Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií"

Transkript

1 Vysoké učení technické v rně Fakulta elektrotechniky a komunikačních technologií Kolejní 906/ rno

2 ELEKTOTECHNK (EL) lok nalýza obvodů - speciální metody doc. ng. Jiří Sedláček, CSc. doc. ng. Miloslav Steinbauer, Ph.D. TEE FEKT VT

3 Obsah Metoda postupného zjednodušování Sériové a paralelní řazení Dělič napětí a proudu Metoda úměrných veličin Transfigurace hvězda / trojúhelník Princip superpozice Metoda náhradního zdroje Thèveninova věta Nortonova věta 3

4 Základní metody analýzy elektrických obvodů Metody analýzy Pro speciální případy niverzální metody - Metoda postupného zjednodušování - Metoda úměrných veličin - Transfigurace - Princip superpozice - Thèveninova a Nortonova věta - Přímá aplikace Kirchhoffových z. - Metoda smyčkových proudů (MSP) - Metoda uzlových napětí (MN) - Modifikovaná metoda uzlových napětí (MMN) 4

5 Metody pro speciální případy - metoda postupného zjednodušování Princip - postupné zjednodušování obvodu až na obvod obsahující jeden zdroj a jeden rezistor Řešení - postupná náhrada sériově řazených prvků paralelně řazených prvků Klady: jednoduchá metoda použití zákl. matem. operací vhodné pro ruční výpočty Zápory: zdlouhavá a pracná metoda analýza pouze jednodušších obvodů s jediným zdrojem postup řešení je individuální (vyžaduje zkušenost ) některé obvody nelze takto řešit (vyžadují např. aplikaci metody transfigurace obvodu) 5

6 Spojování zdrojů Sériové řazení zdrojů napětí n = n Paralelní řazení zdrojů proudu n = n 6

7 Spojování rezistorů Sériové spojení rezistorů n n n ( ) = = = = n n n = j= j 7

8 Spojování rezistorů Paralelní spojení rezistorů Zkrácené značení: =... n n n 8

9 Spojování rezistorů Paralelní spojení rezistorů Zkrácené značení: =... n G G G n n G G = n G = j n j= j= G = / j G = G = / / G = / n n n ( ) = = G + G + + G = G n Speciálně pro rezistory: = = + G = G + G + + G 3 9

10 Metoda postupného zjednodušování 0

11 Metoda postupného zjednodušování Příklad Metodou postupného zjednodušování určete všechny proudy v obvodu podle obrázku 4 = 50 Ω, = 450 Ω = 370 Ω, = 0 Ω 3 4 = 4 V 3 3 4

12 Metoda postupného zjednodušování Příklad 3 4 = 50 Ω = 450 Ω = 370 Ω = 0 Ω = 4 V část přímý postup 3 3 = = 03 Ω = + 3 = 353 Ω. část zpětný postup = = 30,67 m = 3 = 3,8 V 4 = = 09, m 4 = = 67,98 m 3 3 = = 3 37,3 m = + 4 = 77, m

13 Metoda postupného zjednodušování - poznámky Přímý postup (jednoduchý): paralelní a sériové kombinace určíme celkový odpor a proud Zpětný postup (složitější) hledání proudů a napětí vyžaduje určitou invenci 3 G G 4 NELZE řešit přímo! (paralelní a sériové řazení nelze uplatnit) Nutno použít transfiguraci Y- 3

14 Dělič napětí ezistorový dělič napětí =? =? celkový odpor obvodu je = + a proud obvodem = + proto napětí = = + = = + Zlomek, kterým vstupní napětí násobíme, je bezrozměrný a nazývá se činitel přenosu napětí. 4

15 Dělič proudu ezistorový dělič proudu =? =? (G ) (G ) Protože = = G G + G jsou proudy větvemi : G = G = G G + G = G = G G + 5

16 Základní metody analýzy elektrických obvodů Metody analýzy Pro speciální případy niverzální metody - Metoda postupného zjednodušování - Metoda úměrných veličin - Transfigurace - Princip superpozice - Thèveninova a Nortonova věta - Přímá aplikace Kirchhoffových z. - Metoda smyčkových proudů (MSP) - Metoda uzlových napětí (MN) - Modifikovaná metoda uzlových napětí (MMN) 6

17 Metody pro speciální případy - metoda úměrných veličin Jen pro jednoduché lineární obvody, s jedním zdrojem Volíme fiktivní proud (např. ) nebo fiktivní napětí (např. V) jedné větve Počítáme postupně další veličiny odzadu směrem ke zdroji Vypočteme fiktivní napětí zdroje a koeficient k = / fikt Skutečné veličiny obvodu získáme z fiktivních vynásobením koeficientem k 7

18 Metody pro speciální případy - metoda úměrných veličin Příklad Metodou úměrných veličin určete všechny proudy v obvodu podle obrázku = 50 Ω, = 450 Ω = 370 Ω, = 0 Ω 3 4 = 4 V volíme: = f f = f = 450 V f 3f = = 6 m 4f 3 f = f + 3f = 6 m f = f = 33,4 V f = f + f = 78,4 V f = = 3557 m 4 Koeficient úměrnosti: 4 k = = = 3, ,4 f f 3 3f f Skutečné proudy: = k = 67,98 m = k = 30,67 m = k = 37,3 m = k = 09, m 4 4f - 8

