Krystalové inženýrství 1. Úvod
|
|
- Vladimíra Šimková
- před 8 lety
- Počet zobrazení:
Transkript
1 Krystalové inženýrství 1. Úvod Ing. Jan Rohlíček, Ph.D. web.vscht.cz/rohlicej
2 Obsah předmětu 1. Definice krystalového inženýrství (CE) a historie 2. Nekovalentní interakce 3. CSD databáze a programy pro studium nekovalentních interakcí 4. Predikce krystalových struktur 5. Analytické metody používané v CE 6. Green chemistry 7. Kokrystaly 8. Praktické využití CE 2
3 Obsah dnešní přednášky Definice krystalového inženýrství (CE) Historie CE Základní pojmy CE 3
4 Definice krystalového inženýrství 1. použití pojmu krystalove inženýrství - abstrakt: R. Pepinksy - Článek: 1971 Gerhard Schmidt [Schmidt, G. M. J., Photodimerization in the solid state. Pure Appl. Chem. 1971, 27, ] příprava krystalových struktur s vhodnou geometriií mezimolekulárních interakcí pro fotodimerizace 1989 Gautam Desiraju rozšíření definice: [Desiraju, G.R., Crystal Engineering. The Design of Organic Solids. Elsevier, Amsterdam, 1989] crystal engineering = understanding of intermolecular interactions in the context of crystal packaging and in the utilisation of such understanding in the design of new solids with desired physical and chemical properties 4
5 Počet publikací ve Science Finderu (ke dni ) Hledaný výraz: Crystal engineering Science Finder: 1847 odkazů bez duplikátů První zmínka v roce 1955: (abstrakt ke konferenci) Pepinsky, R. Crystal Engineering: New Concepts in Crystallography, Phys. Rev., 100, 971 (1955). Nejvíce článků: 2003 (122) Nejplodnější autoři: Gautam R. Desiraju (84), Michael J. Zaworotko (68) a Dario Braga (41) 6
6 Hledaný výraz: Crystal engineering
7 Historie krystalového inženýrství I 1951 J.M. Robertson publikuje článek o krystalových strukturách vícejaderných aromátů (Proc. R. Soc. London, 1951, A207, 101) 1964 G.M.J. Schmidt publikuje sérii článků o fotochemických reakcích skořicové kyseliny a dalších alkénů v pevné fázi (dvojné vazby vzdálené od sebe 4Å mohou podléhat cyklické dimerizaci) zaveden pojem krystalového inženýrství (Pure Appl. Chem., 1971, 27, 647) 70-tá až ½ 80-tých let 20. stol.- vznik skupin zabývajících se organickou chemií v pevné fázi: Weizmanův institut (Izrael) vodíkové vazby, University of Illinois (fázové přechody, reakce plyn-pevná fáze), Univerzita ve Freiburgu (polymerace acetylenu) a Univerzita v Cambridgi (topotaxie) 8
8 Historie krystalového inženýrství II 1989 monografie od G.R.Desirajuho: Crystal Engineering. The Design of Organic Solids. Polovina 90-tých let krystalové inženýrství uznáno jako druh supramolekulární syntézy 1996 první editovaná kniha: The Crystal as a Supramolecular Entity (ed. G. R. Desiraju) v edici Perspectives in Supramolecular Chemistry 1996 první hlavní přednáška na kongresu IUCr v Seatlu 8
9 Historie krystalového inženýrství III 1996 první konference zabývající se pouze CE Digby, Nova Scotia (organizátor: M. Zawarotko, K.R. Seddon), začlenění anorganických chemiků 1998 první časopis: Crystal Engineering (Elsevier) 1999 The Royal Society of Chemistry vydává vlastní časopis: Cryst.Eng.Comm. odlišení od materiálové chemie 2000 první použití CE: krystalový sensor k detekci plynného SO 2 v ppm koncentraci 2001 Crystal Growth and Design (ACS) 9
10 Design and understanding of solid-state and crystalline materials Launched in October 1999, CrystEngComm has established itself as THE journal in which to publish cutting-edge crystal engineering research. The journal publishes Communications, Full Papers, Highlights and Letters. Its current impact factor is The scope of CrystEngComm includes: Properties: Thermodynamics, phase transitional behaviours, polymorphism, solid state reactivity (crystal-crystal and gas-crystal reactions), optoelectronics, non-linear optics, molecular and bulk magnetism, conductivity and super conductivity, absorption and desorption, mechanical. Target Crystals/Materials: Ionic, molecular, covalent and coordination solids, coordination polymers, hydrogen-bonded solids, intermolecular interactions, biominerals and biomimetic materials, synthetic zeolites, liquid crystals, nano and mesoporous crystals, channelled structures, crystal growth, solution phase studies with relevance to solid state investigations, amorphous materials linking to crystalline state. Techniques and Methods: Single crystal X-ray and neutron diffraction, powder diffraction, solid state spectroscopy, calorimetry, thermogravimetry, modelling and data mining, as well as empirical, semiempirical and ab-initio theoretical evaluation of solids and of intermolecular interactions. 10
