Přednáška č. 8. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Přednáška č. 8. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur."

Transkript

1 Přednáška č. 8 Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur. Systematický přehled nejdůležitějších minerálů z třídy silikátů. Přehled technického použití vybraných minerálů a jejich výskyt.

2 Silikáty (křemičitany) cca 1050 minerálů, tj. 26 % známých minerálů (údaj k r. 2002) Silikáty jsou vůbec nejdůležitější skupinou minerálů podle kvalifikovaných odhadů tvoří asi 75 % zemské kůry, spolu s křemenem (který je jim strukturně blízký) dokonce asi 95 %. Zemská kůra obsahuje 49,13 % O a 26 % Si. Uvážíme-li, že silikátové složení má i zemský plášť a podle některých názorů i jádro naší planety, můžeme Zemi směle označit za silikátovou planetu, stejně jako ostatní planety terestrického typu. Silikáty představují velmi důležitou skupinu nerostných surovin (keramický a sklářský průmysl, stavební průmysl, těžba některých kovů atd.). Z těchto důvodů je silikátům věnována mimořádná pozornost ze strany přírodovědců i technologů.

3 Struktury a klasifikace silikátů Základní stavební jednotkou struktury silikátů je křemík-kyslíkový tetraedr [SiO 4 ] 4. Je tvořen iontem Si 4+, který je pravidelně obklopen čtyřmi kyslíkovými anionty O 2. model kuličkový se znázorněním vazeb

4 Struktury a klasifikace silikátů Základní stavební jednotkou struktury silikátů je křemík-kyslíkový tetraedr [SiO 4 ] 4. Je tvořen iontem Si 4+, který je pravidelně obklopen čtyřmi kyslíkovými anionty O 2. model polyedrický

5 Struktury a klasifikace silikátů Vedle křemík-kyslíkových tetraedrů mohou být ve strukturách silikátů přítomny i hliník-kyslíkové tetraedry [AlO 4 ] 5 potom hovoříme o alumosilikátech (hlinitokřemičitanech). Tetraedry jsou ve struktuře silikátů přítomny buď jako samostatné stavební částice, nebo se spojují (polymerují) do větších celků různého typu. Vazba dvou sousedních tetraedrů se děje prostřednictvím jednoho společného kyslíkového atomu (vrcholu tetraedru), nikdy ne prostřednictvím hran nebo dokonce ploch tetraedrů. Jako kationty nejčastěji vystupují Al, Fe, Mg, Ca, Na, K, méně často i Li, B, Be, Mn, Ti, Zr, prvky vzácných zemin, Cs, Sr, Y, Zn, Cu atd. Způsob spojování tetraedrů ve strukturách silikátů se ukázal být nejvhodnějším kritériem pro jejich klasifikaci.

6 Struktury a klasifikace silikátů Podle tohoto hlediska třídu silikátů dělíme na následující oddělení: nesosilikáty (silikáty s izolovanými tetraedry) sorosilikáty (silikáty se samostatnými skupinami tetraedrů) cyklosilikáty (silikáty s kruhovou vazbou tetraedrů) inosilikáty (silikáty s řetězovou vazbou tetraedrů) fylosilikáty (silikáty s plošnou vazbou tetraedrů) tektosilikáty (silikáty s prostorovou vazbou tetraedrů)

7 Struktury a klasifikace silikátů Základní strukturní jednotkou silikátů je koordinační tetraedr [SiO 4 ] 4- Tetraedr se polymerizuje do skupin, řetězů, vrstev nebo prostorově. [SiO 4 ] 4- Nezávislé tetraedry Nesosilikáty Příklady: olivín granáty [Si 2 O 7 ] 6- Dvojice tetraedrů Sorosilikáty Příklad: lawsonit n[sio 3 ] 2- n = 3, 4, 6 Cyklosilikáty Příklady: benitoit BaTi[Si 3 O 9 ] axinit Ca 3 Al 2 BO 3 [Si 4 O 12 ]OH beryl Be 3 Al 2 [Si 6 O 18 ]

8 Struktury a klasifikace silikátů Základní strukturní jednotkou silikátů je koordinační tetraedr [SiO 4 ] 4- Tetraedr se polymerizuje do skupin, řetězů, vrstev nebo prostorově. [SiO 3 ] 2- jednoduché řetězce Inosilikáty [Si 4 O 11 ] 4- dvojité tetraedrů řetězce tetraedrů pyroxeny amfiboly

9 Struktury a klasifikace silikátů Základní strukturní jednotkou silikátů je koordinační tetraedr [SiO 4 ] 4- Tetraedr se polymerizuje do skupin, řetězů, vrstev nebo prostorově. [Si 2 O 5 ] 2- Vrstvy tetraedrů Fylosilikáty slídy mastek jílové minerály serpentin

10 Struktury a klasifikace silikátů Základní strukturní jednotkou silikátů je koordinační tetraedr [SiO 4 ] 4- Tetraedr se polymerizuje do skupin, řetězů, vrstev nebo prostorově. [SiO 2 ] 3-D kostra tetraedrů: plně polymerizovaná Tektosilikáty křemen živce zeolity

11 Struktury silikátů Silikáty - převažující minerály v horninách zemské kůry a svrchního pláště. Převážná část hlavních horninotvorných minerálů (křemen, živce, amfiboly, pyroxeny, slídy a další). Základem struktury je tetraedrická skupina SiO 4-4, která má schopnost polymerizace, tzn. může vytvářet skupiny, řetězce, sítě nebo celé prostorové mřížky. Iontu Si +4 je ve struktuře řady silikátů nahrazen iontem Al +3, což je nezbytně nutné pro vstup dalších kationtů do struktury. Do struktur silikátů vstupují převážně běžné prvky - Ca, Mg, Fe, Na, Mn, K, Ti a některé další.

12 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Do prostorové struktury jsou propojeny přes iontové vazby s jinými kationty (nejčastěji Fe, Mg, Ca, Li, Be, Zn, Al). Uspořádání atomů ve strukturách nesosilikátů je poměrně těsné a proto mají relativně vysokou hustotu a tvrdost. Nezávislé tetraedry nevytváří žádný přednostní směr, takže štěpnost zpravidla chybí. Substituce Al za Si v tetraedrických pozicích je poměrně zanedbatelná. Řada nesosilikátů patří k významným horninotvorným minerálům (olivín, granáty, zirkon, polymorfní modifikace Al 2 SiO 5 atd.).