19 Základní metody analýzy elektrických obvodů Metody analýzy Pro speciální případy niverzální metody - Metoda postupného zjednodušování - Metoda úměrných veličin - Transfigurace - Princip superpozice - Thèveninova a Nortonova věta - Přímá aplikace Kirchhoffových z. - Metoda smyčkových proudů (MSP) - Metoda uzlových napětí (MN) - Modifikovaná metoda uzlových napětí (MMN) 9

20 Transfigurace trojúhelník ( ) hvězda (Y) ( ) ( + ) = + = 3 3 = Ω Zapojení musí být ekvivalentní: Y = Ω Y ( + ) = ( + ) = ( + ) = Řešením této soustavy rovnic dostaneme transfigurační vztahy 0

21 Transfigurace trojúhelník ( ) hvězda (Y) Transfigurace Y : =, =, = Transfigurace Y : = + +, = + +, =

22 Transfigurace trojúhelník ( ) hvězda (Y) Příklad použití transfigurace uzly 4 smyčky uzlů smyčky 5 Původní zapojení 4 uzly 3 smyčky

23 Základní metody analýzy elektrických obvodů Metody analýzy Pro speciální případy niverzální metody - Metoda postupného zjednodušování - Metoda úměrných veličin - Transfigurace - Princip superpozice - Thèveninova a Nortonova věta - Přímá aplikace Kirchhoffových z. - Metoda smyčkových proudů (MSP) - Metoda uzlových napětí (MN) - Modifikovaná metoda uzlových napětí (MMN) 3

24 Princip superpozice Princip superpozice: Odezva na součet podnětů je rovna součtu odezev na jednotlivé podněty působící samostatně. Elektrické obvody: podněty = napětí/proudy nezávislých zdrojů odezvy = napětí/proudy prvků obvodu = = + = = + + = = = + = + ÚČNKY ZDOJŮ se v lineárních obvodech LNEÁNĚ SČÍTJÍ. 4

25 Princip superpozice Princip superpozice Platí jen v lineárních obvodech Účinky zdrojů se sčítají (superponují) Výpočet obvodových veličin (, ) se provede pro každý zdroj zvlášť, ostatní zdroje se nahradí vnitřním odporem: ideální zdroj ( ) rozpojením ideální zdroj ( = 0) zkratem 5

26 Princip superpozice Příklad 3 rčete proud a napětí na rezistoru. Z i Z G i Z Z = V, = Ω i i = 4, G = 0,5 S = 4 Ω 6

27 Princip superpozice Příklad 3 a určíme superpozicí i Z G i Z Z i + i G Z i G i Z =0 Z =0 = + = + 7

28 Příspěvek prvního zdroje Příklad 3 Zdroj Z je rozpojen Řešíme např. zjednodušováním, náhradou napěťového zdroje proudovým zdrojem, Z i Z Z Z = V, = Ω i = 4, G = 0,5 S = 4 Ω i G i i G i Z = 4,8 V, =, 8

29 Příspěvek druhého zdroje Příklad 3 Zdroj Z je nahrazen zkratem Řešíme např. zjednodušováním, Z i Z G i i Z G i Z Z = V, = Ω i i = 4, G = 0,5 S = 4 Ω = 3, V, = 0,8 9

30 Výsledek Příklad 3 a určíme superpozicí Z i Z =0 G i i Z =0 Z G i = 3, V, = 0,8 = 4,8 V, =, i Z G i Z ( ) = + = 4,8 + 3, =, 6 V ( ) = + =, + 0,8 = 0, 4 30

31 Nelineární obvody - superpozice Příklad pro s kvadratickou V charakteristikou: = a = a = + + = = + = a a ( ) = a + a + a = = + + a = a V NELNEÁNÍCH OVODECH NEPLTÍ PNCP SPEPOZCE! 3

32 Princip superpozice Lineární obvody i Nelineární obvody i i u i u 0 = + u 0 = + = + + u 3

33 Základní metody analýzy elektrických obvodů Metody analýzy Pro speciální případy niverzální metody - metoda postupného zjednodušování - metoda úměrných veličin - transfigurace - princip superpozice - metoda náhradního zdroje (Thèveninova a Nortonova věta) - přímá aplikace Kirchhoffových z. - metoda smyčkových proudů (MSP) - metoda uzlových napětí (MN) - modifikovaná metoda uzlových napětí (MMN) 33

34 Metoda náhradního zdroje Metoda vhodná v případě, že analyzujeme jednu větev obvodu hledání vnitřního odporu obvodu (např. pro výkonové přizpůsobení) výhodná pro řešení přechodných dějů ( akumulační prvek) lze použít i pro nelineární Lineární obvod a b i i i a b G i a b Thèveninova věta 853 Herman von Helmholtz prof. fyziky, erlín, včetně exaktního důkazu 883 znovuobjevil francouzský telegrafní inženýr Léon Charles Thèvenin (bez důkazu) Nortonova věta zavedena 96 Hans Ferdinand Mayer, pracovník firmy Siemens Edward Lawry Norton v interních materiálech firmy ell 34

35 Metoda náhradního zdroje Náhrada části obvodu ekvivalentním zdrojem: napětí ( i, i - Thèveninova věta) proudu ( i, G i - Nortonova věta) i 3 Z Z Z nebo i i G i 35

36 plikace náhradního zdroje Náhradní zdroje jsou vzhledem ke svorkám ekvivalentní s původním obvodem Stejné Z a Z pro stejné Z i Z i Z Z Z Z Z 3 Z i G i i Z Z 36

37 plikace náhradního zdroje Náhradní zdroje jsou vzhledem ke svorkám ekvivalentní s původním obvodem Stejné Z a Z pro stejné Z i Z i Z Z Z Z Z 3 Z i G i i Z Z 37