11 2009 ISI Impact Factor: Total Citations: 11,344 Indexed/Abstracted in: SCOPUS, EBSCOhost, WoS, CAS Journal Scope The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged. The journal primarily covers the following: Crystal engineering (e.g., organic, inorganic, and hybrid solids) Crystal growth of inorganic, organic, and biological substances (e.g., biomineralization) Polymorphism, polytypism Development of new nanostructured phases Intermolecular interactions in the solid state (e.g., hydrogen bonding, lattice energies) Modeling of crystal growth processes Prediction of crystal structure and crystal habit Determination and calculation of electronic distribution in the solid state Nucleation theory Molecular kinetics and transport phenomena in crystal growth Phase transitions Solvation and crystallization phenomena, modeling of crystallization processes Purification techniques, industrial crystallization 11
12 Základní pojmy Cambridge Structural Database - úložiště krystalových struktur (CSD 5.31 přes struktur) organických, organokovových látek a koordinačních polymerů - slouží pro supramolekulární retro-syntézu a analýzu nevazebných interakcí Disorderovaná struktura = krystalová struktura, ve které se ionty nebo molekuly uspořádají různě v jednotlivých základních buňkách - většina hostů komplexovaných molekul 12
13 - poziční disorder jeden atom se nachází na více pozicích buď v rámci jedné buňky (dynamický disorder, t-butyl) nebo je rozložen do více buněk (statický disorder) molekula nebo část molekuly může zaujímat dvě (zřídka více) energeticky podobné konformace - substituční disorder některé pozice jsou ve dvou základních buňkách obsazeny různými atomy minerály, soli 13
14 Graph Set Geometrický popis komplikovaných vzorů vodíkových vazeb pomocí čtyř jednoduchých vzorů: řetezce (C, chains), kruhy (R, rings), intramolekulární vazba (S) a další ohraničené motivy (D) R Počet akceptorů Počet vodíků (zúčastněné atomy) Etter, M. C. (1991). The Journal of Physical Chemistry, 95, No. 12,
15 Sloučenina host-hostitel - interkalát - inkluze malé molekuly (hosta) do otevřené mřížky hostitele 15
16 Dva hlavní typy: kavitandy a klatráty kavitandy = sloučeniny, které mají vlastní kavitu, existuje jak v pevné tak kapalné fázi (např. kalixareny, cyklodextriny) Klatráty = kavity vznikají uspořádáním dvou nebo více molekul v pevném stavu Role krystalového inženýrství? snaha o kontrolu velikosti kavity a jejích hydrofóbních/hydrofilních vlastností 16
17 Isomorfie a isostrukturalita = existence dvou i více sloučenin, které vytvářejí krystaly stejného typu a současně se v nich mohou vzájemně zastupovat, tvořit směsné krystaly Kooperativa - důležitá vlastnost u vodíkových vazeb, energie souboru n vodíkových vazeb je větší než součet energii isolovaných vazeb E(O-H...O-H...O-H) n > n x E(O-H...O) Krystalová struktura pravidelné uspořádání atomů, molekul iontů do 3D mřížky uspořádaný supramolekulární systém, kde krystalizace je příkladem periodického samouspořádání (self-assembly) 17
18 Molekulární síť = supramolekulární struktura, teoreticky tvořená nekonečným množstvím molekul schopných vzájemného rozpoznávání [Maly, K.E., Maris, T., Wuest, J.D. Two-dimmensional hydrogen-bonded networks in crystals of diboronic acids. CrystEngComm, 2006, 8, 33-35] 18
19 Neutronová normalizace - vzdálenost D-H (D=O, N, C) u organických molekul je na základě RTG dat kratší o 0.2Å než je tomu ve skutečnosti, protože vodíkový elektron je polarizovaný směrem k těžšímu atomu správná délka vazby neutronová data π - π interakce = interakce mezi dvěma aromatickými jádry za vzniku vrstevnatých struktur Polymorfie = pevná krystalická fáze sloučeniny vznikající na základě možnosti různého uspořádání molekul v pevném stavu - polymorfy mají různé fyzikální a chemické vlastnosti 19
20 Druhy polymorfů: Concomitant polymorph - dva různé polymorfy vzniknou v jedné baňce za stejných krystalizačních podmínek Konformační polymorfy různé konformace molekuly v různých krystalech Konformační isomorfy mnoho konformací stejné molekuly ve stejném krystalu Konfigurační polymorfy různé konformace molekuly v různých krystalech (např. E, Z) Pseudopolymorfy neboli solváty 20
21 Porézní látky = organické analogy zeolitů - krystalické nebo amorfní materiály umožňující reverzibilní průchod molekul skrz póry na jejich povrchu -možné uplatnění ve farmaceutické výrobě, jako molekulární síta, senzory a přístroje [Li W., Gahungu G., Zhang J., Hao L., Design of an Organic Zeolite toward the Selective Adsorption of Small Molecules at the Dispersion Corrected Functional Theory Level., J. Phys. Chem. B, 2009, 113, ] 21
