 el.4 x např. na prvku 2: d2,1 2d d2,2 3d d2,1 2d d2,2 3d u s s s 2 N 3d s d 2 B 3d d d u s s 2d 3d s 3d 2 T N, N d 3d 2 T s Bs d, db s 2 3 s E s d 2 B 3d Petr Kabele,

27 27 L x0 x0 L Adx b u Adx t u A x x t 1d 2d 3d 4d 5d el.1 el.2 el.3 el.4 x např. na prvku 2: T, B 2 3 l 1 d d B s EA s ds s0 T d, d N s b ( s) Ads 2 3 d, d 2 3 l e s d d Petr Kabele,

28 Matice tuhosti prvku T, B 1 2 l e d d B s EA s ds s0 le T K e B s EAB s0 1 s ds 1 le l e 1 1 EA, ds 1 l s 0 e l e l e EA EA le l e EA EA le l e 1 2 d d Petr Kabele,

29 Prvkové vektory vnějších uzlových sil 2 transform s x T d, d N s Ab ( s) ds 1 2 l e s0 el. node 1 el. node 2 3 d, d 1 2 At 0 el. node 1 el. node 2 Petr Kabele,

30 L x0 x0 L Adx b u Adx t u A x x t L... dx... ds x0 e1 s0 4 l e d d 1 d dk d d 2 1, 2 1 2, 3 K2... 2d d 3 1 f1 1 f 1 f f d d d d b t b t , 2 2, 3... b t b t 2 f1 2 f1 3 f2 3 f2 1d 1 f d f d f d, d,..., dk d, d,..., d Petr Kabele,

31 Lokalizace prvkových matic/vektorů do globální matice tuhosti konstrukce a globálního vektoru uzlových sil vynulování lokalizace Petr Kabele,

32 Globální matice tuhosti K EA EA le l e EA 2EA EA 0 0 le le l e EA 2EA EA 0 0 le le l e EA 2EA EA 0 0 le le l e EA EA le l e Globální vektor vnějších uzlových sil f Petr Kabele,

33 Zohlednění okrajových podmínek 1d 1 f d f d f d, d,..., dk d, d,..., d musí být splněno pro libovolné d splňující kinematické okr. podm. ( 5 d = 0) d d d d d... soustava lineárních algebraických rovnic Petr Kabele,

34 Řešení soustavy rovnic Petr Kabele,

35 Výpočet přetvoření a napětí Přetvoření a napětí řešíme lokálně na každém prvku s s e B d... přetvoření je na každém prvku konstantní (důsledek zvolené aproximace přemístění pomocí lineárních funkcí) Petr Kabele,

36 Přetvoření a napětí řešíme lokálně na každém prvku e s E s... napětí je na každém prvku konstantní (důsledek zvolené aproximace přemístění pomocí lineárních funkcí) Petr Kabele,

37 Porovnání MKP s analytickým řešením Přemístění x Petr Kabele,

38 Deformace x Napětí x Petr Kabele,

39 Závěrečné poznámky Volba primárních stupňů volnosti Primární stupně volnosti závisí na zvolené idealizaci úlohy, např: rovinná napjatost/deformace: 2 posuny v rovině 3-D kontinuum: 3 posuny příhrada (truss) v rovině: 2 posuny prostorová příhrada: 3 posuny nosník (beam) v rovině: 2 posuny, 1 pootočení nosník v prostoru: 3 posuny, 3 pootočení stěna (= rovinná napjatost): 2 posuny v rovině deska (plate): 1 posun kolmo na rovinu, 3 pootočení stěnodeska pozn.: existují i formulace MKP, ve kterých se primárně aproximují statické veličiny, případně přemístění a statické veličiny (tzv. smíšené formulace) Petr Kabele,

40 Přesnost řešení primárních neznámých závisí na schopnosti zvolené aproximace přiblížit se přesnému řešení řídících diferenciálních rovnic možno ovlivnit: volbou aproximačních (tvarových) funkcí např. stupněm polynomu hustotou dělení na jednotlivé prvky Petr Kabele,