38 Výpočet parametrů náhradního zdroje Napětí náhradního zdroje je rovno svorkovému napětí původního nezatíženého obvodu Proud náhradního zdroje je roven svorkovému proudu nakrátko původního obvodu Při určování vnitřního odporu se zdroje proudu rozpojí a zdroje napětí nahradí zkratem k 3 i i i i i G i i i = i 0 i = k i = 38

39 Metoda náhradního zdroje Příklad 4 Vypočítejte metodou Thèveninovy věty proud rezistoru 4 a a i i = i + i 4 b b a rčení i a rčení i 3 b V ab0 i = = ab0 3 = b ab Ω i = = ab ( + ) 3 =

40 Metoda náhradního zdroje Příklad 4 Řešení pomocí Nortonovy věty a i G i a 4 G 4 G 4 4 = i G G i + 4 b b a rčení i a rčení G i abk 3 b i = = abk = + 3 b ab Ω G i = G = ab = + ab GG G3 G + G 40

41 Metoda náhradního zdroje Příklad 5 V obvodu na obrázku vypočítejte pomocí Theveninovy věty napětí, proud a výkon rezistoru. 3 4 = 0 V = = 0 Ω 3 = 0 Ω, = 40 Ω 4 i i P i = + = i = rčení i rčení i + = = 6, 6 V 3 4 i i 3 4 i ( + ) 3 4 = = 8, 3 Ω i 4 = = 0,588, = =, 76 V, P = = 6,90 W i i + 4

42 Metoda náhradního zdroje Příklad 6 V obvodu na obrázku vypočítejte pomocí Theveninovy věty napětí, proud a výkon rezistoru 4. z i i 4 P = = i + i = i 4 = = i + 4 P = = 0 V = =,5 W ,50 = 0 V z = = = 0 Ω, = 0 Ω, = 40 Ω i G G G 3 = 0! G 3 z i = = Ω i 3 G + = = = 5 V Z ( G G ) i Z i G+ G 4

43 Metoda náhradního zdroje - maximální přenos výkonu Příklad 7 Pomocí věty o náhradním zdroji vypočtěte hodnotu rezistoru tak, aby do něj byl dodán maximální výkon. Vypočtěte napětí, proud a výkon rezistoru. = 0 Ω, = 50 Ω, 3 = 30 Ω, 4 = 0 Ω, =, = 50 V i i i = + i = = = = P rčíme i : = + = = 60 Ω. = = Ω 3 i = = 40 Ω 3 i Pro maximální přenos výkonu musí být zátěž = i = 40 Ω 43

44 Metoda náhradního zdroje - maximální přenos výkonu Příklad 7 Pomocí věty o náhradním zdroji vypočtěte hodnotu rezistoru tak, aby do něj byl dodán maximální výkon. Vypočtěte napětí, proud a výkon rezistoru. = 0 Ω, = 50 Ω, 3 = 30 Ω, 4 = 0 Ω, =, = 50 V rčíme i pomocí MSP: 3 lternativně lze určit i pomocí MN: S i G G 4 G 3 G i = = 50 V + + = ( ) 3 S 90 = 00 S =, S i = + 3 S = 50 30, = 6,6 V G + G G 0 = G G + G = / =, 6 0 = i = = 6,6 V 3 0, 0, = = 5, 9 0 0, 0,3 0, = = 9, 9.0 0,,

45 Metoda náhradního zdroje - maximální přenos výkonu Příklad 7 Pomocí věty o náhradním zdroji vypočtěte hodnotu rezistoru tak, aby do něj byl dodán maximální výkon. Vypočtěte napětí, proud a výkon rezistoru. = 0 Ω, = 50 Ω, 3 = 30 Ω, 4 = 0 Ω, =, = 50 V i i = i = 40 Ω i = + i = P = = = 3 4 6,6 80 i = = = i 0,085 6,6 i = = = i i 8,3 V ( 8, 3) P = = = =,736 W 40 45

46 Metoda náhradního zdroje Příklad 8 V můstkovém zapojení určete proud G pomocí věty o náhradním napěťovém zdroji, je-li = V, = 0 Ω, = 40 Ω, 3 = 0 Ω, 4 = 0 Ω, G = 5 Ω. G G 3 4 i i G G G = i + i G 46

47 Metoda náhradního zdroje Příklad 8 V můstkovém zapojení určete proud G pomocí věty o náhradním napěťovém zdroji, je-li = V, = 0 Ω, = 40 Ω, 3 = 0 Ω, 4 = 0 Ω, G = 5 Ω. rčení napětí náhradního zdroje G G i 3 4 i = = = 0,6 V 4 i

48 Metoda náhradního zdroje Příklad 8 V můstkovém zapojení určete proud G pomocí věty o náhradním napěťovém zdroji, je-li = V, = 0 Ω, = 40 Ω, 3 = 0 Ω, 4 = 0 Ω, G = 5 Ω. rčení vnitřního odporu náhradního zdroje G G 3 4 i i i i = + = 0 Ω

49 Metoda náhradního zdroje Příklad 8 V můstkovém zapojení určete proud G pomocí věty o náhradním napěťovém zdroji, je-li = V, = 0 Ω, = 40 Ω, 3 = 0 Ω, 4 = 0 Ω, G = 5 Ω. G G i i i G = = = 0,6 V 4 i i = + = Ω i G G + = i = i G 4,8 m 49