22 Pravidla vodíkových vazeb - definována Margaret Etterovou [Etter, M.C., Encoding and decoding hydrogen-bond patters of organic compounds, Acc. Cgem. Res., 1990, 23(4), ] 1) Všechny dobré (vhodné) donory a akceptory se účastní vodíkových vazeb. 2) šestičlenná cyklická intramolekulární vodíková vazba má přednost před intermolekulární. 3) Donory a akceptory, které se neúčastní intramolekulárních vodíkových vazeb, vytvoří intermolekulární vodíkové vazby mezi sebou. 22
23 Predikce krystalových struktur = ab initio předpověď krystalové struktury na základě výpočtů a teoretické struktury Supramolekulární chemie = chemie sebeuspořádání molekul, intramolekulárních vazeb, nekovalentních interakcí a vodíkových vazeb Supramolekulární chiron = supramolekulární synton (fragment) sloužící k rozeznávání mezi chirálními molekulami - vznik enantio- nebo diastereomerově čisté struktuře 23
24 Supramolekulární isomerie = existence více možných druhů uspořádání supramolekulární struktury strukturní stejný strukturní prvek vytvoří různou superstrukturu Konformační různé konformace flexibilních molekul mohou vytvářet různé superstruktury Katenany různý způsob a stupeň pronikaní superstruktur Optická chirální superstruktury v enantimorfních prostorových grupách Supramolekulární synton = strukturní jednotka v rámci supramolekuly, která může tvořit nevazebné interakce Cílem CE příprava takových syntonů, které mohou být nahrazovány ve strukturách a jejich využití pro návrh nových látek požadované struktury 24
25 Supramolekulární syntony Angewandte Chem. Int. Ed., 1995, 34,
26 Supramolekulární syntony Angewandte Chem. Int. Ed., 1995, 34,
27 0D 1D 3D 2D Nevazebné interakce v krystalech aromatických kyselin benzoové, tereftalové, isoftalové a benzen-1,3,5- trikarboxylové 27
28 Vodíková vazba D-H A - χ D > χ H donor si přitáhne elektrony a vodík zůstane relativně nechráněný interakce s volnými elektronovými páry a polarizovatelnými π elektrony akceptoru protonu (A) - 3 druhy vodíkových vazeb: - Iontové (silné): O-H...O -,O + -H...O - Parciálně kovalentní charakter, energie vazby kcal/mol - Silné (středně silné): O-H...O, O-H...N, N-H...O - Energie vazby 4-15 kcal/mol - Slabé : C-H...O, C-H...N, C-H... Π - Energie vazby 2-4 kcal/mol - Příklady energií kovalentních vazeb (srovnání s HB): 28
Molekulární krystal vazebné poměry. Bohumil Kratochvíl
Molekulární krystal vazebné poměry Bohumil Kratochvíl Předmět: Chemie a fyzika pevných léčiv, 2017 Složení farmaceutických substancí - API Z celkového portfolia API tvoří asi 90 % organické sloučeniny,
02 Nevazebné interakce
02 Nevazebné interakce Nevazebné interakce Druh chemické vazby Určují 3D konfiguraci makromolekul, účastní se mnoha biologických procesů, zodpovědné za uspořádání molekul v krystalu Síla nevazebných interakcí
3. Stavba hmoty Nadmolekulární uspořádání
mezimolekulové interakce supramolekulární chemie sebeskladba molekulární zařízení Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti mezimolekulové interakce (nekovalentní) seskupování
Chemie a fyzika pevných léčiv
Molekulární krystal kapitola osnovy předmětu Chemie a fyzika pevných léčiv Ing. Petr olý, CSc. Technická univerzita Liberec Molekulární krystal 1. Úvod 2. Supramolekulární popis krystalizace 3. Typy mezimolekulárních
Opakování
Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony
Vítejte ve světě moderní chemie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vítejte ve světě moderní chemie Bakalářský studijní program CHEMIE / CHEMISTRY Počet ECTS kreditů 180 VŠCHT Praha Garant: prof. Pavel Matějka Pavel.Matejka@vscht.cz CHEMIE / CHEMISTRY Architektonický záměr
Chemická vazba Něco málo opakování Něco málo opakování Co je to atom? Něco málo opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího
Teorie chemické vazby a molekulární geometrie Molekulární geometrie VSEPR
Geometrie molekul Lewisovy vzorce poskytují informaci o tom které atomy jsou spojeny vazbou a o jakou vazbu se jedná (topologie molekuly). Geometrické uspořádání molekuly je charakterizováno: Délkou vazeb
Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118
Chemická vazba Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118 Chemická vazba Většina atomů má tendenci se spojovat do větších celků (molekul), v nichž jsou vzájemně vázané chemickou vazbou. Chemická vazba je
Metody pro studium pevných látek
Metody pro studium pevných látek Metody Metody termické analýzy Difrakční metody ssnmr Predikce krystalových struktur Metody termické analýzy Termogravimetrie (TG) Diferenční TA (DTA) Rozdíl teplot mezi
Test vlastnosti látek a periodická tabulka
DUM Základy přírodních věd DUM III/2-T3-2-08 Téma: Test vlastnosti látek a periodická tabulka Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Test vlastnosti
Supramolecular chemistry... Intermolecular interactions. Supramolecular chemistry is about design. Therefore people are important!