13 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- b c projekce Olivín (100) modře = M1 žlutě = M2

14 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Olivín - obecné označení minerálů, které jsou svým složením mezi dvěma krajními členy neomezeně mísitelné olivínové řady - forsteritem (Mg 2 SiO 4 ) a fayalitem (Fe 2 SiO 4 ). V přírodě mají běžné olivíny podíl kolem 20% fayalitové komponenty. Chemický vzorec: forsterit - Mg 2 SiO 4 a fayalit - Fe 2 SiO 4 Symetrie: rombická, oddělení rombicky dipyramidální Forma výskytu: Zpravidla krátce sloupcovité krystaly, které mohou srůstat podle (031) nebo hrubě zrnité agregáty Olivín v bazaltu u Podmoklic (zdroj Ďuďa, 1990) Krystaly olivínu; a (100), b (010), C (001), m (110), s (120), r (130), h (011), k (021), d (101), p (111), f (121) (zdroj Ježek, 1932)

15 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Složení a struktura: Poměr Fe : Mg kolísá. Vznik a výskyt: jeden z hlavních horninotvorných minerálů v gabrech, peridotitech a bazaltech. Téměř monominerální olivínovou horninou je dunit. Při vyšším zastoupení SiO 2 v krystalizující tavenině reaguje za vzniku enstatitu (pyroxen). V metamorfovaných horninách je přítomen v dolomitických mramorech a erlanech. Při alteraci olivinických hornin dochází k přeměně na minerály serpentinové skupiny. Naleziště: Smrčí a Podmoklice u Semil (olivinické bazalty), Sušice (skarn), Višňová u Moravského Krumlova (dolomitický mramor) Použití: Široké zejména vzhledem k žáruvzdornosti (teplota tavení forsteritu je 1890 C). Používá se ve slévárenství (cihly, vyzdívky pecí, formy pro odlévání), při výrobě bloků pro uchování tepla ve sklářských pecích, dále v chemickém průmyslu, při výrobě hnojiv, jako brusivo. Výjimečně jako ruda Mg. Drahokamové odrůdy se využívají jako šperkový kámen (tzv. chryzolit).

16 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Olivín

17 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Olivín

18 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Řada granátů Řada kubických izostrukturních nesosilikátů s obecným vzorcem A 3 2+ B 2 3+ (SiO 4 ) 3, kde A 2+ = Ca 2+, Mg 2+, Fe 2+, Mn 2+, B 3+ = Al 3+, Fe 3+, Cr Je popsáno cca 15 krajních členů řady, z nichž 6 se uplatňuje častěji: A 2+ B 3+ název krajního členu vzorec Mg Al pyrop Mg 3 Al 2 (SiO 4 ) 3 Fe Al almandin Fe 3 Al 2 (SiO 4 ) 3 Mn Al spessartin Mn 3 Al 2 (SiO 4 ) 3 Ca Al grosulár Ca 3 Al 2 (SiO 4 ) 3 Ca Fe andradit Ca 3 Fe 2 (SiO 4 ) 3 Ca Cr uvarovit Ca 3 Cr 2 (SiO 4 ) 3

19 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Krajní členy se ovšem v přírodě nikdy nevyskytují samostatně, přírodní granáty jsou vždy izomorfní směsi krajních členů. Podle převažující komponenty se granáty pojmenovávají (např. jako almandiny se označují granáty s převažujícím almandinovou komponentou). Častá je zonálnost krystalů. Izomorfní mísivost v řadě granátů: Granát A 2+ 3 B 3+ 2 [SiO 4 ] 3 tzv. Pyralspity - B = Al Pyrop: Mg 3 Al 2 [SiO 4 ] 3 Almandin: Fe 3 Al 2 [SiO 4 ] 3 Spessartin: Mn 3 Al 2 [SiO 4 ] 3 tzv. Ugrandity - A = Ca Uvarovit: Ca 3 Cr 2 [SiO 4 ] 3 Grossular: Ca 3 Al 2 [SiO 4 ] 3 Andradit: Ca 3 Fe 2 [SiO 4 ] 3

20 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Granáty - skupina je tvořena řadou koncových členů, mezi kterými je úplná nebo omezená izomorfní mísitelnost. Běžné přírodní granáty jsou zpravidla směsí dvou a více koncových členů. Symetrie: kubická, oddělení hexaoktaedrické Forma výskytu: Krystaly nejčastěji ve formě dvanáctistěnu nebo čtyřiadvacetistěnu, resp. jejich spojek. Často tvoří jen izometrická zrna nebo jemně až hrubě zrnité agregáty. Almandin krystal 2 cm, Itálie (zdroj Ďuďa, 1990) Nejběžnější krystaly granátu; d (110), n (211), s (321) (zdroj Klein a Hurlbut, 1993)

21 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Fyzikální vlastnosti: Barva a další fyzikální vlastnosti granátů závisí na jejich chemickém složení. Barva: pyropu - temně rudá, almandinu - červená nebo červenohnědá, spessartinu - hnědočervená, grossulár - zelený nebo žlutavý, andradit - zelenavý nebo hnědavý a uvarovit - smaragdově zelený. Složení a struktura: Obecný vzorec je A 3 B 2 (SiO 4 ) 3, kde pozici A obsazují dvojmocné prvky (Ca, Mg, Fe, Mn) pozici B trojmocné prvky (Al, Fe, Cr). Neomezaná mísitelnost je v rámci skupiny "pyralspitové" (pyrop - almandin - spessartin) a pak mezi grosulárem a andraditem.

22 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Vznik a výskyt: pyropy - v ultrabazických horninách (peridotity, serpentinity, kimberlity), almandiny - typické pro metamorfované horniny (svory, ruly, amfibolity), spessartin - ve skarnech, Mn ložiscích a pegmatitech, grosulár nebo andradit - typické pro kontaktní metamorfózu uvarovit - bývá v Cr bohatých hadcích. Naleziště: Měrunice, Třebenice (pyrop v peridotitech českého středohoří), Přibyslavice u Čáslavi (almandin v pegmatitu), Zlatý Chlum u Jeseníku (almandin ve svoru), Budislav, Maršíkov (spessartin v pegmatitech), Švagrov (spessartin v Fe páskovaných rudách), Chvaletice (spassartin v Mn, Fe sedimentárních rudách), Obří důl v Krkonoších (grosulár ve skarnu), Žulová, Vápenná (grosulár v kontaktních skarnech), Mariánská hora v Ústí n. Lab. (andradit ve fonolitu).