50 Metoda náhradního zdroje - rekapitulace Metoda vhodná v případě, že analyzujeme jednu větev obvodu hledání vnitřního odporu obvodu (např. pro výkonové přizpůsobení) výhodná pro řešení přechodných dějů ( akumulační prvek) lze použít i pro nelineární Thèveninova věta a i i a rčení i rčení i a Lineární obvod a i Lineární obvod b G i b a rčení G i b i G i Lineární obvod a b i Nortonova věta i b rčení i b 50

51 Konec Kolejní 906/ rno Tel.: Fax:

Ekvivalence obvodových prvků. sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá

Ekvivalence obvodových prvků. sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá neboli sériové a paralelní řazení prvků Rezistor Ekvivalence obvodových prvků sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá Paralelní řazení společné napětí proudy jednotlivými

Více

Kirchhoffovy zákony. Kirchhoffovy zákony

Kirchhoffovy zákony. Kirchhoffovy zákony Kirchhoffovy zákony 1. Kirchhoffův zákon zákon o zachování elektrických nábojů uzel, větev obvodu... Algebraický součet všech proudů v uzlu se rovná nule Kirchhoffovy zákony 2. Kirchhoffův zákon zákon

Více

R 3 R 6 R 7 R 4 R 2 R 5 R 8 R 6. Úvod do elektrotechniky

R 3 R 6 R 7 R 4 R 2 R 5 R 8 R 6. Úvod do elektrotechniky Metody náhradního zdroje (Théveninova a Nortonova věta) lze využít při částečné analýze elektrického obvodu, kdy máme stanovit proud nebo napětí v určitém místě obvodu. Příklad: Určete v obvodu na obr.

Více

I 3 =10mA (2) R 3. 5mA (0)

I 3 =10mA (2) R 3. 5mA (0) Kirchhoffovy zákony 1. V obvodu podle obrázku byly změřeny proudy 3 a. a. Vypočítejte proudy 1, 2 a 4, tekoucí rezistory, a. b. Zdroj napětí = 12 V, = 300 Ω, na rezistoru jsme naměřili napětí 4 = 3 V.

Více

Řešení elektronických obvodů Autor: Josef Sedlák

Řešení elektronických obvodů Autor: Josef Sedlák Řešení elektronických obvodů Autor: Josef Sedlák 1. Zdroje elektrické energie a) Zdroje z hlediska průběhu zatěžovací charakteristiky b) Charakter zdroje c) Přenos výkonu ze zdroje do zátěže 2. Řešení

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, řazení rezistorů

Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, řazení rezistorů Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, řazení rezistorů Pracovní list - příklad vytvořil: Ing. Lubomír Kořínek Období vytvoření VM: listopad 203 Klíčová slova: rezistor,

Více

Stavba hmoty. Název školy. Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm

Stavba hmoty. Název školy. Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Stavba hmoty Popis podstaty elektrických jevů, vyplývajících ze stavby hmoty Stavba hmoty VY_32_INOVACE_04_01_01 Materiál slouží k podpoře výuky předmětu v 1. ročníku oboru Elektronické zpracování informací.

Více

1 Zdroj napětí náhradní obvod

1 Zdroj napětí náhradní obvod 1 Zdroj napětí náhradní obvod Příklad 1. Zdroj napětí má na svorkách naprázdno napětí 6 V. Při zatížení odporem 30 Ω klesne napětí na 5,7 V. Co vše můžete o tomto zdroji říci za předpokladu, že je v celém

Více

Základní definice el. veličin

Základní definice el. veličin Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek Oddíl 1 Určeno pro studenty komb. formy FBI předmětu 452081 / 06 Elektrotechnika Základní definice el. veličin Elektrický

Více

Nezávislý zdroj napětí

Nezávislý zdroj napětí Nezávislý zdroj napětí Ideální zdroj: Udržuje na svých svorkách napětí s daným časovým průběhem Je schopen dodat libovolný proud, i nekonečně velký, tak, aby v závislosti na zátěži zachoval na svých svorkách

Více

Pracovní list žáka (SŠ)

Pracovní list žáka (SŠ) Pracovní list žáka (SŠ) vzorová úloha (SŠ) Jméno Třída.. Datum.. 1 Teoretický úvod Rezistory lze zapojovat do série nebo paralelně. Pro výsledný odpor sériového zapojení rezistorů platí: R = R1 + R2 +

Více

VY_32_INOVACE_ENI_3.ME_01_Děliče napětí frekvenčně nezávislé Střední odborná škola a Střední odborné učiliště, Dubno Ing.

VY_32_INOVACE_ENI_3.ME_01_Děliče napětí frekvenčně nezávislé Střední odborná škola a Střední odborné učiliště, Dubno Ing. Číslo projektu..07/.5.00/34.058 Číslo materiálu VY_3_INOVAE_ENI_3.ME_0_Děliče napětí frekvenčně nezávislé Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

Základní elektronické obvody

Základní elektronické obvody Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =

Více

Základy elektrotechniky a výkonová elektrotechnika (ZEVE)

Základy elektrotechniky a výkonová elektrotechnika (ZEVE) Základy elektrotechniky a výkonová elektrotechnika (ZEVE) Studijní program Vojenské technologie, 5ti-leté Mgr. studium (voj). Výuka v 1. a 2. semestru, dotace na semestr 24-12-12 (Př-Cv-Lab). Rozpis výuky

Více

Identifikátor materiálu: VY_32_INOVACE_347

Identifikátor materiálu: VY_32_INOVACE_347 dentifikátor materiálu: VY_32_NOVACE_347 Anotace Autor Jazyk Očekávaný výstup Výuková prezentace.na jednotlivých snímcích jsou postupně odkrývány informace, které žák zapisuje či zakresluje do sešitu.