K a t i o n t y Supramolecular chemistry... Intermolecular interactions Supramolecular chemistry is about design. Therefore people are important! Zatím ;-) Vazba kationtů Ionofor = přírodníči syntetický
12. Predikce polymorfů. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253
12. Predikce polymorfů Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 1 Výpočetní chemie Predikce polymorfů rychle se vyvíjející se oblast růst výkonu počítačů možnost vypočítat
Metody pro studium pevných látek
Metody pro studium pevných látek Metody Metody termické analýzy Difrakční metody ssnmr Predikce krystalových struktur Metody termické analýzy Termogravimetrie (TG) Diferenční TA (DTA) Rozdíl teplot mezi
K otázce pokrytí publikační aktivity českých vysokých škol v bibliografických bázích dat
K otázce pokrytí publikační aktivity českých vysokých škol v bibliografických bázích dat Jaroslav Šilhánek Vysoká škola chemicko-technologická v Praze silhanek@vscht.cz Publikované rozdíly jako výchozí
Skupenské stavy látek. Mezimolekulární síly
Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.
Přehled pedagogické činnosti - Doc. RNDr. Ivan Němec, Ph.D.
Přehled pedagogické činnosti - Doc. RNDr. Ivan Němec, Ph.D. Studijní programy: Chemie, Biochemie, Klinická a toxikologická analýza (KATA) Pedagogická činnost: Akademický rok 2005/2006 Pokročilé praktikum
Úvod do strukturní analýzy farmaceutických látek
Úvod do strukturní analýzy farmaceutických látek Garant předmětu: Vyučující: doc. Ing. Bohumil Dolenský, Ph.D. prof. RNDr. Pavel Matějka, Ph.D., A136, linka 3687, matejkap@vscht.cz doc. Ing. Bohumil Dolenský,
Modelování nanomateriálů: most mezi chemií a fyzikou
2. Letní škola letní Nanosystémy Bio-Eko-Tech Malenovice, 16. 18. 9. 2010 Modelování nanomateriálů: most mezi chemií a fyzikou František Karlický Katedra fyzikální chemie Regionální centrum pokročilých
Periodická tabulka prvků
Periodická tabulka prvků 17. století s objevem dalších a dalších prvků nutnost systematizace J. W. Döberreiner (1829) teorie o triádách prvků triáda kovů (lithium, sodík, draslík reagují podobným způsobem)
prof.ing.miroslavludwig,csc. prorektor pro vědu a tvůrčí činnost
prof.ing.miroslavludwig,csc. prorektor pro vědu a tvůrčí činnost 1997 1998 1999 2000 2001 2002 2003 2004 2005 DFJP 224 242 273 232 269 240 269 303 365 FES 245 119 275 226 318 283 209 246 264 FF 43 32 71
Rentgenová difrakce a spektrometrie
Rentgenová difrakce a spektrometrie RNDr.Jaroslav Maixner, CSc. VŠCHT v Praze Laboratoř rentgenové difraktometrie a spektrometrie Technická 5, 166 28 Praha 6 224354201, 24355023 Jaroslav.Maixner@vscht.cz
Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe
Skupenské stavy Plyn Zcela neuspořádané Hodně volného prostoru Zcela volný pohyb částic Částice daleko od sebe Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe
Nekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 3. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 3. listopadu 2016 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii
Nekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty
Pevná fáze ve farmacii
Úvod - Jaké jsou hlavní technologické operace při výrobě léčivých přípravků? - Co je to API, excipient, léčivý přípravek, enkapsulace? - Proč se provádí mokrá granulace? - Jaké hlavní normy se vztahují
Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce
Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.