23 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Použití: Významné horninotvorné minerály, časté zejména v metamorfovaných horninách. Vyskytují se i v magmatitech, díky vysoké chemické a mechanické stabilitě se hromadí v sedimentech. Pěkně zbarvené a průhledné granáty se používají jako drahé kameny. Kvůli poměrně vysoké tvrdosti a mechanické odolnosti se granáty využívají na výrobu brusných prášků, past, papírů a pláten. Diagnostické znaky: Vytvářejí i zaoblená zrna, běžné jsou zrnité a celistvé agregáty. Barva nejčastěji červená, fialová, hnědá až černá, méně často zelená a žlutá. Granáty jsou průsvitné až průhledné, zcela bez štěpnosti, mají nerovný lom, jsou skelně lesklé na lomných i krystalových plochách, mají bílý vryp. Tvrdost 6,5 7,5, hustota 3,4 4,6 g.cm 3 (podle složení).

24 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Granáty

25 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Granáty

26 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Granáty

27 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Staurolit Chemický vzorec: Fe +2 2 Al 9 O 6 (SiO 4 ) 4 (O, OH) 2 Symetrie: monoklinická, oddělení monoklinicky prizmatické Forma výskytu: Krátce sloupcovité krystaly s nerovnými plochami, velmi často tvoří křížová dvojčata podle (032) nebo (232). Agregáty zrnité. Dvojče staurolitu podle (232) ze svoru u Petrova (zdroj Ďuďa, 1990)

28 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Fyzikální vlastnosti: T = 7-7,5; H = 3,65-3,75; barva červenohnědá, hnědá, černohnědá, lesk skelný za čerstva, štěpnost (010) nevýrazná. Složení a struktura: Dvojmocné Fe je běžně nahrazováno Fe +3, Mg, Mn, Co nebo Zn. Struktura mírně připomíná kyanit - jsou zde "vrstvy" 4Al 2 SiO 5 s oktaedry hliníku v řetězcích ve směru osy c, které se střídají s "vrstvami" Fe 2 AlO 3 (OH) 2 ve směru [010]. Vznik a výskyt: Typický minerál svorů vzniklých metamorfózou jílovitých sedimentů s vyššími obsahy Fe. Díky své odolnosti se hromadí v aluviích. Naleziště: Kouty nad Desnou, Keprník, Vozka, Červenohorské sedlo (svory) Diagnostické znaky: typická dvojčata

29 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Staurolit

30 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Staurolit

31 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Skupina Al 2 SiO 5 Patří sem tři polymorfní modifikace Al 2 SiO 5 : Andalusit Sillimanit Kyanit Výskyt: Významné horninotvorné minerály. Vyskytují se zejména v metamorfovaných horninách, kde indikují teplotně-tlakové podmínky metamorfózy. Andalusit je typický pro nízkotlaké metamorfity (zejména kontaktní dvory granitoidů). Sillimanit a kyanit vznikají za vyšších pt podmínek (hl. svory, ruly, granulity), přičemž kyanit je typický pro výšetlaké horniny (ruly, granulity, eklogity). Méně často se fáze Al 2 SiO 5 vyskytují v pegmatitech.

32 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Skupina Al 2 SiO 5 Patří sem tři polymorfní modifikace Al 2 SiO 5 : Andalusit Sillimanit Kyanit Použití: Při vypálení na vysokou teplotu ( C) přecházejí všechny tři modifikace Al 2 SiO 5 na směs mullitu, křemenného skla a cristobalitu. Mullitová keramika je vzhledově podobná porcelánu a vyznačuje se vysokou žárovzdorností, chemickou i tepelnou stálostí, pevností i za vysokých teplot. Odolává náhlým teplotním změnám a prudkým nárazům elektrického proudu, proto se používá např. na výrobu zapalovacích svíček a speciálních nástrojů.

33 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Skupina Al 2 SiO 5 Patří sem tři polymorfní modifikace Al 2 SiO 5 : Andalusit Je růžový, červený, červenohnědý, fialový, skelně lesklý, neprůhledný nebo průsvitný, štěpný podle {110}. Odrůda chiastolit obsahuje uhlíkový pigment rozmístěný v krystalu do tvaru kříže (název podle podoby s řeckým písmenem chí). Tvrdost 6,5 7,5, hustota 3,16 3,20 g.cm 3. Vyskytuje se v podobě stébelnatých agregátů nebo sloupcovitých xx čtvercového průřezu. Výskyt: V kyselých granitoidech a pegmatitech bohatých Al. Častý je v rohovcích, které vznikly kontaktní metamorfózou jílových sedimentů (tzv. plodové břidlice). Vyskytuje se i v regionálně metamorfovaných horninách, hl. svorech a rulách. Čisté drahokamové odrůdy se získávají z rozsypů. Poznávací znaky: Většinou růžová barva; tvoří hranolovité krystaly zarostlé v hornině. Často je obklopen muskovitem, který vzniká přeměnou andalusitu.

34 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Skupina Al 2 SiO 5 Patří sem tři polymorfní modifikace Al 2 SiO 5 : Andalusit

35 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Skupina Al 2 SiO 5 Patří sem tři polymorfní modifikace Al 2 SiO 5 : Sillimanit Obvykle je bílý nebo světle zbarvený (šedý, namodralý, nažloutlý), průsvitný až neprůhledný, skelně až hedvábně lesklý. Má dokonalou štěpnost podle {010}, bílý vryp. Tvrdost 6 7, hustota 3,26 g.cm 3. Vyskytuje se v podobě vláknitých až plstnatých agregátů, často prorostlých křemenem, slídami či cordieritem. Výskyt: Je typickým vysokometamorfním minerálem hornin bohatých Al (facie amfibolitová a granulitová, hl. ruly a svory). Běžný v kontaktně metamorfovaných rohovcích; častý je v pegmatitech pronikajících do Al-bohatých hornin. Zvětráváním hornin se dostává do rozsypů. Poznávací znaky: Bílá či šedá barva, soudržné vláknité agregáty s hedvábným leskem, poměrně tvrdé, v rule, svoru či pegmatitu.