Více

Řešení obvodů stejnosměrného proudu s jedním zdrojem

Řešení obvodů stejnosměrného proudu s jedním zdrojem Název projektu: utomatizace výrobních procesů ve strojírenství a řemeslech egistrační číslo: Z..07/..0/0.008 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 09 Tento projekt je spolufinancován

Více

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník ELEKTRICKÝ PROUD V KOVECH Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Elektrický proud Uspořádaný pohyb volných částic s nábojem Směr: od + k ( dle dohody - ve směru kladných

Více

4.2.18 Kirchhoffovy zákony

4.2.18 Kirchhoffovy zákony 4.2.18 Kirchhoffovy zákony Předpoklady: 4207, 4210 Už umíme vyřešit složité sítě odporů s jedním zdrojem. Jak zjistit proudy v následujícím obvodu? U 1 Problém: V obvodu jsou dva zdroje. Jak to ovlivní

Více

Algebra blokových schémat Osnova kurzu

Algebra blokových schémat Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů Automatizace - Ing. J. Šípal, PhD 1 Osnova

Více

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY ŘEŠENÉ PŘÍKLDY K DOPLNĚNÍ ÝKY. TÝDEN Příklad. K baterii s vnitřním napětím a vnitřním odporem i je připojen vnější odpor (viz obr..). rčete proud, který prochází obvodem, úbytek napětí Δ na vnitřním odporu

Více

Název: Měření napětí a proudu

Název: Měření napětí a proudu Název: Měření napětí a proudu Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Elektřina a magnetismus

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gmnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

VEDENÍ ELEKTRICKÉHO PROUDU V KOVECH

VEDENÍ ELEKTRICKÉHO PROUDU V KOVECH I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í VEDENÍ ELEKTICKÉHO POD V KOVECH. Elektrický proud (I). Zdroje proudu elektrický proud uspořádaný pohyb volných částic s elektrickým nábojem mezi dvěma

Více

USTÁLE Ý SS. STAV V LI EÁR ÍCH OBVODECH

USTÁLE Ý SS. STAV V LI EÁR ÍCH OBVODECH USTÁLE Ý SS. STAV V LI EÁR ÍCH OBVODECH Odporový dělič napětí - nezatížený Příklad 1 Odporový dělič napětí - zatížený I 1 I 2 I p Příklad 2 1 Příklad 3 Odporový dělič proudu Příklad 4 2 Věty o náhradních

Více

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb

Více

Elektronika ve fyzikálním experimentu

Elektronika ve fyzikálním experimentu Elektronika ve fyzikálním experimentu Josef Lazar Ústav přístrojové techniky, AV ČR, v.v.i. E-mail: joe@isibrno.cz www: http://www.isibrno.cz/~joe/elektronika/ Elektrický obvod Analogie s kapalinou Základními

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování)

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) FYZIKA II Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) Osnova přednášky činitel jakosti, vektorové diagramy v komplexní rovině Sériový RLC obvod - fázový posuv, rezonance

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_B.1.08 Integrovaná střední škola technická Mělník, K učilišti 2566, 276

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Shrnutí: Náboj a síla = Coulombova síla: - Síla jíž na sebe náboje Q působí je stejná - Pozn.: hledám-li velikost, tak jen dosadím,

Více

M R 8 P % 8 P5 8 P& & %

M R 8 P % 8 P5 8 P& & % ážení zákazníci dovolujeme si ás upozornit že na tuto ukázku knihy se vztahují autorská práva tzv. copyright. To znamená že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího (aby ètenáø

Více

2. Určete komplexní impedanci dvojpólu, jeli dáno: S = 900 VA, P = 720 W a I = 20 A, z jakých prvků lze dvojpól sestavit?

2. Určete komplexní impedanci dvojpólu, jeli dáno: S = 900 VA, P = 720 W a I = 20 A, z jakých prvků lze dvojpól sestavit? Otázky a okruhy problematiky pro přípravu na státní závěrečnou zkoušku z oboru EAT v bakalářských programech strukturovaného studia na FEL ZČU v ak. r. 2013/14 Soubor obsahuje tématické okruhy, otázky

Více

PODPORA ELEKTRONICKÝCH FOREM VÝUKY

PODPORA ELEKTRONICKÝCH FOREM VÝUKY I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í PODPOA ELEKTONICKÝCH FOEM VÝUKY CZ.1.07/1.1.06/01.0043 Tento projekt je financován z prostředků ESF a státního rozpočtu Č. SOŠ informatiky a spojů

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

Pojetí vyučovacího předmětu

Pojetí vyučovacího předmětu Učební osnova předmětu ZÁKLADY ELEKTROTECHNIKY studijního oboru 26-41-M/01 ELEKTROTECHNIKA Pojetí vyučovacího předmětu Učivo vyučovacího předmětu základy elektrotechniky poskytuje žákům na přiměřené úrovni

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Petr Vlček ELEKTROTECHNIKA

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Petr Vlček ELEKTROTECHNIKA STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Petr Vlček ELEKTROTECHNIKA SOUBOR PŘÍPRAV PRO 2. R. OBORU 23-41-M/01 STROJÍRENSTVÍ Vytvořeno v rámci

Více

Ohmův zákon, elektrický odpor, rezistory

Ohmův zákon, elektrický odpor, rezistory Ohmův zákon, elektrický odpor, rezistory Anotace: Ohmův zákon, elektrický odpor, rezistor, paralelní zapojení, sériové zapojení Dětský diagnostický ústav, středisko výchovné péče, základní škola, mateřská

Více

4.2.13 Regulace napětí a proudu reostatem a potenciometrem

4.2.13 Regulace napětí a proudu reostatem a potenciometrem 4..3 Regulace napětí a proudu reostatem a potenciometrem Předpoklady: 405, 407, 40 Nejde o dva, ale pouze o jeden druh součástky (reostat) ve dvou různých zapojeních (jako reostat a jako potenciometr).