Heteronukleární korelační experimenty
() jiri brus eteronukleární korelační eperimenty = ±lg ±lg +lg -lg +lg -lg +lg +lg -lg +lg -lg +lg -lg kz AM 9 ±±±y LGPI ±±±y ±±±y : - - - - - - - - - - t t C: ±±± ±±± t f t f - - - r ττ ττ r rotor period
Stanovisko habilitační komise. RNDr. Ivan Němec, Ph.D.
Stanovisko habilitační komise Vstupní a identifikační údaje Stanovisko komise na jmenování uchazeče: docentem pro obor: Anorganická chemie Složení habilitační komise Předseda: RNDr. Ivan Němec, Ph.D. Prof.
Speciální analytické metody pro léčiva
Speciální analytické metody pro léčiva doc. RNDr. Ing. Pavel Řezanka, Ph.D. E-mail: pavel.rezanka@vscht.cz Místnost: A234 Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 1 Harmonogram
České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská. Příloha formuláře C OKRUHY
Příloha formuláře C OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd Základy fyziky kondenzovaných látek 1. Vazebné síly v kondenzovaných látkách
Organická chemie - úvod
rganická chemie - úvod Trocha historie Původní dělení hmoty: Neživá anorganická Živá organická Rozdělení chemie na organickou a anorganickou objevy a isolace látek z přírodních materiálů.w.scheele(1742-1786):
Heterogenní katalýza
Ústav fyzikální chemie Jaroslava Heyrovského AV ČR Heterogenní katalýza Blanka Wichterlová Katalýza cíle Zvýšení rychlosti reakce termodynamicky schůdné Snížení aktivační bariéry tvorbou vazby s katalyzátorem
Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření
Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá
Organická chemie 3.ročník studijního oboru - kosmetické služby.
Organická chemie 3.ročník studijního oboru - kosmetické služby. T-7 Funkční a substituční deriváty karboxylových kyselin Zpracováno v rámci projektu Zlepšení podmínek ke vzdělávání Registrační číslo projektu:
Dynamické procesy & Pokročilé aplikace NMR. chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů
Dynamické procesy & Pokročilé aplikace NMR chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů Chemická výměna jakýkoli proces při kterém dané jádro mění svůj stav
Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled
Bioinformatika a výpočetní biologie KFC/BIN I. Přehled RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Definice bioinformatiky (Molecular) bio informatics: bioinformatics is conceptualising biology
Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou CHEMICKÁ VAZBA VY_32_INOVACE_03_3_07_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou CHEMICKÁ VAZBA Volné atomy v přírodě
Ch - Elektronegativita, chemická vazba
Ch - Elektronegativita, chemická vazba Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s využitím odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument
Mezimolekulové interakce
Mezimolekulové interakce Interakce molekul reaktivně vzniká či zaniká kovalentní vazba překryv elektronových oblaků, mění se vlastnosti nereaktivně vznikají molekulové komplexy slabá, nekovalentní, nechemická,
ZŠ ÚnO, Bratří Čapků 1332
Animovaná chemie Top-Hit Analytická chemie Analýza anorganických látek Důkaz aniontů Důkaz kationtů Důkaz kyslíku Důkaz vody Gravimetrická analýza Hmotnostní spektroskopie Chemická analýza Nukleární magnetická
Průvodka. CZ.1.07/1.5.00/ Zkvalitnění výuky prostřednictvím ICT. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Průvodka Číslo projektu Název projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce
Třídění látek. Chemie 1.KŠPA
Třídění látek Chemie 1.KŠPA Systém (soustava) Vymezím si kus prostoru, látky v něm obsažené nazýváme systém soustava okolí svět Stěny soustavy Soustava může být: Izolovaná = stěny nedovolí výměnu částic
Mezimolekulové interakce
Mezimolekulové interakce, od teorie po interakce biomolekul s grafenem Pavel Banáš Mezimolekulové interakce slabé mezimolekulové interakce fyzikální původ mezimolekulárních interakcí poruchová teorie mezimolekulárních
OPVK CZ.1.07/2.2.00/
OPVK CZ.1.07/2.2.00/28.0184 Základní principy vývoje nových léčiv OCH/ZPVNL Mgr. Radim Nencka, Ph.D. ZS 2012/2013 Molekulární interakce SAR Možné interakce jednotlivých funkčních skupin 1. Interakce alkoholů
Fyzikální vlastnosti materiálů FX001
Fyzikální vlastnosti materiálů FX001 Ondřej Caha 1. Vazba v pevné látce, elastické a tepelné vlastnosti materiálů 2. Elektrické vlastnosti materiálů 3. Optické vlastnosti materiálů 4. Magnetické vlastnosti
Lasery RTG záření Fyzika pevných látek
Lasery RTG záření Fyzika pevných látek Lasery světlo monochromatické koherentní malá rozbíhavost svazku lze ho dobře zfokusovat aktivní prostředí rezonátor fotony bosony laser stejný kvantový stav učební
Zpracování informací a vizualizace v chemii (C2150) 1. Úvod, databáze molekul
Zpracování informací a vizualizace v chemii (C2150) 1. Úvod, databáze molekul Organizační pokyny Přednášející: Martin Prokop Email: martinp@chemi.muni.cz Pracovna: INBIT/2.10 (v dubnu/květnu přesun do
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 LRR/CHPB2 Chemie pro biology 2 Stereochemie organických molekul a izomerie Lucie Szüčová Osnova: stereochemie organických sloučenin
ší šířen 3. Molekulární krystal 3.1. Úvod
3. Molekulární krystal 3.1. Úvod Už v roce 1926 V. M. Goldschmidt ve formulaci svých krystalochemických zákonů rozlišil krystaly podle jejich stavebních prvků, kterými jsou atomy, ionty nebo skupiny atomů
(molekulární) biologie buňky
(molekulární) biologie buňky Buňka základní principy Molecules of life Centrální dogma membrány Metody GI a MB Interakce Struktura a funkce buňky - principy proteiny, nukleové kyseliny struktura, funkce
Karta předmětu prezenční studium
Karta předmětu prezenční studium Název předmětu: Technická petrografie a základy chemie silikátů Číslo předmětu: 541 Garantující institut: Institut geologického inženýrství - 541 Garant předmětu: prof.