36 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Skupina Al 2 SiO 5 Patří sem tři polymorfní modifikace Al 2 SiO 5 : Kyanit Synonymum disten. Nejčastěji je modrý, šedý či bělošedý, barva se často mění v rámci jediného krystalu. Je dokonale štěpný podle {100}, na štěpných plochách je skelně až perleťově lesklý. Má bílý vryp. Tvrdost ve směru protažení krystalů 5, v kolmém směru 7 (vysoká anizotropie tvrdosti). Hustota 3,55 3,66 g.cm 3. Vyskytuje se hlavně v podobě lištovitých agregátů nebo tvoří zarostlé dlouze sloupcovité xx. Výskyt: Vzniká při regionální metamorfóze hornin bohatých Al (svory, ruly, granulity, eklogity) a asimilací Al-bohatých hornin při vzniku pegmatitů. Hromadí se v rozsypech. Poznávací znaky: Lištovité dokonale štěpné xx a agregáty modré nebo šedé barvy zarostlé v metamorfované hornině nebo v pegmatitu.

37 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Skupina Al 2 SiO 5 Patří sem tři polymorfní modifikace Al 2 SiO 5 : Kyanit

38 Sorosilikáty: dvojice tetraedrů [Si 2 O 7 ] 6- silikáty se samostatnými skupinami tetraedrů, diortosilikáty; sóros ř. skupina Ve strukturách sorosilikátů jsou samostaté (vzájemně nazávislé) skupiny křemíkkyslíkových tetraedrů. Nejčastěji jde o dvojice tetraedrů spojené prostřednictvím jednoho společného atom u kyslíku, takže společně tvoří skupinu [Si 2 O 7 ] 6. K sorosilikátům řadíme i minerály se smíšenou strukturou, které mají ve strukturách současně izolované tetraedry [SiO 4 ] 4 i dvojice tetraedrů [Si 2 O 7 ] 6 (řada epidotu, vesuvian). Horninotvorný význam mají zejména sorosilikáty řady epidotu.

39 Epidot Sorosilikáty: dvojice tetraedrů [Si 2 O 7 ] 6- Chemický vzorec: Ca 2 (Fe +3, Al) Al 2 (SiO 4 ) (Si 2 O 7 ) O (OH) Symetrie: monoklinická, oddělení monoklinicky prizmatické Forma výskytu: Krátce i dlouze sloupcovité často hojnoploché krystaly protažené podle osy b (známo kolem 200 tvarů), některé plochy bývají výrazně rýhované. Častý je srůst podle (100). Agregáty zrnité nebo celistvé. Fyzikální vlastnosti: T = 6,5; H = 3,3-3,5; barva v různých odstínech zelené až zelenočerné, lesk skelný, štěpnost dokonalá podle (100). Složení a struktura: Poměry Al : Fe jsou proměnlivé, může mít izomorfní příměsi Mn nebo Cr. Vznik a výskyt: Vzniká při alteraci vyvřelých hornin. Nejkrásnější krystaly pocházejí z alpských žil, objevuje se i v kontaktně metamorfovaných skarnech. Naleziště: Sobotín, Markovice, Krásné u Šumperka (alpská parageneze), na puklinách granitoidů brněnského masívu (Dolní Kounice), Žulová, Vápenná (kontaktní skarny). Použití: výjimečně jako šperk Diagnostické znaky: barva a tvary krystalů

40 Epidot Sorosilikáty: dvojice tetraedrů [Si 2 O 7 ] 6-

41 Sorosilikáty: dvojice tetraedrů [Si 2 O 7 ] 6- Vesuvian Chemický vzorec: Ca 10 (Mg, Fe) 2 Al 4 (SiO 4 ) 5 (Si 2 O 7 ) 2 (OH) 4 Symetrie: tetragonální, oddělení ditetragonálně dipyramidální Forma výskytu: Krystaly jsou zpravidla spojky prizmat, pyramid a pinakoidu, běžné jsou celistvé nebo zrnité agregáty. Fyzikální vlastnosti: T = 6,5-7; H = 3,33-3,45; barva zpravidla žlutohnědá, hnědá nebo zelená, lesk skelný. Složení a struktura: Běžná je substituce Na za Ca, Mn za Mg a Fe nebo Ti za Al a F za OH. Struktura vesuviánu je velmi blízká grosuláru. Vznik a výskyt: Je typickým minerálem kontaktní metamorfózy Ca bohatých hornin (skarny, erlány). Diagnostické znaky: tetragonální sloupcovité krystaly Vesuvián (1,5 cm), Rusko (zdroj Ďuďa, 1990)

42 Sorosilikáty: dvojice tetraedrů [Si 2 O 7 ] 6- Vesuvian

43 Sorosilikáty: dvojice tetraedrů [Si 2 O 7 ] 6- Vesuvian

44 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 silikáty s kruhovou vazbou tetraedrů, kruhové silikáty Poměr Si : O = 1:3. Poměrně vzácné jsou troj- a čtyřčetné kruhy, běžné jsou kruhy z šesti křemíkových tetraedrů (Si 6 O 18 ) -12. Tetraedry [SiO 4 ] 4 jsou spojeny do samostatně uložených prstenců, nejčastěji šestičlánkových, takže vzniká skupina [Si 6 O 18 ] 12 (beryl, cordierit, turmalíny atd.). Méně časté jsou cyklosilikáty s trojčlánkovými (benitoid) či čtyřčlánkovými (axinit, neptunit) prstenci. Tvar prstenců výrazně ovlivňuje symetrii cyklosilikátů nejčastěji jsou trigonální či hexagonální.

45 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 Beryl Chemický vzorec: Be 3 Al 2 (Si 6 O 18 ) Symetrie: hexagonální, oddělení dihexagonálně dipyramidální Forma výskytu: Krystaly mají tvar dlouhých hexagonálních sloupců. Méně časté jsou tlustě tabulkovité krystaly podle (0001).

46 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 Beryl Fyzikální vlastnosti: T = 7,5-8; H = 2,65-2,8; barva obecného berylu je žlutozelená, lesk skelný. Drahokamové odrůdy jsou průhledné s barvou zelenou (smaragd), světle modrou (akvamarín), růžovou (morganit), žlutou (heliodor) nebo purpurově červenou (bixbit). Štěpnost nedokonalá podle (0001).