Více

26-41-M/01 Elektrotechnika

26-41-M/01 Elektrotechnika Střední škola technická, Most, příspěvková organizace Dělnická 21, 434 01 Most PROFILOVÁ ČÁST MATURITNÍ ZKOUŠKY V JARNÍM I PODZIMNÍM OBDOBÍ ŠKOLNÍ ROK 2014/2015 Obor vzdělání 26-41-M/01 Elektrotechnika

Více

Vzdálené laboratoře pro IET1

Vzdálené laboratoře pro IET1 Vzdálené laboratoře pro IET1 1. Bezpečnost práce v elektrotechnice Odpovědná osoba - doc. Ing. Miloslav Steinbauer, Ph.D. (steinbau@feec.vutbr.cz) Náplní tématu je uvést posluchače do problematiky: - rizika

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE MASARYKŮV ÚSTAV VYŠŠÍCH STUDIÍ. Katedra inženýrské pedagogiky BAKALÁŘSKÁ PRÁCE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE MASARYKŮV ÚSTAV VYŠŠÍCH STUDIÍ. Katedra inženýrské pedagogiky BAKALÁŘSKÁ PRÁCE ČESKÉ VYSOKÉ ČENÍ TEHNKÉ V PZE MSYKŮV ÚSTV VYŠŠÍH STDÍ Katedra inženýrské pedagogiky KÁŘSKÁ PÁE Praha 9 c. Pavel Řezníček ČESKÉ VYSOKÉ ČENÍ TEHNKÉ V PZE MSYKŮV ÚSTV VYŠŠÍH STDÍ Katedra inženýrské pedagogiky

Více

Název: Autor: Číslo: Srpen 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Název: Autor: Číslo: Srpen 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Magnetizmus Vlastní indukčnost Ing. Radovan

Více

Zesilovače. Ing. M. Bešta

Zesilovače. Ing. M. Bešta ZESILOVAČ Zesilovač je elektrický čtyřpól, na jehož vstupní svorky přivádíme signál, který chceme zesílit. Je to tedy elektronické zařízení, které zesiluje elektrický signál. Zesilovač mění amplitudu zesilovaného

Více

ELEKTRICKÉ OBVODY 1. - TEORETICKÉ OTÁZKY

ELEKTRICKÉ OBVODY 1. - TEORETICKÉ OTÁZKY ELEKTRICKÉ OBVODY 1. - TEORETICKÉ OTÁZKY 1. Definujte elektrický proud procházející průřezem vodiče a uveďte jeho jednotku. 2. Definujte elektrické napětí mezi dvěma body v elektrickém poli a uveďte jeho

Více

Elektrický proud 2. Zápisy do sešitu

Elektrický proud 2. Zápisy do sešitu Elektrický proud 2 Zápisy do sešitu Směr elektrického proudu v obvodu 1/2 V různých materiálech vedou elektrický proud různé částice: kovy volné elektrony kapaliny (roztoky) ionty plyny kladné ionty a

Více

OBSAH. Elektronika... 2. Elektrotechnika 1... 4. Technologická praktika 6... 6. Technická matematika 1... 8. Základy elektrotechniky...

OBSAH. Elektronika... 2. Elektrotechnika 1... 4. Technologická praktika 6... 6. Technická matematika 1... 8. Základy elektrotechniky... OBSAH Elektronika... 2 Elektrotechnika 1... 4 Technologická praktika 6... 6 Technická matematika 1... 8 Základy elektrotechniky...10 ELEKTRONIKA Zkratka předmětu: KPV/ELNIK Vymezení předmětu: povinný Hod.

Více

Fázory, impedance a admitance

Fázory, impedance a admitance Fázory, impedance a admitance 1 Dva harmonické zdroje napětí s frekvencí jsou zapojeny sériově a S použitím fázorů vypočítejte časový průběh napětí mezi výstupními svorkami, jestliže = 30 sin(100¼t);u

Více

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem Praktické příklady z Elektrotechniky. Střídavé obvody.. Základní pojmy.. Jednoduché obvody se střídavým proudem Příklad : Stanovte napětí na ideálním kondenzátoru s kapacitou 0 µf, kterým prochází proud

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Laboratorní práce č. 4: Určení elektrického odporu

Laboratorní práce č. 4: Určení elektrického odporu Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého studia Laboratorní práce č. 4: Určení elektrického odporu G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého

Více

Střídavý proud, trojfázový proud, transformátory

Střídavý proud, trojfázový proud, transformátory Variace 1 Střídavý proud, trojfázový proud, transformátory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1.

Více

3.2. Elektrický proud v kovových vodičích

3.2. Elektrický proud v kovových vodičích 3.. Elektrický proud v kovových vodičích Kapitola 3.. byla bez výhrad věnována popisu elektrických nábojů v klidu, nyní se budeme zabývat pohybujícími se nabitými částicemi. 3... Základní pojmy Elektrický

Více

LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika

LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika VUT FSI BRNO ÚVSSaR, ODBOR ELEKTROTECHNIKY JMÉNO: ŠKOLNÍ ROK: 2010/2011 PŘEDNÁŠKOVÁ SKUPINA: 1E/95 LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika ROČNÍK: 1. KROUŽEK: 2EL SEMESTR: LETNÍ UČITEL: Ing.

