(Triticum aestivum L.)

Rozměr: px
Začít zobrazení ze stránky:

Download "(Triticum aestivum L.)"

Transkript

1 Výzkumný ústav rostlinné výroby Praha Ruzyně Optimalizace metod elektroforézy proteinů pro identifikaci odrůd pšenice (Triticum aestivum L.) Metodika vypracována jako výstup projektu NAZV QF 3050: Vývoj metod objektivní identifikace odrůd zemědělských plodin Autoři: Ing. Jana Bradová, Ing. Antonín Šašek, CSc. Prosinec 2007

2 OPTIMALIZACE METOD ELEKTROFORÉZY PROTEINŮ PRO IDENTIFIKACI ODRŮD PŠENICE (TRITICUM AESTIVUM L.) Metodika vypracována jako výstup projektu NAZV QF 3050: Vývoj metod objektivní identifikace odrůd zemědělských plodin Ing. Jana Bradová Ing. Antonín Šašek, CSc. Vydal: Výzkumný ústav rostlinné výroby, Praha Text: 2007 J. Bradová, A. Šašek Foto: 2007 J. Bradová Grafická úprava: 2007 Mgr. M. Sýkora Vydáno bez jazykové úpravy ISBN:

3 OPTIMALIZACE METOD ELEKTROFORÉZY PROTEINŮ PRO IDENTIFIKACI ODRŮD PŠENICE Obsah: 1. Úvod Použité metody souborné zhodnocení Metodické postupy Elektroforetická analýza gliadinů pšenice ve sloupcích škrobového gelu (SGE) Elektroforetická analýza gliadinů pšenice v polyakrylamidovém gelu v kyselém prostředí (A PAGE ISTA) Elektroforetická analýza gliadinů pšenice v polyakrylamidovém gelu s Al-laktátovým pufrem (A PAGE-Metakovsky) Elektroforetická analýza podjednotek gluteninů s vysokou molekulovou hmotností (HMW-GS) pšenice v zásaditém prostředí dodecylsulfátu sodného (SDS PAGE) Zhodnocení finanční, časové a kapacitní náročnosti uvedených metod Katalog gliadinových a HMW- gluteninových elektroforetických spekter registrovaných odrůd jarní a ozimé pšenice zjištěných metodami SGE a SDS PAGE Stanovení odrůdové pravosti a odrůdové čistoty Další doporučená literatura. 36 J. Bradová, A. Šašek VÚRV Praha

4 1. Úvod Odrůda je jedním z nejvýznamnějších faktorů rozvoje zemědělství, je tzv. nositelem kvality. Metody identifikace a vzájemného rozlišování odrůd významných zemědělských plodin se v posledních letech vyvíjejí v rychlém tempu. Souvisí to s obchodními aktivitami specializovaných firem a společností, kterým se u nás otevřel trh s osivem a sadbou. S obchodováním jsou vždy spojeny problémy související s právní a obchodní ochranou zboží. Ochrana práv, která se váže na určitý rostlinný genotyp resp. odrůdu, se na různých úrovních týká ochrany autorských práv jak samotného autora, či majitele odrůdy, tak i dalších, kteří s odrůdou manipulují, např. na základě licence. Význam rychlého a spolehlivého určení odrůd je podmiňován odlišností odrůd v řadě hospodářsky významných vlastností. Každá odrůda se vyznačuje specifickým souborem vlastností, které rozhodují o jejím využití. Je proto v zájmu výrobců osiva a sadby i v zájmu pěstitelů, nákupu, zpracovatelského průmyslu, vnitřního a zahraničního obchodu používat jen správně zvolené a spolehlivě určené odrůdy. U obilnin může být k tomuto účelu využita sestava zásobních a enzymatických proteinů zrna (genetické bílkovinné markery), geneticky fixovaná a nezávislá na ročníku, lokalitě a podmínkách pěstování. Elektroforéza bílkovinných genetických markerů je běžným postupem separace semenných bílkovin v prostředí škrobového či polyakrylamidového gelu. Genetická interpretace, spojená především s elektroforézou ve škrobovém gelu (SGE), umožňuje identifikovat fenotypové projevy jednotlivých bílkovinných alel, jak to respektuje inovovaná státní norma (ČSN , ČSN Pšenice obecná a ječmen - Stanovení odrůdové pravosti a odrůdové čistoty - Část 1: Elektroforéza bílkovin ve škrobovém gelu, resp. Část 2: Elektroforéza bílkovin v polyakrylamidovém gelu). Základním předpokladem úspěšného využití uvedených metod identifikace odrůd pšenice je vytvoření databáze etalonových elektroforetických spekter pomocí vzorků etalonů registrovaných odrůd. Takto definované etalony může poskytovat jedině Odbor odrůdového zkušebnictví ÚKZÚZ. Na základě takto vytvořených katalogů (databáze) je potom možno identifikovat i vzorek bez odrůdové deklarace, případně vzorek směsi odrůd. 2. Použité metody - souborné zhodnocení 1. Elektroforetická analýza gliadinů ve sloupcích škrobového gelu (SGE) 2. Elektroforetická analýza gliadinů v polyakrylamidovém gelu v kyselém prostředí (A PAGE - ISTA) 3. Elektroforetická analýza gliadinů v polyakrylamidovém gelu s Al-laktátovým pufrem (A PAGE-Metakovsky) 4. Elektroforetická analýza podjednotek gluteninů s vysokou molekulovou hmotností (HMW-GS) v zásaditém prostředí dodecylsulfátu sodného (SDS PAGE) Podstata metodického přístupu uvedených metod: Zmíněné elektroforetické metody vycházejí ze skutečnosti, že zásobní proteiny (gliadiny a gluteniny) zrna pšenice jsou geneticky determinovány určitými lokusy - tzn. nejsou závislé na vnějších podmínkách - ročníku, výživě, lokalitě, jsou polymorfní a mohou 4

5 tedy sloužit jako genetické bílkovinné markery pro identifikaci genotypů i pro stanovení jejich homogenity a homo- či heterozygotního stavu a jsou ve vazbě s některými hospodářsky důležitými znaky (odolnost ke rzi travní, mrazuvzdornost, pekařská jakost). Metody jsou na pracovišti GB ve VÚRV prováděny standardním postupem, personál laboratoře má požadovanou erudici a odbornou způsobilost. Shrnutí základních praktických postupů: Základní metodou je SGE gliadinů, kterou lze zjistit poměrně přesně sestavu gliadinových alelických bloků jednotlivých genotypů, resp. odrůd - to znamená zjistit jejich rozdílnost a šíři genetického vybavení. Touto metodou lze rovněž zjistit jejich homogenitu - jak analýzou dostatečného počtu jednotlivých zrn, tak i analýzou směsného vzorku. U nehomogenních (případně heterozygotních) materiálů lze určit počet gliadinových linií, bud' příbuzných - sesterských (některé alely shodné) nebo nepříbuzných - nesesterské (možná příměs nebo cizosprášení). Alternativou k SGE je A PAGE gliadinů dle ISTA a dle Metakovského, od nichž lze očekávat přibližně stejné výsledky, jako od SGE. Tyto metody jsou však pracovně i finančně náročnější. Metoda SDS PAGE gluteninů představuje další stupeň zjišťování polymorfismu, je vhodná k doplnění základní charakterizace výchozích materiálů a k případnému rozlišení gliadinově identických odrůd. HMW - GS jsou však mnohem méně polymorfní než gliadiny. Metoda SDS PAGE je doporučena mezinárodní organizací UPOV (Union for The Protection of New Varieties of Plants) k testování odlišnosti, homogenity a stálosti odrůd. Metoda PAGE ISTA je doporučena mezinárodní mezinárodní semenářskou organizací ISTA (International Seed Testing Assotiation) pro zkoušení osiv. 3. Metodické postupy Elektroforetická analýza gliadinů pšenice ve sloupcích škrobového gelu (SGE) Metoda je prováděna podle ČSN (Pšenice obecná a ječmen, Stanovení odrůdové pravosti a odrůdové čistoty, část 1: elektroforéza bílkovin ve škrobovém gelu (SGE) Technické vybavení Chemikálie: všechny chemikálie stupně analytical reagent (p.a.) nebo lepší - Ethanol - Methylenová zeleň - Mléčnan hlinitý - Kyselina mléčná - Škrob pro elektroforézu - Močovina - Kyselina trichloroctová (TCA) - Nigrosin rozpustný ve vodě. Přístroje: - Přístroj pro elektroforézu ve skleněných trubičkách - Zdroj stejnosměrného proudu (možnost nastavení jak konstantního proudu, tak i konstantního napětí - min. 300V, 100mA) - Laboratorní centrifuga 5

6 - Olejová vývěva - Analytické váhy - Laboratorní předvážky - Třepačka Vortex Sklo, laboratorní pomůcky: Skleněné trubičky o vnitřním průměru 5,5-6,0 mm a délce mm, 250 ml zábrusová baňka s kulatým dnem, skleněný nástavec pro odvzdušnění gelu, kádinky, plynový kahan, vodní lázeň, automatická pipeta, odměrné nádoby (válce, odměrné baňky), gumová hadička o vnitřním průměru 4 mm, plastové kroužky o vnějším průměru 21 mm, plastové centrifugační kyvety 1,5 ml, injekční stříkačka s jehlou, gumový balónek s hadičkou, stojany, skleněné zkumavky, plastová střička 250 ml, laboratorní teploměr Pracovní postup Roztoky: Extrakční roztok: 65% etanol (v/v) s 0,1 g methylenové zeleně ve 100 ml. Elektrodový pufr: 1,5 g mléčnanu hlinitého a 2,5-2,8 ml kyseliny mléčné (h=1,2 g. cm -3 ) se doplní do 1000 ml destilovanou vodou - pufr má mít ph 3,1-3,2. Pufr lze uchovávat při teplotě 4-8 C nejdéle 1 týden. Gelový pufr: 0,75 g mléčnanu hlinitého a 1,5-1,7 ml kyseliny mléčné se doplní do 500 ml destilovanou vodou. Pufr lze uchovávat při teplotě 4-8 C nejdéle 1 týden. Fixační roztok: 100 g kyseliny trichloroctové se doplní vodou do 1000 ml Barvicí roztok: 0,25 g nigrosinu se rozpustí a dobře rozmíchá v 1000 ml destilované vody. Příprava gelu a gelových sloupečků Pro přípravu 25 sloupečků škrobového gelu se do 250 ml skleněné zábrusové baňky odváží 8,5 g škrobu pro elektroforézu a důkladně se smísí s 80 ml gelového pufru. Směs se během 5 minut zahřeje na vodní lázni na teplotu C a přidá se 9,6 g močoviny, která se dokonale rozpustí. Směs se stále míchá a ochladí se pod tekoucí vodou na teplotu cca 55 C a během 15 s se zbaví vzduchových bublin pomocí olejové vývěvy. Škrobový gel teplý přibližně 50 C se poté nasáváním naplní do skleněných trubiček až ke značce ve výšce 110 mm. K nasávání a ke stabilizaci gelu v trubičce se uplatní nasazená gumová hadička o délce cca 100 mm, která se přehne a zajistí kroužkem. Trubičky naplněné gelem se po 25 ks umístí do kádinky o objemu 250 ml, na jejíž dno se předem nalije vrstva cca 10 mm gelu. Sloupce gelu se nechají v trubičkách ztuhnout při laboratorní teplotě po dobu hodin. Extrakce proteinů Zrna pšenice se jednotlivě rozdrtí (např. kladívkem mezi listy hladkého papíru) a drť se vloží do plastové 1,5 ml centrifugační kyvety *, přidá se 0,2 ml extrakčního roztoku, kyvety se uzavřou, směs se promíchá pomocí Vortexu, ponechá se stát při laboratorní teplotě 20 minut, poté se znovu promíchá a uloží na 16 hodin do chladničky. Následně se extrakty odstředí po dobu 2 minut při ot/min. a supernatanty se nanesou pomocí automatické pipety na povrch připravených sloupečků škrobového gelu (0,04 ml/trub.) a zasypou se škrobem pro elektroforézu tak, aby na povrchu sloupce zůstala tenká vrstvička sypkého škrobu. *) v případě směsného vzorku se do centrifugační kyvety odváží 0,05 g šrotu Elektroforéza Skleněné trubičky se škrobovým gelem a extrakty se upevní do horní nádoby elektroforetického přístroje a jeho dolní katodová část se naplní elektrodovým pufrem 6