47 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 Složení a struktura: Ve struktuře jsou šestičetné prstence Si tetraedrů uloženy rovnoběžně s bází. Be v 4-četné a Al v 6-četné koordinaci propojují tyto aniontové skupiny ve vertikálním i horizontálním směru. Kruhy SiO 4 tetraedrů jsou v jednotlivých vrstvách uloženy nad sebou, takže ve struktuře vznikají poměrně široké "kanály" ve směru osy c. V těchto kanálech mohou být uloženy ionty (Li, Na, K, Rb, Cs, Ca, OH, F) nebo neutrální skupiny (H 2 O, He). Vznik a výskyt: Beryl se vyskytuje převážně ve spojitosti s kyselým granitickým magmatem - v pegmatitech, albititech a greisenech. Méně častý je na alpských žilách a ve svorech v kontaktu s granity (smaragdy). Přechází i do rozsypů. Naleziště: Maršíkov, Lázně Kynžvart, Sobotín, Jeclov, Puklice (pegmatity), Horní Slavkov, Čistá (greiseny), Habachtal (smaragdy ve svoru, Rakousko). Použití: šperkařství, Be ve slitinách zvyšuje tvrdost Diagnostické znaky: barva, tvar krystalů

48 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 Beryl

49 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 Beryl

50 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 Skupina turmalínu Složitá řada izostrukturních trigonálních borosilikátů s obecným vzorcem (zjednodušeně): XY 3 Z 6 (BO 3 ) 3 Si 6 O 12 (OH,F) 4 kde: X = Na, Ca, K, Mg, vakance... Y = Mg, Fe 2+, Li, Al, Fe Z = Al, Fe 3+, Mg, Cr 3+, V Vedle uvedených prvků mohou být pozice X, Y a Z obsazeny i dalšími prvky, přičemž substituce jsou často velmi komplikované. Složení turmalínů je dále komplikováno někdy až neomezeným mísením krajních členů řady, takže krystalochemie turmalínů je mimořádně složitá. Velmi rozšířená je zonalita krystalů.

51 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 Skupina turmalínu Z většího počtu známých koncových členů řady (k r jich bylo známo 15) se tři uplatňují nejčastěji: X Y Z vzorec skoryl Na Mg Al NaMg 3 Al 6 (BO 3 ) 3 Si 6 O 18 (OH,F) 4 dravit Na Fe 2+ Al NaFe 3 Al 6 (BO 3 ) 3 Si 6 O 18 (OH,F) 4 elbait Na Li,Al Al Na(Li,Al) 3 Al 6 (BO 3 ) 3 Si 6 O 18 (OH,F) 4

52 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 Skupina turmalínu V této skupině minerálů je vyčleněna řada koncových členů. Běžné turmalíny jsou pak jejich poměrně komplikované kombinace. Běžný akcesorický turmalín s převahou Fe +2 a Al se označuje jako skoryl, vzácnější turmalín s obsahem Li a Al se označuje jako elbait. Chemický vzorec: (Na,Ca)(Li, Mg,Al) 3 (Al,Fe,Mn) 6 (BO 3 ) 3 (OH) 4 (Si 6 O 18 ) Symetrie: hexagonální, oddělení ditrigonálně pyramidální Forma výskytu: Skoryl tvoří krátce nebo dlouze sloupcovité, vertikálně rýhované krystaly, omezené trigonálním a hexagonálním prizmatem a zakončené polárně trigonálními pyramidami. Časté jsou i čočkovité krystaly. Agregáty skorylu jsou stébelnaté, radiálně paprsčité, jehlicovité i zrnité. Elbaity jsou zpravidla dlouze sloupcovité až jehlicovité, také s podélným rýhováním. Agregáty zrnité. Fyzikální vlastnosti: T = 7-7,5; H = 3-3,25; barva skorylu je černá, u elbaitu se podle barvy vyčleňují různé variety: zelený verdelit, červený rubelit, modrý indigolit a bezbarvý achroit. Často se na jednom krystalu vyskytuje několik variet. Lesk skelný až matný. Turmalín má piezoelektrické vlastnosti.

53 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 Skupina turmalínu Skoryl Je černý, méně často hnědočerný, modročerný až modrý, průsvitný až neprůhledný, skelně lesklý na krystalových plochách, na lomných plochách často mastně lesklý. Je zcela bez štěpnosti, často odlučný podle báze. Má nerovný lom, bílý vryp. Tvrdost 7, hustota 3,10 3,25 g.cm 3. Vytváří nejčastěji dlouze až krátce sloupcovité xx se zřetelně různě vyvinutými póly (hemimorfie) a ditrigonálním, hexagonálním nebo trigonálním průřezem, často vertikálně rýhované. Běžné jsou jehličkovité a stébelnaté agregáty, často paprsčitě uspořádané. Méně hojně vytváří čočkovitě vyvinuté xx. Výskyt: Nejrozšířenější minerál B v zemské kůře. Běžná akcesorie kyselých žul, žulových pegmatitů a aplitů. Méně častý je na Sn W ložiskách, na žilách alpské parageneze a na hydrotermálních žilách. Jako akcesorie je přítomen v některých rulách a svorech. Při zvětrávání hornin se dostává jako součást těžké frakce do rozsypů. Použití: Jako rudu B jej prozatím nejde použít, protože jeho rozklad je energeticky náročný a tedy drahý. Piezoelektrických vlastností se výjimečně využívá v elektrotechnice (oscilátory); polodrahokam. Poznávací znaky: Černá nebo hnědočerná barva, zcela bez štěpnosti, tvoří skelně lesklé sloupcovité podélně rýhované xx s hexagonálním nebo ditrigonálním průřezem, často odlučné podle báze.

54 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 Skupina turmalínu Skoryl

55 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 Skupina turmalínu Elbait Vytváří řadu barevných odrůd: růžový rubelit, zelený verdelit, modrý indigolit, bezbarvý achroit atd. Barva se často výrazně mění v rámci jediného krystalu (zonalita), a to jak ve vertikálním směru, tak od středu k povrchu krystalu. Je skelně lesklý, bez štěpnosti, průhledný až neprůhledný. Má lasturnatý až nerovný lom, bílý vryp. Vytváří dlouze až krátce sloupcovité zřetelně hemimorfní xx s ditrigonálním nebo trigonálním průřezem, podélně rýhované, běžné jsou i stébelnaté až jehlicovité agregáty, často paprsčitě uspořádané. Výskyt: Je zcela charakteristický pro Li-bohaté pegmatity. Ojediněle se hromadí v rozsypech. Použití: Jako drahý kámen, módní jsou brusy s postupným přechodem barev. Poznávací znaky: Dobře omezené sloupcovité podélně rýhované xx s ditrigonálním nebo hexagonálním průřezem, zarostlé v pegmatitu. Barva může být různá, často se mění na jediném krystalu.