Více

Odporový dělič napětí a proudu, princip superpozice

Odporový dělič napětí a proudu, princip superpozice Vysoká škola báňská Technická universita Ostrava Fakulta elektrotechniky a informatiky Základy elektroniky ZEL Laboratorní úloha č. 1 Odporový dělič napětí a proudu, princip superpozice Datum měření: 20.

Více

Elektrická měření pro I. ročník (Laboratorní cvičení)

Elektrická měření pro I. ročník (Laboratorní cvičení) Střední škola informatiky a spojů, Brno, Čichnova 23 Elektrická měření pro I. ročník (Laboratorní cvičení) Studentská verze Zpracoval: Ing. Jiří Dlapal B R N O 2011 Úvod Výuka předmětu Elektrická měření

Více

+ U CC R C R B I C U BC I B U CE U BE I E R E I B + R B1 U C I - I B I U RB2 R B2

+ U CC R C R B I C U BC I B U CE U BE I E R E I B + R B1 U C I - I B I U RB2 R B2 Pro zadané hodnoty napájecího napětí, odporů a zesilovacího činitele β vypočtěte proudy,, a napětí,, (předpokládejte, že tranzistor je křemíkový a jeho pracovní bod je nastaven do aktivního normálního

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3. Předmět: Elektromagnetické vlny, antény a vedení Úloha: Symetrizační obvody Jméno: Jan Švec Měřeno dne: 3.3.29 Odevzdáno dne: 6.3.29 ID: 78 357 Číslo úlohy: 7 Klasifikace: 1. Zadání 1. Změřte kmitočtovou

Více

Pracovní list - Laboratorní práce č. 7 Jméno: Třída: Skupina:

Pracovní list - Laboratorní práce č. 7 Jméno: Třída: Skupina: Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Pracovní list - Laboratorní práce č. 7 Jméno: Třída:

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ STŘEDNÍ ŠKOLA ELEKTOTECHNCKÁ, OSTAVA, NA JÍZDÁNĚ 30, p. o. ELEKTOTECHNKA ng. Pavel VYLEGALA 006 - - Obsah Základní pojmy...4 Mezinárodní soustava jednotek...4 Násobky a díly jednotek...4 Stavba atomu...5

Více

ZÁKLADY ELEKTROTECHNIKY

ZÁKLADY ELEKTROTECHNIKY ZÁKLADY ELEKTROTECHNIKY 1) Který zákon upravuje poměry v jednoduchém elektrickém obvodu o napětí, proudu a odporu: Ohmův zákon, ze kterého vyplívá, že proud je přímo úměrný napětí a nepřímo úměrný odporu.

Více

Úvod do elektrokinetiky

Úvod do elektrokinetiky Úvod do elektrokinetiky Hlavní body - elektrokinetika Elektrické proudy pohyb nábojů Ohmův zákon, mikroskopický pohled Měrná vodivost σ izolanty, vodiče, polovodiče Elektrické zdroje napětí (a proudu)

Více

Stabiliz atory napˇet ı v nap ajec ıch zdroj ıch - mˇeˇren ı z akladn ıch parametr u Ondˇrej ˇ Sika

Stabiliz atory napˇet ı v nap ajec ıch zdroj ıch - mˇeˇren ı z akladn ıch parametr u Ondˇrej ˇ Sika - měření základních parametrů Obsah 1 Zadání 4 2 Teoretický úvod 4 2.1 Stabilizátor................................ 4 2.2 Druhy stabilizátorů............................ 4 2.2.1 Parametrické stabilizátory....................

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Měření transformátoru naprázdno a nakrátko

Měření transformátoru naprázdno a nakrátko Měření u naprázdno a nakrátko Měření naprázdno Teoretický rozbor Stav naprázdno je stavem u, při kterém je I =. řesto primárním vinutím protéká proud I tzv. magnetizační, jenž je nutný pro vybuzení magnetického

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy

Více

4.2.12 Spojování rezistorů I

4.2.12 Spojování rezistorů I 4.2.2 Spojování rezistorů Předpoklady: 4, 4207, 420 Jde nám o to nahradit dva nebo více rezistorů jedním rezistorem tak, aby nebylo zvenku možné poznat rozdíl. Nová součástka se musí vzhledem ke zbytku

Více

Ohmův zákon pro uzavřený obvod. Tematický celek: Elektrický proud. Úkol:

Ohmův zákon pro uzavřený obvod. Tematický celek: Elektrický proud. Úkol: Název: Ohmův zákon pro uzavřený obvod. Tematcký celek: Elektrcký proud. Úkol: Zopakujte s Ohmův zákon pro celý obvod. Sestrojte elektrcký obvod dle schématu. Do obvodu zařaďte robota, který bude hlídat

Více

VY_52_INOVACE_2NOV64. Autor: Mgr. Jakub Novák. Datum: 19. 3. 2013 Ročník: 8. a 9.