7 vytemperovaným na 20 C. Tímtéž elektrodovým pufrem se opatrně převrství (např. injekční stříkačkou s jehlou) škrobem zasypané extrakty ve skleněných trubičkách, potom se elektrodovým pufrem doplní horní anodová nádoba přístroje (elektroforéza probíhá směrem od anody ke katodě: od + k -). Ze stabilizovaného zdroje se na elektrody přivede proud o stálé intenzitě 1,5 ma/trub., k čemuž se upraví potřebné napětí. Tyto podmínky se udržují po dobu minut, kdy vstoupí vyextrahované bílkoviny do gelu. Pak se proud přeruší, trubičky s gelem se vyjmou z přístroje, zasypávací škrob se z nich odstraní proudem destilované vody ze střičky, potom se trubičky vloží zpět do elektroforetického přístroje, znovu se převrství pomocí injekční stříkačky elektrodovým pufrem, kterým se opět naplní horní nádoba přístroje a přivede se proud v dané polaritě a stálé intenzitě 1,5 ma/trub. Celková doba trvání elektroforézy se určí podle průchodu barevného markeru (methylenové zeleně) tak, že se doba průchodu markeru násobí koeficientem 1,5. Fixace, barvení, odbarvení Po ukončení elektroforézy se přeruší proud, trubičky se vyjmou z přístroje, gely se z trubiček vytěsní mírným tlakem vzduchu (např. pomocí gumového balónku s hadičkou) do připravených skleněných zkumavek s fixačním roztokem, kde se ponechají v klidu 30 minut. Fixační roztok se slije a do zkumavek se nalije barvicí roztok nigrosinu. který přes noc obarví rozdělené bílkovinné složky. Pak se barvicí roztok slije a přebytečné barvivo se z gelu odstraní vodou z vodovodu, která se během 3 hodin celkem 3x vymění Vyhodnocení experimentálních dat Identifikace alel gliadinových lokusů Gld 1-1A, Gld 2-1A, Gld 1B, Gld 1D, Gld 6A, Gld 6B a Gld 6D se provede podle katalogu gliadinových alelických bloků (Tabulka I., Obrázek 1, Obrázek 2 a-b.). Uvedená nomenklatura byla navržena dle Šaška et al. (2000). Identifikované alely u analyzovaného genotypu pšenice se potom zapíší pomocí číslic a příslušné elektroforetické spektrum pšenice tak lze vyjádřit pomocí gliadinového alelického vzorce Úskalí metody, nevýhody a omezení pro rutinní využití Úskalím metody může být nedodržení přesného pracovního postupu v jakémkoli kroku (např. příprava gelu, ph pufru, atd.), nevýhodou elektroforézy v trubičkách obecně je obtížná porovnatelnost jednotlivých elektroforeogramů ( u uvedené metody je však tato nevýhoda zeslabena genetickou interpretací výsledků) Přednosti metody, možnosti rozšíření Předností metody je její relativní zdravotní nezávadnost a zvláště možnost genetické interpretace získaných výsledků, tj. jejich vyjádření ve formě gliadinového alelického vzorce Seznam literatury ČSN Pšenice obecná a ječmen - Stanovení odrůdové pravosti a odrůdové čistoty - Část 1: Elektroforéza bílkovin ve škrobovém gelu (SGE). Šašek, A., Černý, J., Sýkorová,S., Bradová, J.: Inovované katalogy bílkovinných genetických markerů pšenice seté a ječmene. ÚZPI Praha

8 Tabulka I.: Charakteristiky gliadinových alelických bloků určených metodou SGE Označení gliadinového alelického bloku Charkteristika gliadinového alelického bloku Počet pruhů; relativní elektroforetická mobilita pruhů (REM); intenzita zbarvení pruhů (RIB) 8 Zjištění alely Predikční hodnota pekařské jakosti * GLD 1-1A 0 Saxana 1 13,5(3)-27,5(4)-60,5(5) Vlasta ,0(3)-30,0(1)-33,5(3)-36,5(4)-39,5(1)-60,0(4) Akteur 1,5 3 27(3)-29,0(1)-31,5(2)-56,5(4) Alana ,5(4)-77,0(2) Asta 1,5 6 23,0(3)-26,0(1)-27,5(4)-30,0(2)-32,0(3)-60,5(5) Kerubino 0,5 9 57,0(4)-78,0(3) Batis ,0(4) Bill 0, ,0(3)-29,0(1)-31,5(2)-59,5(4) Torysa 0, ,0(3)-29,0(1)-31,5(2) Sandra B 1, ,5(3)-27,5(4) Vlada 1, ,5(5) Livia 0 GLD 2-1A 0 Alana ,5(4) Triso 0,5 2 32,0(4) Batis ,5(4) Barroko 0,5 GLD 1B 1 36,0(4)-45,0(1)-47,5(1)-50,5(1-)54,0(5)76,5(3)-79,5(1) Viginta 3,5 3 26,0(1)-30,0(2)-34,5(5)-34,5(3)-42,5(5)-45,0(1)-48,5(3)-62,0(2)- Livia 0 66,0(2) 4 33,5(4)-36,5(1)-41,0(1)-44,0(2)-54,0(5) Akteur ,0(3)-31,0(4)-42,5(3)-54,0(4) Corsaire 2, ,0(4)-21,0(3)-44,0(2)-54,0(5) Košútka 1,5 GLD 1D 1 13,5(2)-17,5(4)-21,0(3)-55,0(5)-61,5(1) Akteur ,5(4)-21,0(4)-55,0(5)-61,5(1) Hedvika ,5(5)-21(4)-26(1)-38,0(1)-55,0(5)-62,5(2) Sakura 0,5 5 12,5(3)-16,5(3)-19,0(3)-23,5(3)-26,0(1)-38,0(1)-55,0(5)-61,5(1) Vlada ,5(4)-21,0(4)-23,5(3)-55,0(5)-61,5(2) Barryton ,5(3)-16,5(3)-19,0(3)-23,5(3)-55,0(5)-61,5(1) Linda ,5(2)-17,5(4)-21(3)-23,5(3)-55,0(5)-61,5(1) Batis ,5(2)-17,5(4)-21,0(3)-55,0(5)-61,5(4) Alana ,5(4)-21,0(4)-55,0(5)-61,5(4) Blava 0, ,5(3)-16,5(3)-19,0(3)-23,5(3)-26,0(1)-38,0(1)-55,0(5)-61,5(4) Ilona 0,5 GLD 6A 1 76,0(1)-81,0(2)-85,0(2)-88,5(2) Barroko 0,5 2 81,0(2)-85,0(5)-88,5(2) Alana 0,5 3 70,5(1)-76,0(1)-81,0(1)-87,0(3)-91,0(4)-93,5(1)-96,0(2) Batis ,5(1)-76,0(1)-81,0(1)-85,5(3)-91,0(4)-93,5(1)-96,0(2) Rapsodia ,5(1)-76,0(1)-81,0(1)-87,0(0)-91,0(4)-93,5(1)-96,0(2) Akteur 0 GLD 6B 1 56,5(1)-69,0(5)-74,0(4) Akteur ,5(3)-71,0(4) Alana ,0(1)-66,5(3)-70,0(1)-72,0(1)-74,0(4) Clarus 0,5 4 66,5(3)-74,5(4) Athlet 0

9 8 66,5(3)-71,0(4)-74,5(5) Alibaba 0, ,5(3)-71,0(4)-89,0(2) Swedjet N 12 66,5(4)-73,5(4)-76,5(4) Windsor N 13 66,5(3)-71,0(3)-73,5(4)- Floret N 14 66,0(5)-69,0(5)-74,0(4) Vinjet N 16 74,0(4) Apache 0 GLD 6D 1 63,5(3)-68,5(4)-74,0(4)-82,0(3)-85,0(2)-87,5(4) Alibaba 0,5 2 63,5(2)-68,5(4)-74,0(4)-82,0(3)-85,0(2)-90,5(4) Vlada ,5(3)-68,5(4)-72,5(3)-82,0(3)-85,0(2)-90,5(4) Barroko 0,5 5 64,5(3)-68,5(4)-72,0(3)-82,0(3)-85,0(2)-87,5(4) Akteur 0,5 6 63,5(3)-68,5(4)-72,5(3)-82(3)-85,0(2)-87,5(4) Cubus ,5(3)-68,5(4)-74,0(4)-78,5(4)-82,0(2)-85,0(2)-87,5(4) Zuzana 0,5 9 62,5(2-0)-68,5(4)-73,5(4)-83,0(2)-86,0(2) Alana ,0(4)-68,5(4)-74,0(4)-83,0(3)-86,5(3) Banquet 0,5 * Šašek et al., 2000 Obrázek 1.: Škála intenzity zbarvení elektroforetických pruhů (RIB) 9

10 Obrázek 2a-b.: Popis gliadinových alel získaných metodou SGE (počet pruhů, REM, RIB Obr.1) 10

11 Obrázek 3.: Příklad vyčlenění gliadinových alelických spektra bloků zón z elektroforetického Gliadinový alelický vzorec : GLD 1-1A9-2-1A2-1B4-1D8-6A3-6B8-6D Elektroforetická analýza gliadinů pšenice v polyakrylamidovém gelu v kyselém prostředí (A PAGE ISTA ) Metoda je prováděna podle ČSN Pšenice obecná a ječmen - Stanovení odrůdové pravosti a odrůdové čistoty - Část 2: Elektroforéza bílkovin v polyakrylamidovém gelu (A PAGE). Jedná se o standardní referenční metodu doporučenou ISTA pro identifikaci odrůd pšenice a ječmene pomocí elektroforézy v polyakrylamidovém gelu (Draper, 1987) Technické vybavení Chemikálie: všechny chemikálie stupně analytical reagent (p.a.) nebo lepší - Akrylamid (AA) - Bisakrylamid (BIS) - Kyselina askorbová - Močovina - Síran železnatý - TEMED (NNN'N' - tetramethylaethylendiamin) - Persíran amonný (APS) - 2-chlorethanol - Kyselina trichloroctová (TCA) 11

12 - Ledová kyselina octová - Glycin - Pyronin G - Glycerol - Methanol - Coomassie Brilliant Blue R-250 Přístroje: - Přístroj pro vertikální elektroforézu, zajišťující udržování konstantní teploty gelů. Doporučená tloušťka gelu ne více než 1,5 mm. - Zdroj stejnosměrného proudu (možnost nastavení jak konstantního proudu, tak i konstantního napětí) - Chladicí termostat - Laboratorní centrifuga - Prosvětlovací panel - Analytické váhy - Laboratorní předvážky - Třepačka Vortex - Laboratorní digestoř Sklo, laboratorní pomůcky: Laboratorní sklo, skleněné desky pro přípravu gelu (gelové kazety), stativ na nalévání gelu, odměrné nádoby (válce, odměrné baňky), nádoby na fixaci a barvení gelu, plastové centrifugační kyvety 1,5 ml, injekční stříkačka s jehlou, přesná injekční stříkačka Hamilton pro nanášení vzorků, automatická pipeta, osobní ochranné pracovní prostředky - rouška, rukavice! Pracovní postup Roztoky: Extrakční roztok: 25ml 2-chlorethanolu, 50mg Pyroninu - doplnit destilovanou vodou do 100ml. Tento roztok může být skladován 2 měsíce při 4 C. Elektrodový pufr: 4 ml kyseliny octové (ledové); 0,4 g glycinu- doplnit vodou do ml (ph 3,1) Gelový pufr: 20 ml kyseliny octové (ledové); 1,0 g glycinu - doplnit vodou do ml (ph 3,2) 1% persíran amonný: 1g do 10ml dest. vody Fixační a barvící roztok: g kyseliny trichloroctové doplnit dest.vodou do 1000ml 2. 5g Coomassie Brilliant Blue R-250 a 0,5g Coomassie Brilliant Blue G-250 Rozpustit ve 100ml ethanolu. Na fixaci a obarvení jednoho gelu 10ml roztoku č.2 doplnit do 200ml roztoku č.1 (lze použít 3x). 2% glycerol: 20ml glycerolu doplnit dest. vodou do 1000 ml Příprava gelu Podle návodu výrobce se sestaví čisté a suché kazety na gel. Příprava 100ml separačního gelu: 60 ml gelového pufr 10g akrylamidu 12