41 Výpočet deformace a napětí průběhy deformací a napětí řešíme na každém prvku lokálně pro výpočet se použijí derivace aproximovaného pole přemístění přesnost vypočtených průběhů deformací a napětí je vždy horší než přesnost primární neznámé (přemístění) v závislosti na použitých bázových funkcích: existují body v prvku, kde je výpočet deformací a napětí nejpřesnější vypočtené průběhy deformace a napětí mohou být mezi prvky nespojité hodnoty deformace a napětí vypočtené na okrajích prvků a v uzlech mohou mít velmi malou přesnost Petr Kabele,

42 Tento dokument je určen výhradně jako doplněk k přednáškám a cvičením z předmětu Nelineární analýza materiálů a konstrukcí pro studenty Stavební fakulty ČVUT v Praze. Dokument je průběžně doplňován, opravován a aktualizován a i přes veškerou snahu autora může obsahovat nepřesnosti a chyby. Datum poslední aktualizace: Petr Kabele,

Martin NESLÁDEK. 14. listopadu 2017

Martin NESLÁDEK. 14. listopadu 2017 Martin NESLÁDEK Faculty of mechanical engineering, CTU in Prague 14. listopadu 2017 1 / 22 Poznámky k úlohám řešeným MKP Na přesnost simulace pomocí MKP a prostorové rozlišení výsledků má vliv především:

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,

Více

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr.

Více

Tutoriál programu ADINA

Tutoriál programu ADINA Nelineární analýza materiálů a konstrukcí (V-132YNAK) Tutoriál programu ADINA Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2010 1 Výstupy programu ADINA: Preprocesor

Více

PRUŽNOST A PEVNOST II

PRUŽNOST A PEVNOST II VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ PRUŽNOST A PEVNOST II Navazující magisterské studium, 1. ročník Alois Materna (přednášky) Jiří Brožovský (cvičení) Kancelář: LP C 303/1

Více

1 Přesnost metody konečných prvků

1 Přesnost metody konečných prvků 1 PŘESNOST METODY KONEČNÝCH PRVKŮ 1 1 Přesnost metody konečných prvků Metoda konečných prvků je založena na diskretizaci původní spojité konstrukce soustavou prvků (nebo obecněji na diskretizaci slabé

Více

Mechanika s Inventorem

Mechanika s Inventorem Mechanika s Inventorem 2. Základní pojmy CAD data FEM výpočty Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Optimalizace Tomáš MATOVIČ, publikace 1 Obsah přednášky: Lagrangeův

Více

Numerické metody. Numerické modelování v aplikované geologii. David Mašín. Ústav hydrogeologie, inženýrské geologie a užité geofyziky

Numerické metody. Numerické modelování v aplikované geologii. David Mašín. Ústav hydrogeologie, inženýrské geologie a užité geofyziky Numerické modelování v aplikované geologii David Mašín Ústav hydrogeologie, inženýrské geologie a užité geofyziky Přírodovědecká fakulta Karlova Univerzita v Praze Přednášky pro obor Geotechnologie David

Více

Rozdíly mezi MKP a MHP, oblasti jejich využití.

Rozdíly mezi MKP a MHP, oblasti jejich využití. Rozdíly mezi, oblasti jejich využití. Obě metody jsou vhodné pro určitou oblast problémů. základě MKP vyžaduje rozdělení těles na vhodný počet prvků, jejichž analýza je poměrně snadná a pro většinu částí

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti

Více

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -

Více

Princip virtuálních prací (PVP)

Princip virtuálních prací (PVP) Zatěžujme pružinu o tuhosti k silou F k ū F Princip virtuálních prací (PVP) 1 ū u Energie pružné deformace W ext (skalár) je definována jako součin konstantní síly a posunu. Protože se zde síla během posunu

Více

Nelineární analýza materiálů a konstrukcí (V-132YNAK) Metoda konečných prvků 2

Nelineární analýza materiálů a konstrukcí (V-132YNAK) Metoda konečných prvků 2 Nelineární analýza materiálů a konstrukcí (V-132YNAK) Metoda konečných prvků 2 Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2014 1 Obsah Gaussova numerická integrace

Více

Globální matice konstrukce

Globální matice konstrukce Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{

Více

Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)

Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5) Nosné desky Deska je těleso, které má jeden rozměr mnohem menší než rozměry zbývající. Zatížení desky je orientováno výhradně kolmo k její střednicové rovině. 1. Kirchhoffova teorie ohybu tenkých desek