Organická chemie - úvod
rganická chemie - úvod Trocha historie Původní dělení hmoty: Neživá anorganická Živá organická Rozdělení chemie na organickou a anorganickou objevy a isolace látek z přírodních materiálů.w.scheele(1742-1786):
Soulad studijního programu. Organická chemie. 1402T001 Organická chemie
Standard studijního Organická chemie A. Specifika a obsah studijního : Typ Oblast/oblasti vzdělávání Základní tematické okruhy Kód Rozlišení Profil studijního Propojení studijního s tvůrčí činností či
Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.03.2013 Číslo DUMu: VY_32_INOVACE_09_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné
Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.03.2013 Číslo DUMu: VY_32_INOVACE_09_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Chemie Tematický okruh: Obecná
Fyzika biopolymerů. Struktura a vlastnosti vody, vodíková vazba
Fyzika biopolymerů Struktura a vlastnosti vody, vodíková vazba Pět základních podmínek pro život na Zemi přítomnost uhlíku a dalších důležitých prvků tvořících biomolekuly voda v blízkosti povrchu vhodná
Stereochemie 7. Přednáška 7
Stereochemie 7 Přednáška 7 1 ptická čistota p = [ ]poz [ ]max x 100 = ee = [R] - [S] [R] + [S] x 100 p optická čistota [R], [S] molární frakce R a S enantiomerů ee + 100 %R = ee + %S = ee + 100 - %R =
Funkční nanostruktury Pavla Čapková
Funkční nanostruktury Pavla Čapková Centrum nanotechnologií na VŠB-TU Ostrava. Centrum nanotechnologií na VŠB-TUO Nanomateriály Sorbenty Katalyzátory a fotokatalyzátory Antibakteriální nanokompozity Nové
2.3 CHEMICKÁ VAZBA. Molekula bílého fosforu P 4 a kyseliny sírové H 2 SO 4. Předpona piko p je dílčí jednotkou a udává velikost m.
2.3 CHEMICKÁ VAZBA Spojováním dvou a více atomů vznikají molekuly. Jestliže dochází ke spojování výhradně atomů téhož chemického prvku, pak se jedná o molekuly daného prvku (vodíku H 2, dusíku N 2, ozonu
Stereochemie. Jan Hlaváč
Stereochemie Jan laváč Pravidla Zápočet Průběžný test: Opravný test: 2 x písemný test v semestru test č. 1 přednášky 1-4 test č. 2 přednášky 5-9 nutno celkově 60% bodů, přičemž každý test musí být splněn
Soubory (atomů) molekul
Soubory (atomů) molekul H 2 O M r = 18,015 M h = 18,015 g/mol V = ρ.m, ρ 25 C = 0,99710 g/cm 3 1 mol: m = 18,015 g, V = 17,963 cm 3 N = n.n A, N A = 6,02214129(27) 10 23 mol 1 1 mol: N = 6,022 10 23 molekul
Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch
Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch Atom, složení a struktura Chemické prvky-názvosloví, slučivost Chemické sloučeniny, molekuly Chemická vazba
Valenční elektrony a chemická vazba
Valenční elektrony a chemická vazba Ve vnější energetické hladině se nacházejí valenční elektrony, které se mohou podílet na tvorbě chemické vazby. Valenční elektrony často znázorňujeme pomocí teček kolem
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Chemie (CHE) Obecná chemie 1. ročník a kvinta 2 hodiny týdně Školní tabule, interaktivní tabule, tyčinkové a kalotové modely molekul, zpětný projektor, transparenty,
OA časopisy pro technické obory
OA časopisy pro technické obory Mgr. Věra Pilecká, Mgr. Lenka Němečková Open access aneb Open your mind! NTK, 26. 10. 2011 Co jsou OA časopisy zlatý open access (gold OA, OA publishing) zajišťuje pro uživatele
OA časopisy pro technické obory
OA časopisy pro technické obory Mgr. Věra Pilecká, Mgr. Lenka Němečková Open access aneb Open your mind! NTK, 26. 10. 2011 Co jsou OA časopisy zlatý open access (gold OA, OA publishing) zajišťuje pro uživatele
jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony
atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů
Separace plynů a par. Karel Friess. Ústav fyzikální chemie, VŠCHT Praha. Seminář 10. 5. 2012 Praha
Separace plynů a par Karel Friess Ústav fyzikální chemie, VŠCHT Praha Seminář 10. 5. 2012 Praha Membránové separace SEPARAČNÍ MEMBRÁNA pasivní nebo aktivní bariéra průchodu částic mezi dvěma fázemi Pro
FAKTOROVÉ PLÁNOVÁNÍ A HODNOCENÍ EXPERIMENTŮ PŘI ÚPRAVĚ VODY
Citace Štrausová K., Dolejš P.: Faktorové plánování a hodnocení experimentů při úpravě vody. Sborník konference Pitná voda 2010, s.95-100. W&ET Team, Č. Budějovice 2010. ISBN 978-80-254-6854-8 FAKTOROVÉ
Fyzika je přírodní věda, která zkoumá a popisuje zákonitosti přírodních jevů.
Fyzika je přírodní věda, která zkoumá a popisuje zákonitosti přírodních jevů. Násobky jednotek název značka hodnota kilo k 1000 mega M 1000000 giga G 1000000000 tera T 1000000000000 Tělesa a látky Tělesa
MECHANISMUS TVORBY PORÉZNÍCH NANOVLÁKEN Z POLYKAPROLAKTONU PŘIPRAVENÝCH ELEKTROSTATICKÝM ZVLÁKŇOVÁNÍM
MECHANISMUS TVORBY PORÉZNÍCH NANOVLÁKEN Z POLYKAPROLAKTONU PŘIPRAVENÝCH ELEKTROSTATICKÝM ZVLÁKŇOVÁNÍM Daniela Lubasová a, Lenka Martinová b a Technická univerzita v Liberci, Katedra netkaných textilií,
Polymery struktura. Vlastnosti polymerů určeny jejich fyzikální a chemickou strukturou
Polymery struktura Vlastnosti polymerů určeny jejich fyzikální a chemickou strukturou 1 vazba Atom (jádro, obal) elektronové orbitaly (s,p,d,f) - vrstvy (výstavbová pravidla, elektronová konfigurace) 2
Metalografie ocelí a litin
Metalografie ocelí a litin Metalografie se zabývá pozorováním a zkoumáním vnitřní stavby neboli struktury kovů a slitin. Dále také stanoví, jak tato struktura souvisí s chemickým složením, teplotou a tepelným
Bc. Miroslava Wilczková
KOMPLEXNÍ SLOUČENINY Bc. Miroslava Wilczková Komplexní sloučeniny Začal studovat Alfred Werner. Na základě získaných chemických a fyzikálních vlastností objasnil základní rysy jejich vnitřní struktury,
Organická chemie pro biochemiky II část 14 14-1
rganická chemie pro biochemiky II část 14 14-1 oxidace a redukce mají v organické chemii trochu jiný charakter než v chemii anorganické obvykle u jde o adici na systém s dvojnou vazbou či štěpení vazby
SOIL ECOLOGY the general patterns, and the particular
Soil Biology topic No. 5: SOIL ECOLOGY the general patterns, and the particular patterns SOIL ECOLOGY is an applied scientific discipline dealing with living components of soil, their activities and THEIR
Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal.
Chemická vazba Volné atomy v přírodě jen zcela výjimečně (vzácné plyny). Atomy prvků mají snahu se navzájem slučovat a vytvářet molekuly prvků nebo sloučenin. Atomy jsou v molekulách k sobě poutány chemickou
AKREDITOVANÉ STUDIJNÍ PROGRAMY
AKREDITOVANÉ STUDIJNÍ PROGRAMY Kód studijního programu Název studijního programu Kód studijního oboru (KKOV) Název studijního oboru Standardní doba studia v akademických rocích / Forma Platnost studia
Stereochemie. Přednáška 6
Stereochemie Přednáška 6 Stereoheterotopické ligandy a NMR spektroskopie Stereoheterotopické ligandy a NMR spektroskopie NMR může rozlišit atomy v odlišném okolí stíněny jinou měrou rozdíl v chemických
Teorie hybridizace. Vysvětluje vznik energeticky rovnocenných kovalentních vazeb a umožňuje předpovědět prostorový tvar molekul.