VY_52_INOVACE_2NOV64. Autor: Mgr. Jakub Novák. Datum: 19. 3. 2013 Ročník: 8. a 9. VY_52_INOVACE_2NOV64 Autor: Mgr. Jakub Novák Datum: 19. 3. 2013 Ročník: 8. a 9. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Elektromagnetické a světelné děje Téma: Ohmův

Více

Elektrotechnika Stránka 1

Elektrotechnika Stránka 1 ELEKTROTECHNIKA 2 UČEBNÍ TEXTY PRO VÝUKU ELEKTROTECHNICKÝCH OBORŮ Elektrotechnika Stránka 1 ELEKTROTECHNIKA učební text pro 2. ročník studia oboru MECHANIK ELEKTROTECHNIK ING. Jiří Kroupa Obsah 2. ročník

Více

Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

ČVUT FEL. Obrázek 1 schéma zapojení měřícího přípravku. Obrázek 2 realizace přípravku

ČVUT FEL. Obrázek 1 schéma zapojení měřícího přípravku. Obrázek 2 realizace přípravku Laboratorní měření 2 Seznam použitých přístrojů 1. Laboratorní zdroj stejnosměrného napětí Vývojové laboratoře Poděbrady 2. Generátor funkcí Instek GFG-8210 3. Číslicový multimetr Agilent, 34401A 4. Digitální

Více

napájecí zdroj I 1 zesilovač Obr. 1: Zesilovač jako čtyřpól

napájecí zdroj I 1 zesilovač Obr. 1: Zesilovač jako čtyřpól . ZESILOVACÍ OBVODY (ZESILOVAČE).. Rozdělení, základní pojmy a vlastnosti ZESILOVAČ Zesilovač je elektronické zařízení, které zesiluje elektrický signál. Má vstup a výstup, tzn. je to čtyřpól na jehož

Více

11. OCHRANA PŘED ÚRAZEM ELEKTRICKÝM PROUDEM. Příklad 11.1

11. OCHRANA PŘED ÚRAZEM ELEKTRICKÝM PROUDEM. Příklad 11.1 11. OCHRN PŘED ÚRZEM ELEKTRICKÝM PRODEM Příklad 11.1 Vypočítejte velikost dotykového napětí d na spotřebiči, který je připojen na rozvodnou soustavu 3 50 Hz, 400 V/TN-C, jestliže dojde k průrazu fázového

Více

Elektřina a magnetizmus závěrečný test

Elektřina a magnetizmus závěrečný test DUM Základy přírodních věd DUM III/2-T3-20 Téma: závěrečný test Střední škola Rok: 2012 2013 Varianta: TEST - A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník TEST Elektřina a magnetizmus závěrečný

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Kapitola Téma (Učivo) Znalosti a dovednosti (výstup) Průřezová témata, projekty

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS VII. Stejnosměrné obvody Obsah 7 STEJNOSMĚNÉ OBVODY 7. ÚVOD 7. ELEKTOMOTOICKÉ NAPĚTÍ 3 7.3 EZISTOY V SÉIOVÉM A PAALELNÍM ZAPOJENÍ 5 7.4 KICHHOFFOVY ZÁKONY 6 7.5 MĚŘENÍ NAPĚTÍ A

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT

CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Autor Mgr. Lenka Střelcová Tematický celek Trojúhelníky Cílová skupina 2.ročník SŠ Anotace Materiál má podobu pracovního listu s ukázkovými úlohami, pomocí nichž si žáci procvičí své znalosti o základních

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

c ÚM FSI VUT v Brně 20. srpna 2007

c ÚM FSI VUT v Brně 20. srpna 2007 20. srpna 2007 1. 3 arctg x 1+x 2 dx 2. (x 2 + 2x + 17)e x dx 3. 1 x 3 x dx Vypočtěte integrál: 3 arctg x 1 + x 2 dx Příklad 1. Řešení: Použijeme substituci: arctg x = t 3 arctg x dx = 1 dx = dt 1+x 2

Více

Aplikovaná elektronika pro aplikovanou fyziku

Aplikovaná elektronika pro aplikovanou fyziku Milan Vůjtek Aplikovaná elektronika pro aplikovanou fyziku Předkládaný text je určen k výuce studentů oboru Aplikovaná fyzika. Věnuje se primárně vlastnostem a aplikacím operačních zesilovačů, především

Více

Transformátory. Teorie - přehled

Transformátory. Teorie - přehled Transformátory Teorie - přehled Transformátory...... jsou elektrické stroje, které mění napětí při přenosu elektrické energie při stejné frekvenci. Používají se především při rozvodu elektrické energie.

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory Regulátory a vlastnosti regulátorů Jak již bylo uvedeno, vlastnosti regulátorů určují kvalitu regulace. Při volbě regulátoru je třeba přihlížet i k přenosovým vlastnostem regulované soustavy. Cílem je,

Více

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky Tématické okruhy teoretických zkoušek Part 66 1 3.1 Teorie elektronu 1 1 1 Struktura a rozložení elektrických nábojů uvnitř: atomů, molekul, iontů, sloučenin; Molekulární struktura vodičů, polovodičů a

Více

ρ = měrný odpor, ρ [Ω m] l = délka vodiče

ρ = měrný odpor, ρ [Ω m] l = délka vodiče 7 Kapitola 2 Měření elektrických odporů 2 Úvod Ohmův zákon definuje ohmický odpor, zkráceně jen odpor, R elektrického vodiče jako konstantu úměrnosti mezi stejnosměrným proudem I, který protéká vodičem

Více

Rovnice s neznámou pod odmocninou a jejich užití

Rovnice s neznámou pod odmocninou a jejich užití Rovnice s neznámou pod odmocninou a jejich užití Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, okruh Rovnice a nerovnice Pracovní list vytvořil: Mgr. Helena Korejtková Období

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více