Více

Desky. Petr Kabele. Pružnost a pevnost 132PRPE Přednášky. Deska/stěna/skořepina, desky základní předpoklady, proměnné a rovnice

Desky. Petr Kabele. Pružnost a pevnost 132PRPE Přednášky. Deska/stěna/skořepina, desky základní předpoklady, proměnné a rovnice Pružnost a pevnost 13PRPE Přednášk Desk Deska/stěna/skořepina, desk ákladní předpoklad, proměnné a rovnice Petr Kabele České vsoké učení technické v Prae Fakulta stavební Úvod Přemístění, deformaci a napjatost

Více

ROVINNÁ ÚLOHA. Všechny veličiny (geometrie, materiálové vlastnosti, zatížení) jsou nezávislé na jedné prostorové proměnné

ROVINNÁ ÚLOHA. Všechny veličiny (geometrie, materiálové vlastnosti, zatížení) jsou nezávislé na jedné prostorové proměnné ROVINNÁ ÚLOHA Rovinná úloha Všechny veličiny (geometrie, materiálové vlastnosti, zatížení) jsou nezávislé na jedné prostorové proměnné Rovinná napjatost Rovinná deformace Rotačně symetrická úloha Rovinná

Více

Prostorové konstrukce. neznámé parametry: u, v w. (prvky se středostranovými uzly)

Prostorové konstrukce. neznámé parametry: u, v w. (prvky se středostranovými uzly) Konečné prvk pro řešení 3D úloh Prostorové konstrukce neznámé parametr: u, v w volba různého počtu uzlů a neznámých v uzlech možnost zakřivených hran prvků (prvk se středostranovými uzl) Opakování: Geometrické

Více

FAKULTA STAVEBNÍ. Telefon: WWW:

FAKULTA STAVEBNÍ. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Více

Zjednodušená deformační metoda (2):

Zjednodušená deformační metoda (2): Stavební mechanika 1SM Přednášky Zjednodušená deformační metoda () Prut s kloubově připojeným koncem (statická kondenzace). Řešení rovinných rámů s posuvnými patry/sloupy. Prut s kloubově připojeným koncem

Více

Výpočtové nadstavby pro CAD

Výpočtové nadstavby pro CAD Výpočtové nadstavby pro CAD 4. přednáška eplotní úlohy v MKP Michal Vaverka, Martin Vrbka Přenos tepla Př: Uvažujme pro jednoduchost spalovací motor chlazený vzduchem. Spalováním vzniká teplo, které se

Více

Nelineární problémy a MKP

Nelineární problémy a MKP Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)

Více

Přednáška 1 Obecná deformační metoda, podstata DM

Přednáška 1 Obecná deformační metoda, podstata DM Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí

Více

ČVUT UPM 6/2013. Eliška Bartůňková

ČVUT UPM 6/2013. Eliška Bartůňková ČUT UPM 6/2013 Eliška Bartůňková Úvod 1. Motivace PMPD 1.1 Jednoosá napjatost Obsah 1.2 Zobecnění jednoosé napjatosti pro ohýbaný prut 2. Důkaz základní věty mezní analýzy pro diskrétní modely 3. Formulace

Více

Nelineární úlohy při výpočtu konstrukcí s využitím MKP

Nelineární úlohy při výpočtu konstrukcí s využitím MKP Nelineární úlohy při výpočtu konstrukcí s využitím MKP Obsah přednášky Lineární a nelineární úlohy Typy nelinearit (geometrická, materiálová, kontakt,..) Příklady nelineárních problémů Teorie kontaktu,

Více

Vícerozměrné úlohy pružnosti

Vícerozměrné úlohy pružnosti Přednáška 07 Rovinná napjatost nosné stěny Rovinná deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro rovinnou napjatost Laméovy rovnice Příklady Copyright (c) 011 Vít Šmilauer Czech Technical

Více

1 Ohyb desek - mindlinovské řešení

1 Ohyb desek - mindlinovské řešení 1 OHYB DESEK - MINDLINOVSKÉ ŘEŠENÍ 1 1 Ohyb desek - mindlinovské řešení Kinematika přemístění Posun w se po tloušťce desky mění málo (vzhledem k hodnotě průhybu) w(x, y, z) = w(x, y) Normály ke střednicové

Více

Pružnost a pevnost. zimní semestr 2013/14

Pružnost a pevnost. zimní semestr 2013/14 Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:

Více

Obr. 0.1: Nosník se spojitým zatížením.