13 0,4g bisakrylamidu 6g močoviny 0,1 g kyseliny askorbové 0,005 g síranu železnatého Teplota roztoků by měla být co nejnižší (blízká 0 C). Rozmíchat a doplnit do 100 ml gelovým pufrem. Potom se přidá postupně 0,3ml TEMEDu a 0,2 ml persíranu amonného, vše se zamíchá a gelový roztok se potom pečlivě nalije do připravených kazet tak, aby se netvořily bubliny. Je třeba pracovat poměrně rychle, protože gel velmi snadno polymeruje. Vloží se "hřebeny" pro zformování jamek a nechá se polymerovat asi 2 hodiny (gel pro elektroforézu lze připravit den předem a uchovat v chladničce do druhého dne). Extrakce proteinů Jednotlivá zrna se rozmělní kladívkem (nebo jiným nástrojem) a přemístí do 1,5ml centrifugačních kyvet*). Přidá se 0,4 ml extrakčního roztoku, obsah se důkladně promíchá na Vortexu a nechá (uzavřený nebo utěsněný) přes noc stát při laboratorní teplotě. Obsah kyvet je centrifugován (15000 ot/min) po dobu 5ti minut. *) v případě směsného vzorku se do centrifugační kyvety odváží 0,05 g šrotu Elektroforéza Po zpolymerizování se hřeben vytáhne z gelu a jamky pro vzorky se promyjí elektrodovým pufrem a desky se upevní do přístroje. Do jamek v gelu se pomocí injekční stříkačky Hamilton nanese příslušné množství vzorku (10-20 µl) opatrným podvrstvením pod pufr a elektrodové nádoby se naplní vychlazeným elektrodovým pufrem. Aparatura se uzavře víkem a připojí ke zdroji proudu. Elektroforéza probíhá při konstantním napětí 500 V po dobu dvojnásobku běhu markeru Pyronin G. Je třeba pamatovat na to, že anoda (+) je v tomto systému horní elektrodou, a podle toho je třeba nastavit polaritu elektrického pole. Teplota by měla být udržována na 10 C pomocí chladicího termostatu. Fixace, barvení, odbarvení Gelové kazety se vyjmou z nádob, otevřou se a gely se vloží do plastikové nádoby obsahující 10 ml 1 % roztoku barviva ve 200 ml 10% kyseliny trichloroctové. Barvíme přes noc. Precipitované barvivo se z povrchu gelu opatrně odstraní štětečkem. Pro zvýšení kontrastu se gel promyje ve vodě. Gely je možné uchovávat v polyetylenových sáčcích při teplotě 4 C několik měsíců bez zhoršení kvality. Gely lze uchovávat i v suchém stavu. Sušení gelů Polyakrylamidové (PAA) gely získané touto metodou lze poměrně jednoduše sušit a poté skladovat v usušeném stavu. Postup sušení: Připraví se skleněná deska (rozměry desky musí být větší než velikost výsledného PAGE gelu). Dále je nutno připravit dva obdélníky z celofánu (rozměry 1. obdélníku se rovnají rozměrům skleněné desky; strany 2. obdélníku jsou cca o 2 cm delší než strany skleněné desky). Takto připravený celofán a PAA gel se ponoří do 2% roztoku glycerolu (cca 2 hodiny). Poté se 1. celofánový obdélník položí na skleněnou desku, na něj se umístí PAA gel a přikryje se 2. celofánovým obdélníkem. Okraje celofánu se přehnou pod skleněnou desku a plocha se eventuelně vyhladí plastovým válečkem (odstranění vzduchových bublin). Ponechá se sušit při laboratorní teplotě v dostatečné vzdálenosti od zdrojů tepla a světla. 13

14 3.2.3.Vyhodnocení experimentálních dat Identifikace odrůd se provádí porovnáním elektroforetických gliadinových spekter s elektroforetickými spektry etalonů jednotlivých odrůd. Přitom se srovnává počet jednotlivých pruhů (zón), jejich vzájemná poloha charakterizovaná relativní elektroforetickou mobilitou (REM) a relativní intenzitou zbarvení (RIB). Toto porovnání se provádí vizuálně. K vyhodnocení lze též využít počítačové denzitometrie Úskalí metody, nevýhody a omezení pro rutinní využití Úskalím metody je rizikovost používaných chemikálií, kterou lze snížit používáním hotových komerčních roztoků akrylamidu a BIS (odpadá manipulace při navažování), tyto jsou ale nepoměrně dražší než základní chemikálie. Finančně ještě náročnější by bylo použití hotových komerčních gelů, provedení elektroforézy je pak ale podstatně standardnější. Nevýhodou metody je absence genetické interpretace elektroforetických spekter gliadinů Přednosti metody, možnosti rozšíření Standardní referenční metoda, kterou schválila organizace International Seed Testing Association (ISTA,Draper 1987). Předností metody je i možnost dlouhodobého skladování a snadné manipulace s usušenými gely. Modifikace elektroforézy v plotnách polyakrylamidového gelu umožňuje velmi dobrou porovnatelnost mezi jednotlivými drahami na jednom gelu a přesné provádění všech metodických kroků může zvýšit standardnost získaných výsledků Seznam literatury Draper,S.R: ISTA variety committee. Report ofthe working group for biochemical test for cultivar identification Seed Sci. Technol., 15, 1987: ČSN Pšenice obecná a ječmen - Stanovení odrůdové pravosti a odrůdové čistoty - Část 2: Elektroforéza bílkovin v polyakrylamidovém gelu (A PAGE) 3.3. Elektroforetická analýza gliadinů pšenice v polyakrylamidovém gelu s Allaktátovým pufrem (A PAGE-Metakovsky) Další z metod, pomocí níž lze charakterizovat pšeničné gliadiny, je elektroforéza v polyakrylamidovém gelu v kyselém prostředí (A-PAGE) s použitím mléčnanu hlinitého (ph 3,1). Níže uvedený metodický postup je optimalizací metody dle Metakovského a Novoselké (1991), kteří modifikovali postup Bushuka a Zillmana (1978) Technické vybavení Chemikálie: všechny chemikálie stupně analytical reagent (p.a.) nebo lepší - Akrylamid (komerční 40% roztok) - Bisakrylamid (komerční 2% roztok) - Kyselina askorbová - Mléčnan hlinitý - Síran železitý - Kyselina mléčná - Hydroxid sodný - Peroxid vodíku 14

15 - Kyselina trichloroctová (TCA) - Pyronin Y - Glycerol - Ethanol - Coomassie Brilliant Blue R-250 Přístroje: - Přístroj pro vertikální elektroforézu, zajišťující udržování konstantní teploty gelů. Doporučená tloušťka gelu maximálně 1,5 mm. - Zdroj stejnosměrného proudu (možnost nastavení konstantního proudu i konstantního napětí) - Chladicí termostat - Laboratorní centrifuga - Prosvětlovací panel - Analytické váhy - Laboratorní předvážky - Třepačka Vortex - Laboratorní digestoř Sklo, laboratorní pomůcky: Laboratorní sklo, skleněné desky pro přípravu gelu (gelové kazety), stativ na nalévání gelu, odměrné nádoby (válce, odměrné baňky), nádoby na fixaci a barvení gelu, plastové centrifugační kyvety 1,5 ml, injekční stříkačka s jehlou, přesná injekční stříkačka Hamilton pro nanášení vzorků,, automatická pipeta, osobní ochranné pracovní prostředky - rouška, rukavice! Pracovní postup Roztoky Extrakční roztok - 70 ml 96% ethanolu doplnit destilovanou vodou na 100ml Vzorkový pufr - 15 ml Glycerinu; 0,0125 g Pyroninu Y; doplnit dest. vodou na 25 ml Základní roztok A - 68 ml 25%ního roztoku kyseliny mléčné se zředí destilovanou vodou na 900 ml; hodnota ph se nastaví na 3,1 pomocí čerstvě připraveného 6M hydroxidu sodného (6 g NaOH ve 28 ml dest. vody.); po úpravě ph se objem doplní dest. vodou na 1 litr. Základní roztok B - 7,75 g mléčnanu hlinitého rozpustit v 50 ml 25%ní kyseliny mléčné; dest. vodou doplnit na objem 100 ml. Provozní pufr - 90 ml Základního roztoku A se smíchá s 3 ml Základního roztoku B, doplní se dest. vodou na 1 l a dobře zamíchá ( zkontrolovat, zda souhlasí ph 3,2 ) Všechny pufry uchovávat v chladničce. Extrakce proteinů Jednotlivá zrna se rozmělní kladívkem (nebo jiným nástrojem) a přemístí do 1,5ml centrifugačních kyvet*). Přidá se 125 µl extrakčního roztoku, obsah se důkladně promíchá na Vortexu a nechá (uzavřený nebo utěsněný) přes noc stát při laboratorní teplotě. Druhý den se přidá 135 µl vzorkového pufru, dobře se promíchá na Vortexu. Obsah kyvet je centrifugován po dobu 5ti minut (15000 ot/min). Na gel se nanáší 10 µl extraktu pomocí injekční stříkačky Hamilton podvrstvením pod pufr v gelových jamkách. Vzorky mohou být uloženy více dnů v chladničce, avšak nezamrazovat! *) v případě směsného vzorku se do centrifugační kyvety odváží 0,05 g šrotu 15

16 Příprava gelového roztoku Základní roztok 40 ml 40%ního akrylamidu 30 ml 2%ního bisakrylamidu 0,5 g mléčnanu (laktát) hlinitého 0,2 g askorbové kyseliny 3,6 ml 25%ního roztoku kyseliny mléčné (25 ml kys. mléčné 80%ní + 55 ml dest. H 2 O) 2,0 ml roztoku síranu železitého (45 mg /25 ml dest. H 2 O, vždy čerstvě připravovat). Doplnit dest. vodou na 200 ml a uchovávat v chladničce (několik týdnů) Nalévání gelu Podle návodu výrobce se sestaví čisté a suché kazety na gel. Gelový roztok, nádoby a nalévací kazety uchovávat pokud možno v chladu! Na 1 gel (např. OWL Pinguin, 14x16x0,15cm) - 36 ml základního roztoku + 68 µl 0,7% H 2 O 2 (čerstvý), krátce zamíchat a pomocí 10ml-pipety naplnit mezi desky (eventuelně nasadit hřeben již předem - gel polymeruje během několika málo minut!). Po cca 1 hodině je možno gel použít. Elektroforéza Po zpolymerizování se hřeben vytáhne z gelu a jamky pro vzorky se promyjí elektrodovým pufrem a desky se upevní do přístroje. Do jamek v gelu se pomocí injekční stříkačky Hamilton nanese příslušné množství vzorku (10µl) opatrným podvrstvením pod pufr a elektrodové nádoby se naplní vychlazeným elektrodovým pufrem. Provozní podmínky (pro 2 gely o rozměrech 14x16x0,15cm) Směr průchodu stejnosměrného proudu od anody (+) ke katodě (-). Vodní chlazení na 14 C. Provozní pufr ve spodní komoře se může použít víckrát, v horní nádobě se používá vždy čerstvý. Napětí [V] Síla proudu [ma] Výkon[W] doba průběhu [min.] dvojnásobek doby dělení Doba dělení: čelo markerovací barvy se nechá dojít na konec gelu a doba dělení se prodlouží o jeden násobek trvání elektroforézy od začátku do doby, kdy barevný marker opustí gel. Fixace, barvení, odbarvení Skleněné desky s gelem se vyjmou z přístroje, gel se sejme a ponechá cca 30 minut ve fixačním roztoku (10% roztok TCA). Po této době se fixační roztok slije a gel se přelije barvicím roztokem ( 8% Coomasie R 250 w/v; 10% ethanol v/v; 8% TCA w/v) a ponechá se barvit do druhého dne. Odbarvuje se v destilované vodě dle potřeby. Sušení gelů: viz Vyhodnocení experimentálních dat Identifikaci alel gliadinových lokusů Gli-A1, Gli-B1, Gli-D1, Gli-A6, Gli-B6 a Gli-D6 lze provést dle katalogu gliadinových alel publikovaných Metakovským (1991), (Obrázek 4). 16

17 3.3.4.Úskalí metody, nevýhody a omezení pro rutinní využití Úskalím metody je rizikovost používaných chemikálií, kterou lze snížit používáním hotových komerčních roztoků akrylamidu a BIS (odpadá manipulace při navažování), tyto jsou ale nepoměrně dražší než základní chemikálie. Finančně ještě náročnější by bylo použití hotových komerčních gelů, provedení elektroforézy je pak ale podstatně standardnější Přednosti metody, možnosti rozšíření Předností metody je možnost genetické interpretace elektroforetických gliadinových spekter, tj. jejich vyjádření ve formě gliadinového alelického vzorce, což výrazně usnadňuje práci se získanými výsledky podobně jako v případě použití škrobové gelové elektroforézy (SGE). Předností metody je i podobně jako u PAGE ISTA možnost dlouhodobého skladování a snadné manipulace s usušenými gely. Modifikace elektroforézy v plotnách polyakrylamidového gelu umožňuje velmi dobrou porovnatelnost mezi jednotlivými drahami na jednom gelu a přesné provádění všech metodických kroků může zvýšit standardnost získaných výsledků Seznam literatury Bushuk, W., Zillman, RR: Wheat cultivar identification by gliadin elektroforeograms/. Apparaturs, methods and nomenklature. Can.J. PI. ScL, 58, 1978: Černý, J., Šašek, A.: Bílkovinné signální geny pšenice obecné. ÚZPI, Praha, 1996 Metakovsky E.V.: Gliadin allele identification in common wheat. II. Catalogue of giiadin aileles in common wheat. J. Genet. Breed., 45,1991: Metakovsky, E.V., Novoselskaya, A.Yu.: Gliadin ailele identification in common wheat I. Methodological aspects of the analysis of gliadin patterns by one-dimensional polyacrylamide gel electrophoresis. J. Genet. & Breed. 45: (1991) 17

18 Obrázek 4.: Katalog gliadinových alel publikovaných Metakovským (1991); Schématické znázornění gliadinových alelických bloků,, (a)- bloky kontrolované Gli-A1, (b)- Gli-B1, (c)- Gli-D1, (d)- Gli-A2, (e)- Gli-B2, (f)- Gli-D2. B: schéma gliadinového spektra odrůdy Bezostá 1. 18