56 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 Skupina turmalínu Elbait

57 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 Skupina turmalínu Elbait

58 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 Elbait sloupec 6 cm, Brazílie (zdroj Lapis) Řez elbaitem kolmo k ose c, Madagaskar (zdroj Lapis) Skoryl (3 cm), Dolní Bory (zdroj Bernard, 1981)

59 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 Výskyt Nejrozšířenější minerály bóru v zemské kůře. Časté akcesorické minerály kyselých magmatických hornin a s nimi spjatých pegmatitů (zde i velké xx) a hydrotermálních žil. Díky vysoké mechanické a chemické odolnosti se hromadí v sedimentech (písky, pískovce). Při metamorfóze dochází k rekrystalizaci detritických turmalínů, takže se vyskytují i v některých metamorfitech (některé ortoruly, svory). Význam Minerály řady turmalínů jsou v poslední době intenzivně studovány, protože představují vhodný nástroj k určení provenience klastických hornin a metamorfitů až do středního stupně metamorfózy. Důvodem je vysoká mechanická i chemická odolnost turmalínů, jejich kolísavé složení a přítomnost v horninách s velmi rozdílným složením a s velmi různým způsobem vzniku. Praktický význam v technickém smyslu turmalíny nemají. Pěkně zbarvené průhledné turmalíny se brousí jako drahé kameny, módní jsou zvláště kameny s výraznou barevnou zonalitou. Naleziště: skoryl Bory, Cyrilov, Přibyslavice, Bobrová (pegmatity), Blaník (ortorula); elbaity jsou známy z pegmatitů Rožná, Dobrá Voda, Řečice, Laštovičky a z dutin žul na ostrově Elba. Diagnostické znaky: rýhování krystalů, barva

60 Děkuji za pozornost.

Přírodopis 9. Přehled minerálů KŘEMIČITANY

Přírodopis 9. Přehled minerálů KŘEMIČITANY Přírodopis 9 14. hodina Přehled minerálů KŘEMIČITANY Mgr. Jan Souček Základní škola Meziměstí V. Křemičitany Křemičitany (silikáty) jsou sloučeniny oxidu křemičitého (SiO 2 ). Tyto minerály tvoří největší

Více

Vliv metody přepočtu chemických analýz amfibolů na jejich klasifikaci

Vliv metody přepočtu chemických analýz amfibolů na jejich klasifikaci Vliv metody přepočtu chemických analýz amfibolů na jejich klasifikaci Rešeršní část k bakalářské práci Vypracoval: Libor Veverka Vedoucí práce: RNDr. Václav Vávra, Ph.D. Obsah 1. Skupina amfibolů 3 1.1.

Více

Struktura a textura hornin. Cvičení 1GEPE + 1GEO1

Struktura a textura hornin. Cvičení 1GEPE + 1GEO1 Struktura a textura hornin Cvičení 1GEPE + 1GEO1 1 Nejdůležitějším vizuálním znakem všech typů hornin je jejich stavba. Stavba představuje součet vzájemných vztahů všech stavebních prvků (agregátů krystalů,

Více

Přírodopis 9. Přehled minerálů PRVKY

Přírodopis 9. Přehled minerálů PRVKY Přírodopis 9 10. hodina Přehled minerálů PRVKY Mgr. Jan Souček Základní škola Meziměstí I. Prvky V přírodě existuje přes 20 minerálů tvořených samostatnými prvky. Dělí se na kovy: měď (Cu), stříbro (Ag),

Více

MINERÁLY II Minerály II

MINERÁLY II Minerály II MINERÁLY II Součástí projektu Geovědy vedle workshopů, odborných exkurzí a tvorby výukových materiálů je i materiální vybavení škol, které se do tohoto projektu přihlásily. Situace ve výbavě školních kabinetů

Více

Mineralogie a petrografie PRACOVNÍ pro 9. LIST ročník č. 1 ZŠ. Úkol č. 1. Úkol č. 2. Úkol č. 3. Téma: Prvky. Spoj minerál se způsobem jeho vzniku.

Mineralogie a petrografie PRACOVNÍ pro 9. LIST ročník č. 1 ZŠ. Úkol č. 1. Úkol č. 2. Úkol č. 3. Téma: Prvky. Spoj minerál se způsobem jeho vzniku. Mineralogie a petrografie PRACOVNÍ pro 9. LIST ročník č. 1 ZŠ Pracovní list 1A Téma: Prvky Úkol č. 1 Spoj minerál se způsobem jeho vzniku. DIAMANT GRAFIT SÍRA STŘÍBRO ZLATO Ze sopečných plynů aktivních

Více

Kolekce 20 hornin Kat. číslo 104.0085

Kolekce 20 hornin Kat. číslo 104.0085 Kolekce 20 hornin Kat. číslo 104.0085 Strana 1 z 14 SBÍRKA 20 SYSTEMATICKY SEŘAZENÝCH HORNIN PRO VYUČOVACÍ ÚČELY Celou pevnou zemskou kůru a části zemského pláště tvoří horniny, přičemž jen 20 až 30 km

Více

VY_32_INOVACE_04.11 1/9 3.2.04.11 Vyvřelé, přeměněné horniny Vyvřelé magmatické horniny

VY_32_INOVACE_04.11 1/9 3.2.04.11 Vyvřelé, přeměněné horniny Vyvřelé magmatické horniny 1/9 3.2.04.11 Vyvřelé magmatické horniny cíl objasnit jejich vlastnosti, výskyt a vznik - vyjmenovat základní druhy - popsat jejich složení - znát základní zástupce magma utuhne pod povrchem hlubinné vyvřeliny

Více

PETROGRAFIE METAMORFITŮ

PETROGRAFIE METAMORFITŮ 1 PETROGRAFIE METAMORFITŮ doc. RNDr. Jiří Zimák, CSc. Katedra geologie PřF UP Olomouc, tř. Svobody 26, 77146 Olomouc, tel. 585634533, e-mail: zimak@prfnw.upol.cz (říjen 2005) OBSAH Úvod 1. Vznik metamorfitů