Obr. 0.1: Nosník se spojitým zatížením. Každý test obsahuje jeden příklad podobný níže uvedeným tpovým příkladům a několik otázek vbraných z níže uvedených testových otázek. Za příklad je možno získat maimálně bodů, celkový počet bodů z testu

Více

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace

Více

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Stavební mechanika 12SM Přednášky Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Porovnání ODM a ZDM Příklad 1: (viz předchozí přednáška)

Více

Literatura: Kapitola 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Literatura: Kapitola 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Metoda sítí v 1D. Myšlenka náhrada derivací diferenčními podíly Přibližné řešení okrajových úloh Aproximace vlastních čísel Literatura: Kapitola 2 d) ze skript Karel Rektorys:

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVOD DO MODELOVÁNÍ V MECHANICE PRUŽNOST A PEVNOST Přednáška č. 5 Prof. Ing. Vladislav Laš. CSc. MECHANIKA PODDAJNÝCH TĚLES Úkolem PP z inženýrského hlediska je navrhnout součásti nebo konstrukce, které

Více

geologie a užité geofyziky Karlova Univerzita, Praha v geomechanice I

geologie a užité geofyziky Karlova Univerzita, Praha v geomechanice I 1 Ústav hydrogeologie, inženýrské geologie a užité geofyziky Karlova Univerzita, Praha Přednášky pro předmět Matematické modelování v geomechanice I 3. část numerické metody David Mašín 2 Obsah Výstavba

Více

Princip virtuálních posunutí (obecný princip rovnováhy)

Princip virtuálních posunutí (obecný princip rovnováhy) SMA2 Přednáška 05 Princip virtuálních posunutí Deformační metoda Matice tuhosti prutu pro tah/tlak Matice tuhosti prutu pro ohyb Program EduBeam Příklady Copyright (c) 2012 Vít Šmilauer Czech Technical

Více

ANALÝZA KONSTRUKCÍ. 5. přednáška

ANALÝZA KONSTRUKCÍ. 5. přednáška ANALÝZA KONSTRUKCÍ 5. přednáška Nosné stěny rovinná napjatost Způsoby výpočtu napjatosti: Deformační metodou Primární neznámé: posuny u(,y), v(,y) Výchozí rovnice: statické Silovou metodou Primární neznámá:

Více

Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy)

Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy) SMA Přednáška Informace o předmětu Energie vnějších a vnitřních sil Virtuální energie vnějších a vnitřních sil Princip virtuálních prací a sil Příklady Copyright (c) Vít Šmilauer Czech Technical University

Více

2.13 Rovinný obloukový nosník zatížený v rovině = staticky určitě podepřený rovinný obloukový prut

2.13 Rovinný obloukový nosník zatížený v rovině = staticky určitě podepřený rovinný obloukový prut .13 Rovinný obloukový nosník atížený v rovině = staticky určitě podepřený rovinný obloukový prut (střednice-rovinná křivka, atížení v rovině střednice) Geometrie obloukového prutu Poloha průřeu: s x =

Více

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu Přednáška 08 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův ákon Příklad emní tlak v klidu Copyright (c) 2011 Vít Šmilauer Cech Technical University in

Více

Mechanika s Inventorem

Mechanika s Inventorem Mechanika s Inventorem 5. Aplikace tahová úloha CAD data FEM výpočty Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Optimalizace Tomáš MATOVIČ, publikace 1 Obsah cvičení: Zadání

Více

1 Vedení tepla stacionární úloha

1 Vedení tepla stacionární úloha 1 VEDENÍ TEPLA STACIONÁRNÍ ÚLOHA 1 1 Vedení tepla stacionární úloha Typický představitel transportních jevů Obdobným způsobem možno řešit například Fyzikální jev Neznámá Difuze koncentrace [3] Deformace

Více

Aproximace posuvů [ N ],[G] Pro každý prvek se musí nalézt vztahy

Aproximace posuvů [ N ],[G] Pro každý prvek se musí nalézt vztahy Aproimace posuvů Pro každý prvek se musí nalézt vztahy kde jsou prozatím neznámé transformační matice. Neznámé funkce posuvů se obvykle aproimují ve formě mnohočlenů kartézských souřadnic. Například 1.