19 19

20 3.4. Elektroforetická analýza podjednotek gluteninů s vysokou molekulovou hmotností (HMW-GS) pšenice v zásaditém prostředí dodecylsulfátu sodného (SDS PAGE) Metoda SDS PAGE je doporučena mezinárodní organizací UPOV (Union for The Protection of New Varieties of Plants) k testování odlišnosti, homogenity a stálosti odrůd (Guidelines for the conduct of tests for distinctness, uniformity and stability - TG/3/ ) Technické vybavení Chemikálie - všechny chemikálie stupně analytical reagent (p.a.) nebo lepší - Akrylamid (AA) - Bisakrylamid (BIS) - Tris(hydroxymethyl) aminomethan(tris) - Dodecylsulfát sodný (SDS) - Persíran amonný (APS) - 2-merkaptoethanol - TEMED (NNN'N' - tetramethylethylendiamin) - Kyselina trichloroctová (TCA) - Ledová kyselina octová - Glycin - Pyronin G - Glycerol - Methanol - Coomassie Brilliant Blue R-250 Přístroje: - Přístroj pro vertikální elektroforézu, zajišťující udržování konstantní teploty gelů. Doporučená tloušťka gelu ne více než 1.5 mm (např. přístroj pro elektroforézu Pinguin 14xl6 cm OWL) - Zdroj stejnosměrného proudu (možnost nastavení jak konstantního proudu, tak i konstantního napětí) - Chladicí termostat - Laboratorní stolní centrifuga - Třepačka na barvení a odbarvení gelů - Prosvětlovací panel - Analytické váhy - Laboratorní předvážky - Třepačka Vortex - Laboratorní digestoř Sklo, laboratorní pomůcky: Laboratorní sklo, skleněné desky pro přípravu gelu (gelové kazety), stativ na nalévání gelu, odměrné nádoby (válce, odměrné baňky), nádoby na fixaci a barvení gelu, plastové centrifugační kyvety 1,5 ml s perforovanými víčky, injekční stříkačka s jehlou, přesná injekční stříkačka Hamilton pro nanášení vzorků, automatická pipeta, osobní ochranné pracovní prostředky - rouška, rukavice!. 20

21 Pracovní postup Roztoky: A. Zásobní pufrový roztok na dělicí gel (0,75M TRIS HCl, ph 8,8): 91,14 g TRIS a 9,75 ml koncentrované HCl se doplní destilovanou vodou do 1000ml. Skladovat v lednici. B. Zásobní pufrový roztok na zaostřovací gel (0,25 M TRIS HCl, ph 6,8: 6,1 g Tris, 4,12 ml koncentrované HCl a špetka bromfenolové modři se doplní vodou do 200 ml. Skladovat v lednici. C. Extrakční roztok: 30 ml roztoku 1.2, 24 ml roztoku 1.5, 12 ml glycerolu,6 ml 2- merkaptoethanolu, 48 ml vody a špetka bromfenolové modři, promíchat a skladovat při laboratorní teplotě v digestoři! D. Zásobní roztok akrylamidu a bisakrylamidu (AA+BIS): 150 g AA a 4 g BIS doplnit vodou do 500 ml. Rukavice a rouška při navažování! Skladovat za lab. teploty! E. 10 % (w/v) roztok SDS : 10 g SDS doplnit dest. vodou do 100 ml. Skladovat za lab. teploty! F. 10% (w/v) roztok APS :0,5 g persíranu amonného doplnit dest. vodou do 5 ml. Připravovat vždy čerstvý!! G. Elektrodový pufr zásobní: 0,25 M Tris, 1,92 M glycin (ph 8,3): 30,3 g Tris, 144 g glycin, 10 g SDS doplnit vodou do m Pohotovostní elektrodový pufr pro elektroforézu (roztok Gp): zásobní elektrodový pufr zředěný 10x dest. vodou ( 1:9) H. Fixační roztok: 20 % (w/v) roztok kyseliny trichloroctové(tca) g TCA doplnit dest. vodou do 1000 ml. J. Směsný roztok: 250 ml methanolu, 100 ml kyseliny octové, 650 ml dest. vody K. Barvicí roztok: 0, 05 % roztok Commassie Brilliant Blue R 250 (CBB R250) ve směsném roztoku - 0,5 g CBB R250 v 1000 ml směsného roztoku. L. 2% glycerol (v/v): 20ml glycerolu doplnit do 1000ml dest. vody. Extrakce proteinů Jednotlivá zrna se rozmělní kladívkem (nebo jiným nástrojem). Melivo se převede do 3 ml centrifugačních kyvet*). Na 1 rozmělněné zrno se použije 0,3 ml extrakčního roztoku C, po zamíchání navortexu se zrna extrahují 2 hod. za laboratorní teploty, poté jsou extrakty povařeny na vroucí vodní lázni 2 minuty a ponechány vychladnout. Kyvety jsou centrifugovány 2 min. při ot/min. *) v případě směsného vzorku se do centrifugační kyvety odváží 0,05 g šrotu Příprava gelu Sestavit suché a čisté gelové kazety (dle typu přístroje) Každý gel se skládá z dělicího a zaostřovacího gelu Příprava 10% dělicího gelu Za pomalého míchání jsou přidávány jednotlivé složky (množství dle typu přístroje a velikosti desek) Uvedená množství - pro přístroj OWL Pinguin 14x16x 0,15cm) 42 ml (AA a BIS) roztok D 63 ml (gelový pufr 8,8) roztok A 1,26 ml (SDS) roztok E 21 ml vody 21

22 Polymerace se nastartuje přidáním: 75 µl TEMEDu 1,26 ml 1.1.6(APS) roztok F Gel se pečlivě nalije mezi skla tak, aby se netvořily vzduchové bublinky. Gelové kazety se naplní 30 mm pod okraj (prostor pro 30 mm vrstvu zaostřovacího gelu). Povrch gelu se převrství opatrně vodou (injekční stříkačkou), nechá se cca 30 minut polymerovat. Po skončení polymerace se voda slije, povrch gelu se osuší filtračním papírem a kazety se až po okraj naplní zaostřovacím gelem. Příprava 4,6 % zaostřovacího gelu: Za pomalého míchání jsou přidávány jednotlivé složky (množství dle typu přístroje a velikosti desek) 6 ml (AA a BIS) roztok D 20 ml 2.1.2(gelový pufr 6,8) roztok B 0,4 ml (SDS) roztok E 13,2 ml vody Polymerace se nastartuje přidáním: 16 µl TEMEDu 0,4 ml (APS) roztok F Gel se pečlivě nalije na spodní gel tak, aby se netvořily vzduchové bublinky, vloží se hřebeny pro tvorbu jamek. Polymerace probíhá cca 30 minut. Potom se hřebeny opatrně vyjmou a jamky v gelu se promyjí a naplní elektrodovým pufrem roztok Gp. Doporučuje se připravit si gely den předem před vlastní elektroforézou a skladovat je v chladničce. Nanášení vzorků Do každé jamky se nanáší 15µl extraktu. Elektroforéza Podmínky SDS PAGE pro HMW-GS Elektrodový pufr Roztok Gp Proud 0,2 ma/ mm 2 gelu (1gel- 14 cm šířka;1mm tloušťka = 28mA) Napětí max. 300 V Teplota 8 C Směr migrace od katody (-) k anodě (+) Doba dělení: Čelo markerovací barvy se nechá dojít na konec gelu a doba dělení se prodlouží o 1,5 násobek trvání elektroforézy od začátku do doby, kdy barevný marker opustí gel. 22

23 Fixace, barvení, odbarvení, sušení Fixace: Skleněné desky s gelem se vyjmou z přístroje, gel se sejme a ponechá cca 30 minut ve fixačním roztoku H. Roztok H se slije a gel se přelije roztokem J a ponechá se cca 30 minut. Barvení: Slít roztok J a přelít barvicím roztokem K. Ponechá se barvit přes noc (bez třepání). Odbarvení: Slít roztok K a přelít roztokem J, ponechat cca 30 minut. Slít roztok J (odbarvit jej aktivním uhlím a lze jej znovu použít) a nakonec přelít gely destilovanou vodou. Sušení: Viz kapitola Vyhodnocení experimentálních dat Vyhodnocení získaných elektroforeogramů se provádí pomocí schématického znázornění elektroforetických mobilit jednotlivých HMW-GS alel kodovaných lokusem Glu-3(Obrázek 5a-c). (Payne, Lawrence, 1983). Doporučuje se zařadit do elektroforetického běhu analyzovaným odrůdám o neznámé sestavě HMW-GS jeden či dva genotypy o známém složení HMW-GS (Obrázek 6.). Identifikace jednotlivých HMW-GS je pak snazší. Identifikované alely se potom zapíší pomocí číslic a vytvoří SDS PAGE gluteninový alelický vzorec Úskalí metody, nevýhody a omezení pro rutinní využití: Viz kapitola Přednosti metody, možnosti rozšíření Předností metody je genetická interpretace získaných výsledků tj. jejich vyjádření ve formě gluteninového alelického vzorce - tzn. relativní nezávislost na případných metodických odchylkách v hodnotách relativní elektroforetické mobility na jednotlivých gelech. Tuto metodu lze využívat jako doplňující metodu k identifikaci pšeničných genotypů, vzhledem k mnohem nižšímu polymorfismu na rozdíl od gliadinů. Použití metody je vhodné pro případy, kdy zjistíme shodnou sestavu gliadinových lokusů u genotypů, které chceme dále rozlišit - tento další systém může, ale také vždy nemusí znamenat rozšíření polymorfismu genetických markerů. HMW-GS lze rovněž využívat k predikci pekařské jakosti genotypů pšenice (Šašek, Černý, 1996). 23

24 Seznam literatury Černý, J., Šašek, A.: Bílkovinné signální geny pšenice obecné. ÚZPI, Praha, 1996 Guidelines for the conduct of tests for distinctness, uniformity and stability. Wheat. (Aditional usefull explanation). TG/3/11, , (1996) Payne,P.I., Lawrence,G.J. Catalogue of alleles for the gene loci, Glu-A1, Glu-B1 and Glu-D1 which code for highmolecular weight subunits of glutenin in hexaploid wheat. Cereal.Res. Communs.,11,1983 č.1, s Obrázek 5 a-c : Schématické znázornění elektroforetických mobilit jednotlivých zón HMW- GS alel kodovaných lokusem Glu-3( Payne, Lawrence,1983) Obrázek 5a.: Glu A1 lokus Obrázek 5b.: Glu B1 lokus 24

25 Obrázek 5b.: Glu D1 lokus Obrázek 6.: Označení jednotlivých HMW-GS na SDS PAGE gelu ( HMW-GS běžně se vyskytujících u českých registrovaných odrůd) HMW-GS Odrůdy: Alana (1), Ilias(2), Heroldo(3), Akteur(4), Clarus(5), Floret(6), Rapsodia(7), Swedjet(8) 25

26 Tabulka II.: Popis HMW-GS alel Lokus Glu-A1 Glu-B1 Glu-D1 HMW- Alela GS a 1 b 2* c null a 7 b 7+8 c 7+9 d 6+8 e 20 f g h i j 21 a 2+12 b 3+12 c 4+12 d 5+10 Pozn.: Nomenklatura dle Payne, Lawrence, (1983) 4. Zhodnocení finanční, časové a kapacitní náročnosti uvedených metod Časová, pracovní a kapacitní náročnost je u metod SGE, SDS PAGE a obou A PAGE metod shodná. Výsledky elektroforetických analýz 24 jednotlivých zrn (nebo směsných vzorků) mohou být k dispozici za 48 hodin. Použití metody SGE je ve srovnání s metodami elektroforézy v polyakrylamidovém gelu relativně nerizikové z hlediska bezpečnosti práce. Používání všech elektroforetických metod v polyakrylamidovém gelu je finančně náročnější (dražší a více různých chemikálií i dokonalejší přístroje) a i rizikové z hlediska bezpečnosti práce, roztoky akrylamidu a bisakrylamidu jsou látky vysoce toxické a karcinogenní. Při manipulaci s nimi musejí být dodržována přísná bezpečnostní opatření, nezbytné je používání OOPP. Odborně nejnáročnější část analýz představuje vlastní vyhodnocení výsledků - identifikace alel gliadinových resp. gluteninových lokusů, které vyžaduje vysoce erudovaného zkušeného odborníka. 26

27 5. Katalog gliadinových a HMW- gluteninových elektroforetických spekter registrovaných odrůd jarní a ozimé pšenice zjištěných metodami SGE a SDS PAGE Elektroforetická spektra gliadinů jsou vyjádřena v podobě sestav gliadinových alelických bloků, zjištěných na lokusech Gld 1-1A, Gld 2-1A, Gld 1B, Gld 1D, Gld 6A, Gld 6B a Gld 6D. Elektroforetická spektra HMW- gluteninů jsou vyjádřena v podobě sestav gluteninových alelických bloků, zjištěných na lokusech Glu 1A, Glu 1B, Glu 1D. Zjištěné sestavy gliadinových a gluteninových alel jednotlivých odrůd pšenice vyjádřené v podobě gliadinových (SGE) a gluteninových (SDS PAGE) alelických vzorců jsou přehledně uvedeny v Tabulkách III (jarní) a IV(ozimé). Využívání registrovaných odrůd pšenice je spojeno s jejich rychlou identifikací. Význam rychlého a spolehlivého určení odrůd je podmiňován odlišností odrůd v řadě hospodářsky významných vlastností, protože každá odrůda se vyznačuje specifickým souborem vlastností, které rozhodují o jejím využití. Předpokladem využití metody bílkovinných genetických markerů (gliadinů, případně gluteninů) pro identifikaci odrůd je jedinečnost a specifičnost elektroforetických spekter každé registrované odrůdy pšenice. Dále je nezbytná znalost případného vnitroodrůdového bílkovinného polymorfismu. V případě polymorfních odrůd je jejich genetická struktura charakterizována počtem bílkovinných linií, a je proto nutné verifikovat a identifikovat tyto odrůdy podle počtu a zastoupení jednotlivých bílkovinných linií, typických pro danou odrůdu. 27