Více

Přírodopis 9. Fyzikální vlastnosti nerostů. Mgr. Jan Souček Základní škola Meziměstí. 8. hodina

Přírodopis 9. Fyzikální vlastnosti nerostů. Mgr. Jan Souček Základní škola Meziměstí. 8. hodina Přírodopis 9 8. hodina Fyzikální vlastnosti nerostů Mgr. Jan Souček Základní škola Meziměstí Hustota (g/cm 3.) udává, kolikrát je objem nerostu těžší než stejný objem destilované vody. Velkou hustotu má

Více

- krystalické nebo sklovité horniny vzniklé ochlazením chladnutím, tuhnutím a krystalizací silikátové taveniny - magmatu

- krystalické nebo sklovité horniny vzniklé ochlazením chladnutím, tuhnutím a krystalizací silikátové taveniny - magmatu Úvod do petrografie, základní textury a struktury hornin Petrografie obor geologie zabývající se popisem a systematickou klasifikací hornin, zejména pomocí mikroskopického studia Stavba hornin Pod pojem

Více

Fyzikální a chemické vlastnosti minerálů. Cvičení 1GEPE + 1GEO1

Fyzikální a chemické vlastnosti minerálů. Cvičení 1GEPE + 1GEO1 Fyzikální a chemické vlastnosti minerálů Cvičení 1GEPE + 1GEO1 1 Pro popis a charakteristiku minerálních druhů je třeba zná jejich základní fyzikální a chemické vlastnosti. Tyto vlastnosti slouží k přesné

Více

Mineralogie procesy vzniku minerálů. Přednáška č. 8

Mineralogie procesy vzniku minerálů. Přednáška č. 8 Mineralogie procesy vzniku minerálů Přednáška č. 8 MINERALOGIE GENETICKÁ Minerály jsou sloučeniny chemických prvků. Prvky podléhají neustálému koloběhu. Minerály vznikají, zanikají, koncentrují se nebo

Více

Je to věda, nauka o horninách, zkoumá vznik, složení, vlastnosti a výskyt hornin.

Je to věda, nauka o horninách, zkoumá vznik, složení, vlastnosti a výskyt hornin. PETROLOGIE Je to věda, nauka o horninách, zkoumá vznik, složení, vlastnosti a výskyt hornin. HORNINA = anorganická heterogenní (nestejnorodá) přírodnina, tvořena nerosty, složení nelze vyjádřit chemickým

Více

VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA SEMINÁRNÍ PRÁCE Z PŘEDMĚTU PŘÍRODNÍ A TECHNOGENNÍ SUROVINOVÉ ZDROJE NEROSTNÁ SUROVINA PYROP

VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA SEMINÁRNÍ PRÁCE Z PŘEDMĚTU PŘÍRODNÍ A TECHNOGENNÍ SUROVINOVÉ ZDROJE NEROSTNÁ SUROVINA PYROP VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA SEMINÁRNÍ PRÁCE Z PŘEDMĚTU PŘÍRODNÍ A TECHNOGENNÍ SUROVINOVÉ ZDROJE NEROSTNÁ SUROVINA PYROP VYPRACOVALA: PETRA PALOVÁ OBOR: GMT SKUPINA: GB 213 DATUM:

Více

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Nejjednodušší prvek. Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Vodík tvoří dvouatomové molekuly, je lehčí než

Více

Alexandra Kloužková 1 Martina Mrázová 2 Martina Kohoutková 2 Vladimír Šatava 2

Alexandra Kloužková 1 Martina Mrázová 2 Martina Kohoutková 2 Vladimír Šatava 2 Syntéza leucitové suroviny pro dentální kompozity 1 Ústav skla a keramiky VŠCHT Praha VYSOKÁ ŠKOLA CHEMICKO- TECHNOLOGICKÁ V PRAZE Alexandra Kloužková 1 Martina Mrázová 2 Martina Kohoutková 2 Vladimír

Více

MILAN MICHALSKI MALÝ PRŮVODCE GEOPARKEM NA ŠKOLNÍ ZAHRADĚ

MILAN MICHALSKI MALÝ PRŮVODCE GEOPARKEM NA ŠKOLNÍ ZAHRADĚ MILAN MICHALSKI MALÝ PRŮVODCE GEOPARKEM NA ŠKOLNÍ ZAHRADĚ Registrační číslo projektu: CZ.1.07/1.1.28/01.0049 HORNINY A NEROSTY GEOPARKU Nacházíme se v geoparku u ZŠ Habrmanova v České Třebové, do kterého

Více

Laboratorní práce č. 4

Laboratorní práce č. 4 1/8 3.2.04.6 Uhličitany kalcit (CaCO3) nejrozšířenější, mnoho tvarů, nejznámější je klenec, součást vápenců a mramorů - organogenní vápenec nejvíce kalcitu usazováním schránek různých živočichů (korálů,

Více

Je kvalitní přírodní stavební materiál vhodný k použití v zahradní architektuře, zejména:

Je kvalitní přírodní stavební materiál vhodný k použití v zahradní architektuře, zejména: KATALOG Je kvalitní přírodní stavební materiál vhodný k použití v zahradní architektuře, zejména: - v zahradách rodinných domů a rekreačních zařízení - při tvorbě nebo rekonstrukcích zámeckých zahrad

Více

Potok Besének které kovy jsou v minerálech říčního písku?

Potok Besének které kovy jsou v minerálech říčního písku? Potok Besének které kovy jsou v minerálech říčního písku? Karel Stránský, Drahomíra Janová, Lubomír Stránský Úvod Květnice hora, Besének voda dražší než celá Morava, tak zní dnes již prastaré motto, které

Více

VY_32_INOVACE_04.03 1/12 3.2.04.3 Krystalová struktura a vlastnosti minerálů Krystalová soustava

VY_32_INOVACE_04.03 1/12 3.2.04.3 Krystalová struktura a vlastnosti minerálů Krystalová soustava 1/12 3.2.04.3 Krystalová soustava cíl rozeznávat krystalové soustavy - odvodit vlastnosti krystalových soustav - zařadit základní minerály do krystalických soustav - minerály jsou pevné látky (kromě tekuté

Více

HORNINY A NEROSTY miniprojekt

HORNINY A NEROSTY miniprojekt miniprojekt Projekt vznikl za podpory: Jméno: Škola: Datum: Cíl: Osobně (pod vedením lektora) si ověřit základní znalosti o horninách a nerostech a naučit se je poznávat. Rozvíjené dovednosti: Dovednost