Chemická vazba co je chemická vazba charakteristiky chemické vazby jak vzniká vazba znázornění chemické vazby kovalentní a koordinační vazba vazba σ a π jednoduchá, dvojná a trojná vazba polarita vazby
Fakulta životního prostředí v Ústí nad Labem. Pokročilé metody studia speciace polutantů. (prozatímní učební text, srpen 2012)
Fakulta životního prostředí v Ústí nad Labem Pokročilé metody studia speciace polutantů (prozatímní učební text, srpen 2012) Obsah kurzu: 1. Obecné strategie speciační analýzy. a. Úvod do problematiky
3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).
PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost
AKREDITOVANÉ STUDIJNÍ PROGRAMY
AKREDITOVANÉ STUDIJNÍ PROGRAMY Kód studijního programu Název studijního programu Kód studijního oboru (KKOV) Název studijního oboru Standardní doba studia v akademických rocích / Forma Platnost studia
Optické spektroskopie 1 LS 2014/15
Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)
Studentská vědecká konference 2004
tudentská vědecká konference 2004 ekce: ORGANICKÁ CHEMIE II Ústav organické chemie, 26.11.2004 Zahájení v cca 11.30, budova A, mistnost č. 250 Komise (ústav 110): Prof. Ing. Ivan tibor, Cc. (VŠCHT) - předseda
Elektronické informační zdroje pro chemické obory. Seminář Agronomická fakulta, MENDELU Ústav chemie a biochemie
Elektronické informační zdroje pro chemické obory Seminář 21.9.2018 Agronomická fakulta, MENDELU Ústav chemie a biochemie 2 Elektronické informační zdroje http://uvis.mendelu.cz/elektronicke-informacnizdroje
Chemické báze dat. Problematika vyhledávání anorganických sloučenin v bázích Chemical Abstracts a Reaxys. Jaroslav Šilhánek
Chemické báze dat Problematika vyhledávání anorganických sloučenin v bázích Chemical Abstracts a Reaxys Jaroslav Šilhánek Co jsou anorganické sloučeniny? (orientační rozdělení) obecně sloučeniny všech
Polymery struktura. Vlastnosti polymerů určeny jejich fyzikální a chemickou strukturou
Polymery struktura Vlastnosti polymerů určeny jejich fyzikální a chemickou strukturou 1 2 Chemická vazba 3 Teorie kovalentní vazby - překryv elektronových orbitalů - sdílený elektronový pár - energie vazby
Fyzikální chemie Úvod do studia, základní pojmy
Fyzikální chemie Úvod do studia, základní pojmy HMOTA A JEJÍ VLASTNOSTI POSTAVENÍ FYZIKÁLNÍ CHEMIE V PŘÍRODNÍCH VĚDÁCH HISTORIE FYZIKÁLNÍ CHEMIE ZÁKLADNÍ POJMY DEFINICE FORMY HMOTY Formy a nositelé hmoty
OPVK CZ.1.07/2.2.00/
OPVK CZ.1.07/2.2.00/28.0184 Základní principy vývoje nových léčiv OCH/ZPVNL Mgr. Radim Nencka, Ph.D. ZS 2012/2013 Hit-to-lead Molekulární interakce Od hitu k leadu - Hit-to-lead proces Od hitu k leadu
Molekulární dynamika polymerů
Molekulární dynamika polymerů Zbyšek Posel Katedra fyziky, Přírodovědecká fakulta, Univerzita J. E. Purkyně, Ústí n. Lab. Polymery základní dělení polymerů homopolymery (alkany) Počítačové simulace délkové
Struktura biomakromolekul
Struktura biomakromolekul ejvýznamnější biomolekuly proteiny nukleové kyseliny polysacharidy lipidy... měli bychom znát stavební kameny života Proteiny Aminokyseliny tvořeny aminokyselinami L-α-aminokyselinami
LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) Použití GC-MS spektrometrie
LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) C Použití GC-MS spektrometrie Vedoucí práce: Doc. Ing. Petr Kačer, Ph.D., Ing. Kamila Syslová Umístění práce: laboratoř 79 Použití GC-MS spektrometrie
Využití faktorového plánu experimentů při poloprovozním měření a v předprojektové přípravě
Využití faktorového plánu experimentů při poloprovozním měření a v předprojektové přípravě Ing. Klára Štrausová, Ph.D. 1 ; doc. Ing. Petr Dolejš, CSc. 1,2 1 W&ET Team, Box 27, 370 11 České Budějovice 2
Opakování: shrnutí základních poznatků o struktuře atomu
11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické
Typy molekul, látek a jejich vazeb v organismech
Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,