28 5.1. Sestavy gliadinových (SGE) a gluteninových (SDS PAGE) alelických bloků odrůd pšenice v podobě gliadonových resp. gluteninových alelických vzorců Tabulka III: Gliadinové a gluteninové genetické markery jarních odrůd pšenice registrovaných v ČR Odrůda Gliadinové alelické bloky na lokusech Gluteninové alel. bloky na lokusech Rok linie % 1-1A 2-1A 1B 1D 6A 6B 6D linie % 1A 1B 1D registrace Amaretto A a Aranka A B a Brawura A B a Bruncka A a Corso A B a Granny A a b Leguan A B a Linda* A a Mája* A a Munk A B a A a 75 2* Sandra B b 17 2* c Saxana A a Sirael A B a Swedjet A a SW Kadrilj A a SW Kronjet A a Trappe A a Triso A a

29 Vánek A Vinjett A a Zuzana A a Vysvětlivky: velká písmena - SGE gliadinová linie malá písmena - SDS PAGE gliadinová linie * registrace zrušena 2007 * bez ověření užitné hodnoty (ÚKZÚZ) Tabulka IV: Gliadinové a gluteninové genetické markery ozimých odrůd pšenice registrovaných v ČR Odrůda Gliadinové alelické bloky na lokusech Gluteninové alel. bloky na lokusech Rok linie % 1-1A 2-1A 1B 1D 6A 6B 6D linie % 1A 1B 1D registrace Acteur A a Alana A a Alka A a Alibaba A a Anduril A a Apache A a Asta A a b Astella A B a Athlet* A a Banquet A a Barroko A a Barryton A B a Biscay A a Batis A a

30 Bill A a Blava* A a Bohemia A a Boka A a Brea A a Bruneta A a Bruta A a Buteo A a Caphorn A a Clarus A a Clever A a Complet A a Contra A a Corsaire A a Cubus A a Darwin A a Drifter A a Dromos A a Ebi A a Estika A a Etela A a a Eurofit A b c Floret A a 100 2* Globus A a Hana* A a Hedvika A a Hermann A a Heroldo A a Ines** A a Ilias A a Ilona* A B a

31 Karolinum A B a Kerubino A a Košútka A a Livia A a Ludwig A a Manager A a Meritto A B a Mladka A B a Mona A a Mulan A a Nela A a Niagara A B a Raduza A B a Rapsodia A a Record A a Regina A a Rexia* A a Rheia A a Rialto A a Ritmo* A a Sakura A a Samanta A a Samara A a Saskia A a Semper A a Sepstra A B a Sida* A a Simila A a

32 Siria A B a Solara A a Sulamit A a Svitava A a Šárka A B a Tower A a Trend* A a Versailles A a Viginta* A a Vlada A a Vlasta A a A Winsdor B a C Vysvětlivky: velká písmena - SGE gliadinová linie malá písmena - SDS PAGE gliadinová linie * registrace zrušena 2007 * * bez ověření užitné hodnoty (ÚKZÚZ) 32

33 6. Stanovení odrůdové pravosti a odrůdové čistoty Pšenice je jednou z našich nejvýznamnějších obilnin a pěstuje se ve všech výrobních podmínkách České republiky. Stále větší důraz se klade na jakost produkce, jejíž nedílnou součástí je i záruka odrůdové pravosti a odrůdové čistoty. Právě odrůda představuje významný výrobní prostředek, intenzifikující rostlinnou výrobu a současně je považována za spolehlivou záruku vytváření dědičných znaků a agronomických, nutričních a technologických vlastností. Každá odrůda se vyznačuje specifickým souborem vlastností, které rozhodují o jejím využití. Je proto v zájmu výrobců osiv, sadby, i v zájmu pěstitelů, nákupu, zpracovatelského průmyslu, vnitřního a zahraničního obchodu používat jen správně zvolené a spolehlivě určené odrůdy. K identifikaci odrůd pšenice lze využít účinně výše uvedených elektroforetických metod. Základem využívání elektroforézy genetických markerů pro identifikaci odrůd je však vytvoření vzorových elektroforetických spekter bílkovin jednotlivých odrůd - etalonů. Tato vzorová elektroforetická spektra mohou být vyjádřena rovněž v podobě alelického vzorce (souborů alelických bloků společně děděných zón, vyčleněných z elektroforetických spekter gliadinů či gluteninů (Viz 5.). Neúčelněji lze hodnotit odrůdovou pravost či odrůdovou čistotu elektroforetickou analýzou jednotlivých zrn. Hodnocení elektroforeogramů jednotlivých zrn pak vychází z celkového počtu hodnotitelných elektroforeogramů, nikoliv z celkového počtu elektroforetických analýz provedených v rámci zkoušky příslušné dávky. Hodnotitelným se rozumí elektroforeogram s jednoznačně odečitatelnými zónami (proužky), případně gliadinovými nebo gluteninovými alelickými bloky. Ke správné interpretaci výsledků identifikace je nutno si položit některé otázky, které mohou vést k vypracování nejvhodnějšího postupu, který nám umožní identifikaci odrůdy v závislosti na daných okolnostech. 1. Odpovídá vzorek deklaraci? Určit deklaraci zpravidla umožňuje vizuální porovnání spektra testovaného vzorku s etalonovým spektrem deklarované odrůdy (nejlépe analyzované společně s testovaným vzorkem). Je tudíž evidentní, zda jsou či nejsou stejné. Zjištěné rozdíly mohou být důsledkem chybné deklarace odrůdy nebo mohou svědčit o příměsi jiné odrůdy. 2. Je to ta či ona odrůda? Takto často se ptáme, pokud dojde k popletení vzorků (např. v důsledku nejasného nápisu na obalu). Tuto otázku by měla vyřešit analýza testovaného vzorku současně s originálními (etalonovými) vzorky očekávaných odrůd. 3. Jaká je to odrůda? Tato otázka nastává, jestliže výsledkem analýzy vzorku (viz bod 1) zní: odrůda neodpovídá deklaraci. Na tuto otázku je obtížné odpovědět, pokud neznáme dostatek podkladů, které by nám ozřejmily, jaká etalonová odrůda by měla být analyzována současně s testovaným vzorkem. V tomto případě je nutno provést analýzu testovaného vzorku a výsledný elektroforeogram porovnat s etalonovými elektroforeogramy odrůd, které máme soustředěny v katalogu. Testovaný vzorek může být i odrůda, která není popsaná v katalogu, pak ji lze označit jako neznámý genotyp (NG). 33

Výzkumný ústav rostlinné výroby Praha Ruzyně. Metodika byla vypracována jako výstup výzkumného záměru MZe č. 0002700602. Autor: Ing.

Výzkumný ústav rostlinné výroby Praha Ruzyně. Metodika byla vypracována jako výstup výzkumného záměru MZe č. 0002700602. Autor: Ing. Výzkumný ústav rostlinné výroby Praha Ruzyně Optimalizovaná metodika SDS-PAGE pro analýzu LMW podjednotek gluteninů pšenice Metodika byla vypracována jako výstup výzkumného záměru MZe č. 0002700602 Autor:

Více

Výzkumný ústav rostlinné výroby Praha Ruzyně

Výzkumný ústav rostlinné výroby Praha Ruzyně Výzkumný ústav rostlinné výroby Praha Ruzyně Optimalizovaná metodika PAGE pro analýzu peroxidáz v hlízách brambor (Solanum tuberosum L.) Vypracovaná jako výstup projektu 1B 44011 VÝVOJ A TESTOVÁNÍ SYSTÉMU

Více

SDS-PAGE elektroforéza

SDS-PAGE elektroforéza SDS-PAGE elektroforéza Příprava gelu... 1 Recept na 0.75 mm gel (1 gel/2 gely)... 2 Recept na 1.5 mm gel (1 gel/2 gely)... 2 Příprava vzorku... 3 Elektroforéza... 3 Barvení gelů Blue Silver... 4 Chemikálie

Více

Výzkumný ústav rostlinné výroby Praha Ruzyně

Výzkumný ústav rostlinné výroby Praha Ruzyně Výzkumný ústav rostlinné výroby Praha Ruzyně Optimalizace metod elektroforézy proteinů pro identifikaci odrůd ječmene (Hordeum vulgare L.) Metodika vypracována jako výstup projektu NAZV QF 3050: Vývoj

Více

Výzkumný ústav rostlinné výroby Praha Ruzyně

Výzkumný ústav rostlinné výroby Praha Ruzyně Výzkumný ústav rostlinné výroby Praha Ruzyně Optimalizovaná metodika PAGE pro analýzu esteráz v hlízách brambor (Solanum tuberosum L.) Vypracovaná jako výstup projektu 1B 44011 VÝVOJ A TESTOVÁNÍ SYSTÉMU

Více

Obsah Protein Gel Electrophoresis Kitu a jeho skladování

Obsah Protein Gel Electrophoresis Kitu a jeho skladování Obsah Protein Gel Electrophoresis Kitu a jeho skladování Protein Gel Electrophoresis Kit obsahuje veškerý potřebný materiál provádění vertikální polyakrilamidové gelové elektroforézy. Experiment provádějí

Více

SDS polyakrylamidová gelová elektroforéza (SDS PAGE)

SDS polyakrylamidová gelová elektroforéza (SDS PAGE) SDS polyakrylamidová gelová elektroforéza (SDS PAGE) Princip SDS polyakrylamidová gelová elektroforéza slouží k separaci proteinů na základě jejich velikosti (molekulové hmotnosti). Zahřátím vzorku za

Více

CHARAKTERIZACE GENOTYPŮ OVSA S VYUŽITÍM ELEKTROFORÉZY AVENINŮ V POLYAKRYLAMIDOVÉM GELU (A-PAGE)

CHARAKTERIZACE GENOTYPŮ OVSA S VYUŽITÍM ELEKTROFORÉZY AVENINŮ V POLYAKRYLAMIDOVÉM GELU (A-PAGE) Zemědělský výzkumný ústav Kroměříž, s.r.o. Agrotest fyto, s.r.o. CHARAKTERIZACE GENOTYPŮ OVSA S VYUŽITÍM ELEKTROFORÉZY AVENINŮ V POLYAKRYLAMIDOVÉM GELU (A-PAGE) Metodika Kroměříž, 2010 I. Polišenská, L.

Více

Elektroforéza v přítomnosti SDS SDS PAGE

Elektroforéza v přítomnosti SDS SDS PAGE Elektroforéza v přítomnosti SDS SDS PAGE Elektroforéza v přítomnosti SDS SDS PAGE je jednoduchá, rychlá a reprodukovatelná metoda pro kvalifikovanou charakterizaci a srovnání bílkovin.tato metoda separuje

Více

Výzkumný ústav rostlinné výroby, v.v.i., Praha 6 - Ruzyně, 2011 ISBN 978-80-7427-056-7

Výzkumný ústav rostlinné výroby, v.v.i., Praha 6 - Ruzyně, 2011 ISBN 978-80-7427-056-7 Metodika vznikla za finanční podpory MZe ČR a je výstupem řešení projektu NAZV QH92155 Využití biodiverzity zásobních proteinů pšenice s důrazem na nízkomolekulární gluteniny ve vztahu ke kvalitě produkce.

Více

VYUŽITÍ METOD ELEKTROFORÉZY ZÁSOBNÍCH A ENZYMATICKÝCH BÍLKOVIN K ROZLIŠENÍ REGISTROVANÝCH ODRŮD JARNÍHO JEČMENE A JEJICH UPLATNĚNÍ V SEMENÁŘSTVÍ

VYUŽITÍ METOD ELEKTROFORÉZY ZÁSOBNÍCH A ENZYMATICKÝCH BÍLKOVIN K ROZLIŠENÍ REGISTROVANÝCH ODRŮD JARNÍHO JEČMENE A JEJICH UPLATNĚNÍ V SEMENÁŘSTVÍ VYUŽITÍ METOD ELEKTROFORÉZY ZÁSOBNÍCH A ENZYMATICKÝCH BÍLKOVIN K ROZLIŠENÍ REGISTROVANÝCH ODRŮD JARNÍHO JEČMENE A JEJICH UPLATNĚNÍ V SEMENÁŘSTVÍ Use of Storage Protein and Esterase Electrophoresis for

Více

ELEKTROFORETICKÉ METODY

ELEKTROFORETICKÉ METODY ELEKTROFORETICKÉ METODY ELEKTROFORETICKÁ SEPARACE AMINOKYSELIN NA PAPÍROVÉM NOSIČI Aminokyseliny lze rozdělit elektroforézou na papíře. Protože molekulová hmotnost jednotlivých aminokyselin není příliš

Více

PROTEINOVÁ DENATURUJÍCÍ ELEKTROFORÉZA (SDS PAGE)

PROTEINOVÁ DENATURUJÍCÍ ELEKTROFORÉZA (SDS PAGE) PROTEINOVÁ DENATURUJÍCÍ ELEKTROFORÉZA (SDS PAGE) Denaturující proteinová elektroforéza (SDS PAGE - SDS Protein Acrylamide Gel Electrophoresis) je metoda, která se používá k separaci proteinů podle velikosti,

Více

PROTOKOL WESTERN BLOT

PROTOKOL WESTERN BLOT WESTERN BLOT 1. PŘÍPRAVA ELEKTROFORETICKÉ APARATURY Saponátem a vodou se důkladně umyjí skla, plastové vložky a hřebínek, poté se důkladně opláchnou deionizovanou/destilovanou vodou a etanolem a nechají

Více

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/ Dělení bílkovin pomocí diskontinuální elektroforézy v polyakrylamidovém gelu (PAGE) Při elektroforéze dochází k pohybu (migraci) iontů v elektrickém poli. Elektroforetické metody se tedy používají k separaci

Více

S filtračními papíry a membránou je nutno manipulovat pinzetou s tupým koncem.