Více

Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy)

Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy) SMA Přednáška Informace o předmětu Energie vnějších a vnitřních sil Virtuální energie vnějších a vnitřních sil Princip virtuálních prací a sil Příklady Copyright (c) Vít Šmilauer Czech Technical University

Více

Téma 12, modely podloží

Téma 12, modely podloží Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení

Více

Autor: Vladimír Švehla

Autor: Vladimír Švehla Bulletin of Applied Mechanics 1, 55 64 (2005) 55 Využití Castiglianovy věty při výpočtu deformací staticky určité případy zatížení tahem a tlakem Autor: Vladimír Švehla České vysoké učení technické, akulta

Více

Cvičení 7 (Matematická teorie pružnosti)

Cvičení 7 (Matematická teorie pružnosti) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:

Více

Literatura: Kapitoly 3, 4 a 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Literatura: Kapitoly 3, 4 a 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Nehomogenní okrajové podmínky. Pokračování OÚ pro PDR (jen pro fajnšmekry). Jednoznačnost zobecněného řešení. Metoda sítí v 1D. Přibližné řešení okrajových úloh. Aproximace vlastních

Více

Princip virtuálních posunutí (obecný princip rovnováhy)

Princip virtuálních posunutí (obecný princip rovnováhy) SMA Přednáška 5 Princip virtuálních posunutí Deformační metoda Matice tuhosti prutu pro tahtlak Matice tuhosti prutu pro ohyb Program EduBeam Příklady Copyright (c) Vít Šmilauer Czech Technical University

Více

(Poznámka: V MA 43 je věta formulována trochu odlišně.)

(Poznámka: V MA 43 je věta formulována trochu odlišně.) Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy: zúplnění prostoru funkcí přibližné řešení minim. úlohy metoda konečných prvků jiný pohled na zobecněné řešení stejný způsob numerické aproximace

Více

4.6.3 Příhradové konstrukce

4.6.3 Příhradové konstrukce 4.6.3 Příhradové konstrukce Forth Bridge (1890) 2529 m Akashi Kaikyō Bridge (1998) 3911 m "Forth rail bridge head-on-panorama josh-von-staudach" by Josh von Staudach - Own work. "The Forth Bridge seen

Více

Kontraktantní/dilatantní

Kontraktantní/dilatantní Kontraktantní/dilatantní plasticita - úhel dilatance směr přírůstku plastické deformace Na základě experimentálního měření dospěl St. Venant k závěru, že směry hlavních napětí jsou totožné se směry přírůstku

Více

PRUŢNOST A PLASTICITA

PRUŢNOST A PLASTICITA PRUŢNOST A PLASTICITA PŘEDNÁŠKY Doc Ing Vlastislav Salajka PhD 2 OBSAH 1 Úvod 6 11 Cíl 6 12 Požadované znalosti 6 13 Doba potřebná ke studiu 6 14 Klíčová slova 6 2 Základní pojmy 9 21 Pole posunutí 10

Více

Přednáška 08. Obecná trojosá napjatost

Přednáška 08. Obecná trojosá napjatost Přednáška 8 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Objemový modul pružnosti Oedometrický modul pružnosti Hlavní napětí, hlavní deformace

Více

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti 1. Podmínka max τ a MOS v Mohrově rovině a) Plasticity ϭ K = ϭ 1 + ϭ 3 b) Křehké pevnosti (ϭ 1 κ R * ϭ 3 ) = ϭ Rt Ϭ red = max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) MOS : max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) = ϭ Rt a) Plasticita

Více

Energetické principy a variační metody ve stavební mechanice

Energetické principy a variační metody ve stavební mechanice Energetické principy a variační metody ve stavební mechanice Přetvárná práce vnějších sil Přetvárná práce vnitřních sil Potenciální energie Lagrangeův princip Variační metody Ritzova metoda 1 Přetvárná

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS

OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb Anotace: Optimalizace objektů pozemních staveb

Více

Co jsme udělali: Au = f, u D(A)

Co jsme udělali: Au = f, u D(A) Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení

Více

4.6 Složené soustavy

4.6 Složené soustavy 4.6 Složené soustavy vznikají spojením jednotlivých konstrukčních prvků (tuhých těles, tuhých desek a/nebo bodů) deska deska G G 1 vazby: vnitřní - spojují jednotlivé prvky vnější - připojují soustavu

Více

Generování sítě konečných prvků

Generování sítě konečných prvků Generování sítě konečných prvků Jaroslav Beran Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování vlastností

Více

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled

Více

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,

Více

Tvorba výpočtového modelu MKP

Tvorba výpočtového modelu MKP Tvorba výpočtového modelu MKP Jaroslav Beran (KTS) Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování

Více

10. Elasto-plastická lomová mechanika

10. Elasto-plastická lomová mechanika (J-integrál) Únava a lomová mechanika J-integrál je zobecněním hnací síly trhliny a umožňuje použití i v případech plastické deformace většího rozsahu: d J = A U da ( ) A práce vnějších sil působících

Více

FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW:

FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA Bakalářské studium, 4. ročník Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz

Více

Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení

Více

Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění )

Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění ) 1 Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění ) 1. Rozšířený Hookeův zákon pro jednoosou napjatost Základním materiálovým vztahem lineární teorie pružnosti

Více

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Přednáška 2 pro kombinované studium Jiří Brožovský Kancelář: LP C 303/1 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz

Více

1 Stabilita prutových konstrukcí

1 Stabilita prutových konstrukcí 1 STABLTA PRUTOVÝCH KONSTRUKCÍ 1 1 Stabilita prutových konstrukcí Pod účinky tlakových sil dochází u štíhlých prutů k vybočení stabilitní problém Posuny ve směru střednice u a rotace ϕ y zůstávají malé,

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Přibližné řešení úloh mechaniky

Přibližné řešení úloh mechaniky SMA Přednáška 1 Přibližné metody řešení úloh mechaniky Funkcionál energie Metoda konečných prvků Konečněprvkové programy EduBeam Časté problémy při řešení pomocí MKP Příklady Copyright (c) 1 Vít Šmilauer

Více

Platnost Bernoulli Navierovy hypotézy

Platnost Bernoulli Navierovy hypotézy Přednáška 0 Platnost Bernoulli Navierovy hypotézy Diferenciální rovnice ohybu prutu Schwedlerovy věty Rovnováha na segmentech prutu Clebschova metoda integrace Vliv teploty na průhyb a křivost prutu Příklady

Více

Petr Kabele

Petr Kabele 4. Statika tuhých objektů 4.1 Idealizovaný model konstrukce předpoklad: konstrukci (jako celek nebo jejíčásti) idealizujme jako body, tuhá tělesa nebo tuhé desky (viz 1. a 2. přednáška) foto:godden Structural

Více

SIMULACE V KONFEKČNÍ VÝROBĚ S VYUŽITÍM METODY KONEČNÝCH PRVKŮ (MKP, FEM)

SIMULACE V KONFEKČNÍ VÝROBĚ S VYUŽITÍM METODY KONEČNÝCH PRVKŮ (MKP, FEM) SIMULACE V KONFEKČNÍ VÝROBĚ S VYUŽITÍM METODY KONEČNÝCH PRVKŮ (MKP, FEM) D POČÍTAČOVÁ SIMULACE KONFEKČNÍ DÍLNY VIRTUÁLNÍ REALITA - WITNESS VR COMPUTER INTEGRATED MANUFACTURING CIM výroba integrovaná pomocí

Více

Pružnost a plasticita CD03

Pružnost a plasticita CD03 Pružnost a plasticita CD03 Luděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechaniky tel: 541147368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných

Více

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2, Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

Pozn. 1. Při návrhu aproximace bychom měli aproximační funkci vybírat tak, aby vektory ϕ (i) byly lineárně

Pozn. 1. Při návrhu aproximace bychom měli aproximační funkci vybírat tak, aby vektory ϕ (i) byly lineárně 9. Řešení typických úloh diskrétní metodou nejmenších čtverců. DISKRÉTNÍ METODA NEJMENŠÍCH ČTVERCŮ použití: v případech, kdy je nevhodná interpolace využití: prokládání dat křivkami, řešení přeurčených

Více

Úvod do analytické mechaniky

Úvod do analytické mechaniky Úvod do analytické mechaniky Vektorová mechanika, která je někdy nazývána jako Newtonova, vychází bezprostředně z principů, které jsou vyjádřeny vztahy mezi vektorovými veličinami. V tomto případě např.