S filtračními papíry a membránou je nutno manipulovat pinzetou s tupým koncem. Western Blotting Příprava blotovacího sendviče... 1 Blotování... 2 Kontrola přenesení proteinů na membránu... 2 Blokování membrány... 2 Aplikace protilátek... 2 Vizualizace... 3 Vyvolání filmu... 4 Chemikálie

Více

Spektrofotometrické stanovení fosforečnanů ve vodách

Spektrofotometrické stanovení fosforečnanů ve vodách Spektrofotometrické stanovení fosforečnanů ve vodách Úkol: Spektrofotometricky stanovte obsah fosforečnanů ve vodě Chemikálie: 0,07165 g dihydrogenfosforečnan draselný KH 2 PO 4 75 ml kyselina sírová H

Více

TECHNICKÁ SPECIFIKACE Vybavení genetické laboratoře pro projekt EXTEMIT-K část B

TECHNICKÁ SPECIFIKACE Vybavení genetické laboratoře pro projekt EXTEMIT-K část B TECHNICKÁ SPECIFIKACE Vybavení genetické laboratoře pro projekt EXTEMIT-K část B OBSAH Sestava pro vertikální elektroforézu... 2 Jednotka pro elektroforézu... 3 Termocykler... 4 Elektrický zdroj pro elektroforézu...

Více

Projekt Pospolu. Stanovení jílovitých podílů podle ČSN EN A1 Zkouška s methylenovou modří

Projekt Pospolu. Stanovení jílovitých podílů podle ČSN EN A1 Zkouška s methylenovou modří Projekt Pospolu Stanovení jílovitých podílů podle ČSN EN 933-9+A1 Zkouška s methylenovou modří Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Tomáš Táborský. Jako jedna z hlavních složek

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ELEKTROMIGRAČNÍ METODY

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ELEKTROMIGRAČNÍ METODY Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ELEKTROMIGRAČNÍ METODY ELEKTROFORÉZA K čemu to je? kritérium čistoty preparátu stanovení molekulové hmotnosti makromolekul stanovení izoelektrického

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU VÁPNÍKU MANGANOMETRICKY

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU VÁPNÍKU MANGANOMETRICKY Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU VÁPNÍKU MANGANOMETRICKY 1 Rozsah a účel Tato metoda specifikuje podmínky pro stanovení celkového obsahu vápníku v krmivech, krmných směsích a premixech.

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU SEMDURAMICINU METODOU HPLC

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU SEMDURAMICINU METODOU HPLC Strana 1 STANOVENÍ OBSAHU SEMDURAMICINU METODOU HPLC 1 Rozsah a účel Postup specifikuje podmínky pro stanovení obsahu semduramicinu v krmivech metodou vysokoúčinné kapalinové chromatografie (HPLC) v koncentračním

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MYKOTOXINŮ METODOU HPLC - OCHRATOXIN A

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MYKOTOXINŮ METODOU HPLC - OCHRATOXIN A Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU MYKOTOXINŮ METODOU HPLC - OCHRATOXIN A 1 Rozsah a účel Metoda specifikuje podmínky pro stanovení ochratoxinu A v krmivech. 1 Ochratoxin A patří mezi

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU KOBALTU METODOU ICP-MS

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU KOBALTU METODOU ICP-MS Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU KOBALTU METODOU ICP-MS 1 Rozsah a účel Metoda specifikuje podmínky pro stanovení celkového obsahu kobaltu v krmivech metodou hmotnostní spektrometrie

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MYKOTOXINŮ METODOU LC-MS - aflatoxin B1, B2, G1 a G2

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MYKOTOXINŮ METODOU LC-MS - aflatoxin B1, B2, G1 a G2 Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU MYKOTOXINŮ METODOU LC-MS - aflatoxin B1, B2, G1 a G2 1 Rozsah a účel Metoda je vhodná pro stanovení aflatoxinů B1, B2, G1 a G2 v krmivech. 2 Princip

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU DEKOCHINÁTU METODOU HPLC

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU DEKOCHINÁTU METODOU HPLC Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU DEKOCHINÁTU METODOU HPLC 1 Rozsah a účel Tato metoda specifikuje podmínky pro stanovení dekochinátu metodou vysokoúčinné kapalinové chromatografie

Více

Western blotting. 10% APS 20,28 µl 40,56 µl 81,12 µl 20,28 µl 40,56 µl 81,12 µl

Western blotting. 10% APS 20,28 µl 40,56 µl 81,12 µl 20,28 µl 40,56 µl 81,12 µl Western blotting 1. Příprava gelu složení aparatury hustotu gelu volit podle velikosti proteinů příprava rozdělovacího gelu: 10% 12% počet gelů 1 2 4 1 2 4 objem 6 ml 12 ml 24 ml 6 ml 12 ml 24 ml 40% akrylamid

Více

Polymorfismus délky restrikčních fragmentů (RFLP)

Polymorfismus délky restrikčních fragmentů (RFLP) ÚSTAV LÉKAŘSKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1. LF UK Polymorfismus délky restrikčních fragmentů (RFLP) Praktické cvičení z lékařské biochemie Všeobecné lékařství Martin Vejražka 2017/18 Obsah POLYMORFISMUS

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MYKOTOXINŮ METODOU LC-MS - FUMONISIN B 1 A B 2

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MYKOTOXINŮ METODOU LC-MS - FUMONISIN B 1 A B 2 Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU MYKOTOXINŮ METODOU LC-MS - FUMONISIN B 1 A B 2 1 Rozsah a účel Metoda je vhodná pro stanovení fumonisinů B 1 a B 2 v krmivech. 2 Princip Fumonisiny

Více

53. ročník 2016/2017

53. ročník 2016/2017 Ústřední komise Chemické olympiády 53. ročník 2016/2017 OKRESNÍ KOLO kategorie D ZADÁNÍ PRAKTICKÉ ČÁSTI časová náročnost: 90 minut Úloha 1 Yamadův univerzální indikátor 30 bodů Úvod Univerzální acidobazické

Více

téma: Halogeny-úvod autor: Ing. František Krejčí, CSc. cíl praktika: žáci si osvojí znalosti z chemie halogenů doba trvání: 2 h

téma: Halogeny-úvod autor: Ing. František Krejčí, CSc. cíl praktika: žáci si osvojí znalosti z chemie halogenů doba trvání: 2 h téma: Halogeny-úvod cíl praktika: žáci si osvojí znalosti z chemie halogenů pomůcky: psací potřeby popis aktivit: Žáci si osvojí problematiku halogenů, popíší jejich elektronovou konfiguraci a z ní vyvodí

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU VITAMÍNU D METODOU LC/MS

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU VITAMÍNU D METODOU LC/MS Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU VITAMÍNU D METODOU LC/MS 1 Účel a rozsah Tento postup specifikuje podmínky pro stanovení vitamínu D3 v krmivech metodou LC/MS. 2 Princip Zkušební

Více

Proteinový fingerprinting vaječného bílku

Proteinový fingerprinting vaječného bílku Proteinový fingerprinting vaječného bílku Proteinový fingerprinting je technika studia populací organizmů založená na izoelektrické fokuzaci (IEF). IEF spočívá v elektroforetickém dělení proteinů podle

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MADURAMICINU A SEMDURAMICINU METODOU HPLC

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MADURAMICINU A SEMDURAMICINU METODOU HPLC Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU MADURAMICINU A SEMDURAMICINU METODOU HPLC 1 Rozsah a účel Metoda specifikuje podmínky pro stanovení maduramicinu a semduramicinu v krmivech a premixech.

Více

Hmotnostní detekce biologicky významných sloučenin pro biotechnologie část 3 - Provedení štěpení proteinů a následné analýzy,

Hmotnostní detekce biologicky významných sloučenin pro biotechnologie část 3 - Provedení štěpení proteinů a následné analýzy, Laboratoř Metalomiky a Nanotechnologií Hmotnostní detekce biologicky významných sloučenin pro biotechnologie část 3 - Provedení štěpení proteinů a následné analýzy, vyhodnocení výsledků, diskuse Anotace

Více

Obr. 1. Schematické znázornění 2D-PAGE (převzato z Lodish, H. a kol.: Molecular Cell Biology, 3. vyd., Freeman 1996)

Obr. 1. Schematické znázornění 2D-PAGE (převzato z Lodish, H. a kol.: Molecular Cell Biology, 3. vyd., Freeman 1996) Dvourozměrná elektroforéza (2D-PAGE) 2D-PAGE je vysoce efektivní separační metodou umožňující rozdělení komplikovaných směsí stovek různých bílkovin a představuje základní nástroj v novém rozvíjejícím

Více

Metodika stanovení kyselinové neutralizační kapacity v pevných odpadech

Metodika stanovení kyselinové neutralizační kapacity v pevných odpadech Metodika stanovení kyselinové neutralizační kapacity v pevných odpadech 1 Princip Principem zkoušky je stanovení vodného výluhu při různých přídavcích kyseliny dusičné nebo hydroxidu sodného a následné

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU 5-VINYL - 2-THIOOXAZOLIDONU (GOITRINU) METODOU GC

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU 5-VINYL - 2-THIOOXAZOLIDONU (GOITRINU) METODOU GC Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU 5-VINYL - 2-THIOOXAZOLIDONU (GOITRINU) METODOU GC 1 Rozsah a účel Metoda specifikuje podmínky pro stanovení vinylthiooxazolidonu (dále VOT) v krmivech.

Více

PŘEHLED UZNANÉHO OSIVA OZIMŮ ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ CENTRAL INSTITUTE FOR SUPERVISING AND TESTING IN AGRICULTURE

PŘEHLED UZNANÉHO OSIVA OZIMŮ ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ CENTRAL INSTITUTE FOR SUPERVISING AND TESTING IN AGRICULTURE CENTRAL INSTITUTE FOR SUPERVISING AND TESTING IN AGRICULTURE DIVISION OF SEED AND PLANTING MATERIALS ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ ODBOR OSIV A SADBY SUMMARY OF CERTIFIED SEED OF WINTER

Více

Jednotné pracovní postupy zkoušení krmiv

Jednotné pracovní postupy zkoušení krmiv Národní referenční laboratoř Strana KVANTITATIVNÍ STANOVENÍ GENETICKÝCH MODIFIKACÍ METODOU qpcr POMOCÍ ROTOR-GENE PROBE PCR KITU Účel a rozsah Postup slouží ke kvantitativnímu stanovení genetických modifikací

Více

Laboratoře oboru (N352014) 1. ročník Mgr. 2011/2012, letní semestr

Laboratoře oboru (N352014) 1. ročník Mgr. 2011/2012, letní semestr Laboratoře oboru (N352014) 1. ročník Mgr. 2011/2012, letní semestr Práce č. 2: Kontrola jakosti jedlých mlýnských výrobků Náplň práce: 1. Stanovení vlhkosti mouky 2. Stanovení čísla poklesu 3. Stanovení

Více

laktoferin BSA α S2 -CN α S1 -CN Popis: BSA bovinní sérový albumin, CN kasein, LG- laktoglobulin, LA- laktalbumin

laktoferin BSA α S2 -CN α S1 -CN Popis: BSA bovinní sérový albumin, CN kasein, LG- laktoglobulin, LA- laktalbumin Aktivita KA 2340/4-8up Stanovení bílkovin v mléce pomocí SDS PAGE (elektroforéza na polyakrylamidovém gelu s přídavkem dodecyl sulfátu sodného) vypracovala: MVDr. Michaela Králová, Ph.D. Princip: Metoda

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MELAMINU A KYSELINY KYANUROVÉ METODOU LC-MS

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MELAMINU A KYSELINY KYANUROVÉ METODOU LC-MS Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU MELAMINU A KYSELINY KYANUROVÉ METODOU LC-MS 1 Rozsah a účel Postup je určen pro stanovení obsahu melaminu a kyseliny kyanurové v krmivech. 2 Princip

Více

Sraz studentů v 8:00 před laboratoří A5/108, s sebou plášť a přezutí PRINCIP. Polyakrylamidová gelová elektroforéza v přítomnosti SDS (SDS-PAGE)

Sraz studentů v 8:00 před laboratoří A5/108, s sebou plášť a přezutí PRINCIP. Polyakrylamidová gelová elektroforéza v přítomnosti SDS (SDS-PAGE) PRINCIP Sraz studentů v 8:00 před laboratoří A5/108, s sebou plášť a přezutí Polyakrylamidová gelová elektroforéza v přítomnosti SDS (SDS-PAGE) SDS-PAGE slouží k separaci proteinů na základě jejich molekulové

Více

N217019 - Laboratoř hydrobiologie a mikrobiologie

N217019 - Laboratoř hydrobiologie a mikrobiologie ÚSTAV TECHNOLOGIE VODY A PROSTŘEDÍ N217019 - Laboratoř hydrobiologie a mikrobiologie Název úlohy: Hydrobiologie: Stanovení koncentrace chlorofylu-a Vypracováno v rámci projektu: Inovace a restrukturalizace

Více

Jednotné pracovní postupy testování odrůd STANOVENÍ OBSAHU TANINŮ V ČIROKU SPEKTROFOTOMETRICKY

Jednotné pracovní postupy testování odrůd STANOVENÍ OBSAHU TANINŮ V ČIROKU SPEKTROFOTOMETRICKY 5321.1 Stanovení obsahu taninů v čiroku Strana 1 STANOVENÍ OBSAHU TANINŮ V ČIROKU SPEKTROFOTOMETRICKY 1 Účel a rozsah Postup je určen pro stanovení obsahu taninů v zrnech čiroku. 2 Princip Taniny se ze

Více

Protokol 04. pšeničná bílkovina. masné výrobky. zkrácená verze

Protokol 04. pšeničná bílkovina. masné výrobky. zkrácená verze 1 Popis vzorku Podle protokolu č. 04 lze vyšetřit vzorky různých druhů masných výrobků na přítomnost pšeničné bílkoviny. 2 Detekční limit vyšetření Přítomnost pšeničné bílkoviny lze spolehlivě prokázat,

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU VITAMÍNU D METODOU HPLC

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU VITAMÍNU D METODOU HPLC Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU VITAMÍNU D METODOU HPLC 1 Rozsah a účel Tato metoda specifikuje podmínky pro stanovení vitamínu D v premixech pro výrobu krmných směsí metodou HPLC.

Více

Úloha č. 1 Odměřování objemů, ředění roztoků Strana 1. Úkol 1. Ředění roztoků. Teoretický úvod - viz návod

Úloha č. 1 Odměřování objemů, ředění roztoků Strana 1. Úkol 1. Ředění roztoků. Teoretický úvod - viz návod Úloha č. 1 Odměřování objemů, ředění roztoků Strana 1 Teoretický úvod Uveďte vzorec pro: výpočet směrodatné odchylky výpočet relativní chyby měření [%] Použitý materiál, pomůcky a přístroje Úkol 1. Ředění

Více

Jednotné pracovní postupy zkoušení krmiv Stanovení obsahu celkového a volného tryptofanu metodou HPLC

Jednotné pracovní postupy zkoušení krmiv Stanovení obsahu celkového a volného tryptofanu metodou HPLC Strana 1 STANOVENÍ OBSAHU CELKOVÉHO A VOLNÉHO TRYPTOFANU METODOU HPLC 1 Rozsah a účel Metoda specifikuje podmínky pro stanovení obsahu celkového a volného tryptofanu v krmivech metodou vysokoúčinné kapalinové

Více

JODOMETRICKÉ STANOVENÍ ROZPUŠTĚNÉHO KYSLÍKU

JODOMETRICKÉ STANOVENÍ ROZPUŠTĚNÉHO KYSLÍKU JODOMETRICKÉ STANOVENÍ ROZPUŠTĚNÉHO KYSLÍKU (dle Winklera v Alsterbergově modifikaci) Cílem je stanovení rozpuštěného kyslíku v pitné vodě z vodovodního řádu. Protokol musí osahovat veškeré potřebné hodnoty

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU PROBIOTICKÝCH BAKTERIÍ RODU ENTEROCOCCUS

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU PROBIOTICKÝCH BAKTERIÍ RODU ENTEROCOCCUS Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU PROBIOTICKÝCH BAKTERIÍ RODU ENTEROCOCCUS 1 Rozsah a účel Postup slouží ke stanovení počtu probiotických bakterií v doplňkových látkách, premixech

Více

13/sv. 8 (85/503/EHS) Tato směrnice je určena členským státům.

13/sv. 8 (85/503/EHS) Tato směrnice je určena členským státům. 62 31985L0503 L 308/12 ÚŘEDNÍ VĚSTNÍK EVROPSKÝCH SPOLEČENSTVÍ 20.11.1985 PRVNÍ SMĚRNICE KOMISE ze dne 25. října 1985 o metodách pro analýzu potravinářských kaseinů a kaseinátů (85/503/EHS) KOMISE EVROPSKÝCH

Více

Výzkumný ústav rostlinné výroby Praha Ruzyně

Výzkumný ústav rostlinné výroby Praha Ruzyně Výzkumný ústav rostlinné výroby Praha Ruzyně METODIKA VYUŽITÍ ELEKTROFORÉZY HLÍZOVÝCH PROTEINŮ PRO IDENTIFIKACI ODRŮD BRAMBOR (SOLANUM TUBEROSUM) Vypracovaná jako výstup projektu NAZV QF 3050: Vývoj metod

Více

Polymorfismus délky restrikčních fragmentů

Polymorfismus délky restrikčních fragmentů Polymorfismus délky restrikčních fragmentů Princip: Chemikálie: PCR produkt z předchozího praktického cvičení Endonukleáza KpnI 10 U μl -1 Pufr pro KpnI 10 koncentrovaný (Tris-HCl 100 mmol l -1 ph 7,5,

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU VITAMÍNU A A VITAMÍNU E METODOU HPLC S UV DETEKCÍ

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU VITAMÍNU A A VITAMÍNU E METODOU HPLC S UV DETEKCÍ Národní referenční laboratoř Strana 1 STANOENÍ OBSAHU ITAMÍNU A A ITAMÍNU E METODOU HPLC S U DETEKCÍ 1 Rozsah a účel Metoda je vhodná pro stanovení vitamínu A a vitamínu E v kompletních krmivech i premixech

Více

MOŽNOST VYUŽITÍ ELEKTROFORÉZY HLÍZOVÝCH PROTEINŮ A ESTERÁZ K CHARAKTERIZACI REGISTROVANÝCH ODRŮD BRAMBOR

MOŽNOST VYUŽITÍ ELEKTROFORÉZY HLÍZOVÝCH PROTEINŮ A ESTERÁZ K CHARAKTERIZACI REGISTROVANÝCH ODRŮD BRAMBOR MOŽNOST VYUŽITÍ ELEKTROFORÉZY HLÍZOVÝCH PROTEINŮ A ESTERÁZ K CHARAKTERIZACI REGISTROVANÝCH ODRŮD BRAMBOR The Possibility of Use of Tuber Protein and Esterase Electrophoresis for the Characterization of

Více

53. ročník 2016/2017

53. ročník 2016/2017 Ústřední komise Chemické olympiády 53. ročník 2016/2017 OKRESNÍ KOLO kategorie D ŘEŠENÍ PRAKTICKÉ ČÁSTI časová náročnost: 90 minut Úloha 1 Yamadův univerzální indikátor 30 bodů Úkoly: 1. Doplněná Tabulka

Více

CLP ANALYSIS OF MOLECULAR MARKERS DIGITAL IMAGE ANALYSIS OF ELECTROPHOEROGRAMS CZECH VERSION

CLP ANALYSIS OF MOLECULAR MARKERS DIGITAL IMAGE ANALYSIS OF ELECTROPHOEROGRAMS CZECH VERSION CLP ANALYSIS OF MOLECULAR MARKERS DIGITAL IMAGE ANALYSIS OF ELECTROPHOEROGRAMS CZECH VERSION DIGITÁLNÍ OBRAZOVÁ ANALÝZA ELEKTROFORETICKÝCH GELŮ *** Vyhodnocování získaných elektroforeogramů: Pro vyhodnocování

Více

Nově registrované odrůdy (k ) Pšenice setá ozimá

Nově registrované odrůdy (k ) Pšenice setá ozimá Ústřední kontrolní a zkušební ústav zemědělský Národní odrůdový úřad Hroznová 2, 656 06 Brno Tel.: +420 543 548 211 www.ukzuz.cz, e-mail: ooz@ukzuz.cz Nově registrované odrůdy (k 20.5.2009) Pšenice setá

Více

LEE: Stanovení viskozity glycerolu pomocí dvou metod v kosmetickém produktu

LEE: Stanovení viskozity glycerolu pomocí dvou metod v kosmetickém produktu LEE: Stanovení viskozity glycerolu pomocí dvou metod v kosmetickém produktu Jsi chemikem ve farmaceutické společnosti, mezi jejíž činnosti, mimo jiné, patří analýza glycerolu pro kosmetické produkty. Dnešní

Více

Stanovení složení mastných kyselin

Stanovení složení mastných kyselin LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ Stanovení složení mastných kyselin (metoda: plynová chromatografie s plamenovým ionizačním detektorem) Garant úlohy: Ing. Jana Kohoutková, Ph.D. 1 Obsah

Více

ANALYTICKÝ SYSTÉM PHOTOCHEM

ANALYTICKÝ SYSTÉM PHOTOCHEM ANALYTICKÝ SYSTÉM PHOTOCHEM Analytický systém Photochem (firmy Analytik Jena, Německo) je vhodný pro stanovení celkové antioxidační kapacity (tj. celkové schopnosti vzorku vychytávat volné radikály) různých

Více

LABORATOŘE OBORU. Znaky kompozitní mouky na bázi pšenično-ječné kompozitní mouky

LABORATOŘE OBORU. Znaky kompozitní mouky na bázi pšenično-ječné kompozitní mouky LABORATOŘE OBORU Znaky kompozitní mouky na bázi pšenično-ječné kompozitní mouky Příprava kompozitní směsi s netradiční plodinou (tef, chia, fonio, konopí, kaštan, nopál, žalud, lupina) Stanovení vlhkosti

Více

Družstvo vlastníků odrůd Jihlavská 320/2, Troubsko Zapsané u Krajského soudu v Brně, oddíl Dr., vložka 3850 IČO: DIČ: CZ

Družstvo vlastníků odrůd Jihlavská 320/2, Troubsko Zapsané u Krajského soudu v Brně, oddíl Dr., vložka 3850 IČO: DIČ: CZ OZNAMENI_PODZIM_2007 24.9.2007 21:14 Stránka 1 Družstvo vlastníků odrůd Jihlavská 320/2, 664 41 Troubsko Zapsané u Krajského soudu v Brně, oddíl Dr., vložka 3850 IČO: 26687640 DIČ: CZ 26687640 V zastoupení

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MĚDI, ŽELEZA, MANGANU A ZINKU METODOU FAAS

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MĚDI, ŽELEZA, MANGANU A ZINKU METODOU FAAS Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU MĚDI, ŽELEZA, MANGANU A ZINKU METODOU FAAS 1 Účel a rozsah Tato metoda specifikuje podmínky pro stanovení obsahu mědi, manganu, zinku a železa ve

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU BÍLKOVIN

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU BÍLKOVIN Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU BÍLKOVIN 1 Účel a rozsah Tato metoda specifikuje podmínky pro stanovení bílkovin v krmivech. Metoda je použitelná pro všechna krmiva organického původu.