Více

Obsah Obyčejné diferenciální rovnice

Obsah Obyčejné diferenciální rovnice Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................

Více

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM)

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM) NOSNÍK NA PRUŽNÉ PODLOŽÍ (WINKLEROVSKÉ) Uvažujeme spojitý nosník na pružných podporách. Pružná podpora - odpor je úměrný zatlačení. Pružné podpory velmi blízko sebe - jejich účinek lze nahradit spojitou

Více

Pružnost a pevnost. 2. přednáška, 10. října 2016

Pružnost a pevnost. 2. přednáška, 10. října 2016 Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné

Více

Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím

Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím Stavební mechanika, 2.ročník bakalářského studia AST Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita Ostrava Osnova přednášky

Více

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011 Iterační metody řešení soustav lineárních rovnic Michal Čihák 27. prosince 2011 Přímé metody řešení soustav lineárních rovnic V přednáškách z lineární algebry jste se seznámili s několika metodami řešení

Více

Parciální diferenciální rovnice

Parciální diferenciální rovnice Parciální diferenciální rovnice Obsah kurzu Co bude obsahovat... úvod do PDR odvození některých PDR klasická teorie lineárních PDR 1. a 2. řádu řešení poč. a okraj. úloh vlastnosti řešení souvislost s

Více

Numerická matematika Písemky

Numerická matematika Písemky Numerická matematika Písemky Bodování Každá písemka je bodována maximálně 20 body. Celkem student může získat za písemky až 40 bodů, pro udělení zápočtu musí získat minimálně 20 bodů. Písemka č. 1 Dva

Více

EUKLIDOVSKÉ PROSTORY

EUKLIDOVSKÉ PROSTORY EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,

Více

Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice. Geometrické rovnice

Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice. Geometrické rovnice Přednáška 1 Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice Rozšířený Hookův zákon Geometrické rovnice Ondřej Jiroušek Ústav mechaniky a materiálů Fakulta

Více

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III

Více

Pilotové základy úvod

Pilotové základy úvod Inženýrský manuál č. 12 Aktualizace: 04/2016 Pilotové základy úvod Program: Pilota, Pilota CPT, Skupina pilot Cílem tohoto inženýrského manuálu je vysvětlit praktické použití programů GEO 5 pro výpočet

Více

3. kapitola. Průběhy vnitřních sil na lomeném nosníku. Janek Faltýnek SI J (43) Teoretická část: Příkladová část: Stavební mechanika 2

3. kapitola. Průběhy vnitřních sil na lomeném nosníku. Janek Faltýnek SI J (43) Teoretická část: Příkladová část: Stavební mechanika 2 3. kapitola Stavební mechanika Janek Faltýnek SI J (43) Průběhy vnitřních sil na lomeném nosníku Teoretická část: Naším úkolem je v tomto příkladu vyšetřit průběh vnitřních sil na lomeném rovinném nosníku

Více

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici)

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici) Kapitola 8 Vnitřní síly rovinně zakřiveného prutu V této kapitole bude na příkladech vysvětleno řešení vnitřních sil rovinně zakřivených nosníků, jejichž střednici tvoří oblouk ve tvaru kvadratické paraboly[1].

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

Příhradové konstrukce

Příhradové konstrukce Příhradové konstrukce Základní předpoklady konstrukce je vytvořena z přímých prutů pruty jsou navzájem pospojovány v bodech =>styčnících vzájemné spojení prutů se ve všech styčnících se předpokládá kloubové

Více

Přednáška 01 PRPE + PPA Organizace výuky

Přednáška 01 PRPE + PPA Organizace výuky Přednáška 01 PRPE + PPA Organizace výuky Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny Út 8.30 9.45 St 14.00 15.45, B286, PRPE (Stav. Inženýrství) + PPA (Arch. a stavitelství) přednáška

Více

4. Napjatost v bodě tělesa

4. Napjatost v bodě tělesa p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.

Více

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení

Více