Více

Dovednosti/Schopnosti. - orientuje se v ČL, který vychází z Evropského lékopisu;

Dovednosti/Schopnosti. - orientuje se v ČL, který vychází z Evropského lékopisu; Jednotka učení 4a: Stanovení obsahu Ibuprofenu 1. diferencování pracovního úkolu Handlungswissen Charakteristika pracovní činnosti Pracovní postup 2. HINTERFRAGEN 3. PŘIŘAZENÍ... Sachwissen Charakteristika

Více

ELEKTROFORETICKÁ SEPARACE NUKLEOVÝCH KYSELIN

ELEKTROFORETICKÁ SEPARACE NUKLEOVÝCH KYSELIN ELEKTROFORETICKÁ SEPARACE NUKLEOVÝCH KYSELIN Fragmenty nukleových kyselin lze dle jejich velikosti rozdělit elektroforézou. Elektroforéza využívá rozdílné pohyblivosti jednotlivých fragmentů, danou právě

Více

Návody pro praktikum Analýza struktury chromatinu Petra Procházková Schrumpfová, Miloslava Fojtová

Návody pro praktikum Analýza struktury chromatinu Petra Procházková Schrumpfová, Miloslava Fojtová Návody pro praktikum Analýza struktury chromatinu Petra Procházková Schrumpfová, Miloslava Fojtová 1. Izolace buněčných jader z rostlinných tkání Před začátkem práce je nutno si připravit: Pracovní roztoky

Více

ÚLOHA 1: Stanovení koncentrace kyseliny ve vzorku potenciometrickou titrací

ÚLOHA 1: Stanovení koncentrace kyseliny ve vzorku potenciometrickou titrací UPOZORNĚNÍ V tabulkách pro jednotlivé úlohy jsou uvedeny předpokládané pomůcky, potřebné pro vypracování experimentální části úlohy. Některé pomůcky (lžička, váženka, stopky, elmag. míchadélko, tyčinka

Více

L 54/116 CS Úřední věstník Evropské unie

L 54/116 CS Úřední věstník Evropské unie L 54/116 CS Úřední věstník Evropské unie 26.2.2009 8. Výsledky kruhových testů V rámci ES byly provedeny kruhové testy, při nichž až 13 laboratoří zkoušelo čtyři vzorky krmiva pro selata, včetně jednoho

Více

CHARACTERISTICS OF WHEAT GENOTYPES USING HIGH MOLECULAR WEIGHT SUBUNITS GLUTENIN ALLELE

CHARACTERISTICS OF WHEAT GENOTYPES USING HIGH MOLECULAR WEIGHT SUBUNITS GLUTENIN ALLELE CHARACTERISTICS OF WHEAT GENOTYPES USING HIGH MOLECULAR WEIGHT SUBUNITS GLUTENIN ALLELE CHARAKTERISTIKA GENOTYPŮ PŠENICE POMOCÍ ALEL VYSOKOMOLEKULÁRNÍCH PODJEDNOTEK GLUTENINŮ Kocourková Z., Vejl P. Katedra

Více

Koncept odborného vzdělávání

Koncept odborného vzdělávání Koncept odborného vzdělávání Škola SPŠCH Pardubice (CZ) Oblast vzdělávání Odborné vzdělávání Zaměření (ŠVP) 1. Analytická chemie 2. Farmaceutické substance 3. Chemicko-farmaceutická výroba 4. Analýza chemických

Více

Elektromigrační metody

Elektromigrační metody Elektromigrační metody Princip: molekuly nesoucí náboj se pohybují ve stejnosměrném elektrickém Arne Tiselius rozdělil proteiny krevního séra na základě jejich rozdílných rychlostí pohybu v elektrickém

Více

1. Příloha 1 Návod úlohy pro Pokročilé praktikum z biochemie I

1. Příloha 1 Návod úlohy pro Pokročilé praktikum z biochemie I 1. Příloha 1 Návod úlohy pro Pokročilé praktikum z biochemie I Vazba bromfenolové modři na sérový albumin Princip úlohy Albumin má unikátní vlastnost vázat menší molekuly mnoha typů. Díky struktuře, tvořené

Více

Sada Látky kolem nás Kat. číslo 104.0020

Sada Látky kolem nás Kat. číslo 104.0020 Sada Kat. číslo 104.0020 Strana 1 z 68 Strana 2 z 68 Sada pomůcek Obsah Pokyny k uspořádání pokusu... 4 Plán uspořádání... 5 Přehled jednotlivých součástí... 6, 7 Přehled drobných součástí... 8, 9 Popisy

Více

CS Úřední věstník Evropské unie L 54/89

CS Úřední věstník Evropské unie L 54/89 26.2.2009 CS Úřední věstník Evropské unie L 54/89 c) při vlnové délce mezi 230 a 320 nm se nesmí spektrum vzestupné části, vrcholu a sestupné části píku zkoušeného vzorku lišit od ostatních částí spektra

Více

ÚSTAV LÉKAŘSKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1. LF UK. Vyšetření moči

ÚSTAV LÉKAŘSKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1. LF UK. Vyšetření moči ÚSTAV LÉKAŘSKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1. LF UK Vyšetření moči močový sediment, stanovení sodíku, opakování Praktické cvičení z lékařské biochemie Všeobecné lékařství Martin Vejražka, Lenka

Více

IZOLACE DNA POMOCÍ CTAB PRO STANOVENÍ GMO METODOU PCR

IZOLACE DNA POMOCÍ CTAB PRO STANOVENÍ GMO METODOU PCR 1253.1 Izolace DNA pomocí CTAB pro stanovení GMO Strana 1 IZOLACE DNA POMOCÍ CTAB PRO STANOVENÍ GMO METODOU PCR 1 Účel a rozsah Postup slouží k získání deoxyribonukleové kyseliny (DNA) ze vzorků krmiv

Více

ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ PŘEHLED ODRŮD 2013 PŠENICE JARNÍ

ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ PŘEHLED ODRŮD 2013 PŠENICE JARNÍ ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ PŘEHLED ODRŮD 2013 PŠENICE JARNÍ Pšenice jarní patří z pohledu ozimé pšenice a jarního ječmene pouze k doplňkovým plodinám. Její osevní plochy kolísají na

Více

ÚSTØEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMÌDÌLSKÝ Národní odrùdový úøad a Agrární komora Èeské republiky. Asociace pìstitelù a zpracovatelù luskovin

ÚSTØEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMÌDÌLSKÝ Národní odrùdový úøad a Agrární komora Èeské republiky. Asociace pìstitelù a zpracovatelù luskovin odrùdy ÚSTØEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMÌDÌLSKÝ Národní odrùdový úøad a Agrární komora Èeské republiky APZL Asociace pìstitelù a zpracovatelù luskovin Výzkumný ústav pivovarský a sladaøský, a.s.

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ AKTIVITY FYTÁZY

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ AKTIVITY FYTÁZY Národní referenční laboratoř Strana 1 STANOVENÍ AKTIVITY FYTÁZY 1 Rozsah a účel Postup specifikuje stanovení fytázové aktivity ve vzorcích krmiva. Tímto postupem se nestanoví rozdíl mezi fytázou přidanou

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU NEPOVOLENÝCH DOPLŇKOVÝCH LÁTEK METODOU LC-MS

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU NEPOVOLENÝCH DOPLŇKOVÝCH LÁTEK METODOU LC-MS Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU NEPOVOLENÝCH DOPLŇKOVÝCH LÁTEK METODOU LC-MS 1 Účel a rozsah Tato metoda specifikuje podmínky pro stanovení nepovolených doplňkových látek Zn-bacitracinu,

Více

Vybraná vyšetření u pacientů s diabetes mellitus

Vybraná vyšetření u pacientů s diabetes mellitus ÚSTAV LÉKAŘSKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1. LF UK Vybraná vyšetření u pacientů s diabetes mellitus Praktické cvičení z lékařské biochemie Všeobecné lékařství Martin Vejražka 2018/19 Obsah 1.

Více

LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ

LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ Stanovení tuku a hodnocení kvality tuků a olejů (Soxhletova metoda pro extrakci tuku a titrační stanovení čísla kyselosti) Garant úlohy: doc. Ing. Zuzana

Více

L 54/32 CS Úřední věstník Evropské unie

L 54/32 CS Úřední věstník Evropské unie L 54/32 CS Úřední věstník Evropské unie 26.2.2009 Lineární rozsah přístroje je nutno zkontrolovat pro všechny aminokyseliny. Standardní roztok se ředí citrátovým tlumivým roztokem tak, aby se dosáhlo ploch

Více

Ústřední komise Chemické olympiády. 55. ročník 2018/2019 KRAJSKÉ KOLO. Kategorie A ZADÁNÍ PRAKTICKÉ ČÁSTI (40 BODŮ) Časová náročnost 120 minut

Ústřední komise Chemické olympiády. 55. ročník 2018/2019 KRAJSKÉ KOLO. Kategorie A ZADÁNÍ PRAKTICKÉ ČÁSTI (40 BODŮ) Časová náročnost 120 minut Ústřední komise Chemické olympiády 55. ročník 2018/2019 KRAJSKÉ KOLO Kategorie A ZADÁNÍ PRAKTICKÉ ČÁSTI (40 BODŮ) Časová náročnost 120 minut Úloha 1 Příprava Mohrovy soli 15 bodů Mezi podvojné soli patří

Více

ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ PŘEHLED ODRŮD 2012 PŠENICE JARNÍ

ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ PŘEHLED ODRŮD 2012 PŠENICE JARNÍ ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ PŘEHLED ODRŮD 2012 PŠENICE JARNÍ Pšenice jarní patří z pohledu ozimé pšenice a jarního ječmene pouze k doplňkovým plodinám. Její osevní plochy kolísají na

Více

Jednotné pracovní postupy zkoušení krmiv Vydání 1 STANOVENÍ OBSAHU KOKCIDIOSTATIK METODOU LC-MS

Jednotné pracovní postupy zkoušení krmiv Vydání 1 STANOVENÍ OBSAHU KOKCIDIOSTATIK METODOU LC-MS Strana 1 STANOVENÍ OBSAHU KOKCIDIOSTATIK METODOU LC-MS 1 Účel a rozsah Postup specifikuje podmínky pro stanovení diclazurilu, halofuginonu, lasalocidu, maduramicinu, monensinu, narasinu, nikarbazinu, robenidinu,

Více

IZOLACE, SEPARACE A DETEKCE PROTEINŮ I. Vlasta Němcová, Michael Jelínek, Jan Šrámek

IZOLACE, SEPARACE A DETEKCE PROTEINŮ I. Vlasta Němcová, Michael Jelínek, Jan Šrámek IZOLACE, SEPARACE A DETEKCE PROTEINŮ I Vlasta Němcová, Michael Jelínek, Jan Šrámek Studium aktinu, mikrofilamentární složky cytoskeletu pomocí dvou metod: detekce přímo v buňkách - fluorescenční barvení

Více

NEUTRALIZAČNÍ ODMĚRNÁ ANALÝZA (TITRACE)

NEUTRALIZAČNÍ ODMĚRNÁ ANALÝZA (TITRACE) NEUTRALIZAČNÍ ODMĚRNÁ ANALÝZA (TITRACE) Cíle a princip: Stanovit TITR (přesnou koncentraci) odměrného roztoku kyseliny nebo zásady pomocí známé přesné koncentrace již stanoveného odměrného roztoku. Podstatou

Více

CHEMIE Pracovní list č.3 žákovská verze Téma: Acidobazická titrace Mgr. Lenka Horutová Student a konkurenceschopnost

CHEMIE Pracovní list č.3 žákovská verze Téma: Acidobazická titrace Mgr. Lenka Horutová Student a konkurenceschopnost www.projektsako.cz CHEMIE Pracovní list č.3 žákovská verze Téma: Acidobazická titrace Lektor: Projekt: Reg. číslo: Mgr. Lenka Horutová Student a konkurenceschopnost CZ.1.07/1.1.07/03.0075 Teorie: Základem

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU SELENU METODOU ICP-OES

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU SELENU METODOU ICP-OES Strana 1 STANOVENÍ OBSAHU SELENU METODOU ICP-OES 1 Rozsah a účel Postup specifikuje podmínky pro stanovení celkového obsahu selenu v minerálních krmivech a premixech metodou optické emisní spektrometrie

Více

2) Připravte si 3 sady po šesti zkumavkách. Do všech zkumavek pipetujte 0.2 ml roztoku BAPNA o různé koncentraci podle tabulky.

2) Připravte si 3 sady po šesti zkumavkách. Do všech zkumavek pipetujte 0.2 ml roztoku BAPNA o různé koncentraci podle tabulky. CVIČENÍ Z ENZYMOLOGIE 1) Stanovení Michaelisovy konstanty trypsinu pomocí chromogenního substrátu. Aktivita trypsinu se určí změřením rychlosti hydrolýzy chromogenního substrátu BAPNA (Nα-benzoyl-L-arginin-p-nitroanilid)

Více

Moření je odstranění oxidů: u ocelí pomocí kyselin, u hliníku je to moření v hydroxidu sodném. Při moření dochází současně i k rozpouštění čistého

Moření je odstranění oxidů: u ocelí pomocí kyselin, u hliníku je to moření v hydroxidu sodném. Při moření dochází současně i k rozpouštění čistého J.Kubíček FSI 2018 Moření je odstranění oxidů: u ocelí pomocí kyselin, u hliníku je to moření v hydroxidu sodném. Při moření dochází současně i k rozpouštění čistého železa, které se rozpouští rychleji

Více

Jednotné pracovní postupy zkoušení krmiv

Jednotné pracovní postupy zkoušení krmiv Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU NEUTRÁLNĚ DETERGENTNÍ VLÁKNINY (NDF) A NEUTRÁLNĚ DETERGENTNÍ VLÁKNINY PO ÚPRAVĚ VZORKU AMYLÁZOU (andf) 1 Rozsah a účel Tato metoda specifikuje podmínky

Více

Polní den ÚKZÚZ. Užitná hodnota odrůd. ÚKZÚZ, Národní odrůdový úřad Tomáš Mezlík Lípa,

Polní den ÚKZÚZ. Užitná hodnota odrůd. ÚKZÚZ, Národní odrůdový úřad Tomáš Mezlík Lípa, Polní den ÚKZÚZ Lípa, 18.6.2015 Užitná hodnota odrůd ÚKZÚZ, Národní odrůdový úřad Tomáš Mezlík tomas.mezlik@ukzuz.cz Národní odrůdový úřad Registrace odrůd zkoušky odlišnosti, uniformity a stálosti, zkoušky

Více

Stanovení vit. A a vit. E metodou HPLC v krmivech a premixech dopl ňkových látek

Stanovení vit. A a vit. E metodou HPLC v krmivech a premixech dopl ňkových látek STANOVENÍ VITAMINU A (RETINOLU) A VITAMINU E (a-tocopherolu) METODOU HPLC V KRMIVECH A PREMIXECH DOPLŇKOVÝCH LÁTEK. 1. Definice Účinnou formou vitaminu A obecného vzorce C 16 H 23 - R je retinol a neoretinol

Více