Více

Mineralogický systém skupina I - prvky

Mineralogický systém skupina I - prvky Mineralogický systém skupina I - prvky Autor: Mgr. Vlasta Hlobilová Datum (období) tvorby: 11. 10. 2012 Ročník: devátý Vzdělávací oblast: přírodopis Anotace: Žáci se seznámí s vybranými nerosty, které

Více

SPSKS. Úvod do sochařské technologie. Materiály pro sochařskou tvorbu

SPSKS. Úvod do sochařské technologie. Materiály pro sochařskou tvorbu Předmluva Studijní materiál pro předmět Technologie se týká studijního oboru Kamenosochařství kamenosochařská tvorba. Byl připraven výhradně pro studující výtvarného oboru na Střední průmyslové školy kamenické

Více

Mendelova univerzita v Brně. Lesnická a dřevařská fakulta GEOLOGIE. Aleš Bajer, Aleš Kučera, Valerie Vranová

Mendelova univerzita v Brně. Lesnická a dřevařská fakulta GEOLOGIE. Aleš Bajer, Aleš Kučera, Valerie Vranová Mendelova univerzita v Brně Lesnická a dřevařská fakulta GEOLOGIE Aleš Bajer, Aleš Kučera, Valerie Vranová 1 Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018

Více

Přednáška č. 9. Petrografie úvod, základní pojmy. Petrografie vyvřelé (magmatické) horniny

Přednáška č. 9. Petrografie úvod, základní pojmy. Petrografie vyvřelé (magmatické) horniny Přednáška č. 9 Petrografie úvod, základní pojmy Petrografie vyvřelé (magmatické) horniny Petrografie úvod, základní pojmy Petrografie jako samostatná věda existuje od začátku 2. poloviny 19. století. Zabývá

Více

01 ZŠ Geologické vědy

01 ZŠ Geologické vědy 01 ZŠ Geologické vědy 1) Vytvořte dvojice. PALEONTOLOGIE HYDROLOGIE PETROLOGIE SEISMOLOGIE MINERALOGIE VODA NEROST ZEMĚTŘESENÍ ZKAMENĚLINA HORNINA 2) K odstavcům přiřaďte vědní obor. Můžete využít nabídky.

Více

GEOLOGICKÝ PROFIL ÚDOLÍ ŘÍMOVSKÉ PŘEHRADY. Vojtěch Vlček

GEOLOGICKÝ PROFIL ÚDOLÍ ŘÍMOVSKÉ PŘEHRADY. Vojtěch Vlček GEOLOGICKÝ PROFIL ÚDOLÍ ŘÍMOVSKÉ PŘEHRADY Vojtěch Vlček Práce SOČ Geologie a geografie Arcibiskupské gymnázium Korunní 2, Praha 2 8. ročník 2006 Prohlašuji tímto, že jsem soutěžní práci vypracoval samostatně

Více

Laboratorní zkouška hornin a zjišťování jejich vlastností:

Laboratorní zkouška hornin a zjišťování jejich vlastností: POSTUPY A POKUSY, KTERÉ MŮŽETE POUŽÍT PŘI OVĚŘOVÁNÍ VAŠÍ HYPOTÉZY Z následujících námětů si vyberte ty, které vás nejvíce zaujaly a pomohou vám ověřit, či vyvrátit vaši hypotézu. Postup práce s geologickou

Více

MINERALOGICKÁ SOUSTAVA II

MINERALOGICKÁ SOUSTAVA II MINERALOGICKÁ SOUSTAVA II PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST VY_52_INOVACE_268 VZDĚLÁVACÍ OBLAST: ČLOVĚK A PŘÍRODA VZDĚLÁVACÍ OBOR: PŘÍRODOPIS ROČNÍK: 9 MINERALOGICKÁ

Více

ŽULA - LIBERECKÝ TYP

ŽULA - LIBERECKÝ TYP HORNINY Součástí projektu Geovědy vedle workshopů, odborných exkurzí a tvorby výukových materiálů je i materiální vybavení škol, které se do tohoto projektu přihlásily. Situace ve výbavě školních kabinetů

Více

Vlastnosti křemene a výskyt jeho odrůd v severním okolí Brna

Vlastnosti křemene a výskyt jeho odrůd v severním okolí Brna Středoškolská odborná činnost 2006/2007 Obor 5 geologie, geografie Vlastnosti křemene a výskyt jeho odrůd v severním okolí Brna Autor: Jakub Výravský Gymnázium Brno-Řečkovice Terezy Novákové 2, 621 00

Více

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 ZŠ Určeno pro Sekce Předmět Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 Téma / kapitola Dělnická 9. tř. ZŠ základní zájem

Více

SYSTEMATICKÁ MINERALOGIE

SYSTEMATICKÁ MINERALOGIE 1 SYSTEMATICKÁ MINERALOGIE doc. RNDr. Jiří Zimák, CSc. Katedra geologie PřF UP Olomouc, tř. Svobody 26, 77146 Olomouc, tel. 585634533, e-mail: zimak@prfnw.upol.cz (listopad 2005) OBSAH Úvod 1. Prvky a

Více

PRACOVNÍ DESKY KAMENNÉ PRACOVNÍ DESKY:

PRACOVNÍ DESKY KAMENNÉ PRACOVNÍ DESKY: KAMENNÉ PRACOVNÍ DESKY: PRACOVNÍ DESKY ŽULA - přírodní kámen tvořený křemíkem, živicí a slídami - velká tvrdost (odolnost proti nárazům a poškrábání), nejtvrdší na trhu - odolnost proti teplotám do 300

Více

Prvky - většina prvků se v přírodě vyskytuje ve sloučeninách - pouze málo v ryzím stavu. Nekovy

Prvky - většina prvků se v přírodě vyskytuje ve sloučeninách - pouze málo v ryzím stavu. Nekovy Prvky - většina prvků se v přírodě vyskytuje ve sloučeninách - pouze málo v ryzím stavu - 1) nekovové C, S - 2) kovového charakteru metaloidy As, Sb, Bi - 3) kovové kovy Cu, Ag, Au, Fe, Pt, Ir, Pd Původ

Více

HRA Mícháme si Najdi Sumární Otázky Bezpečnost Příroda směsi

HRA Mícháme si Najdi Sumární Otázky Bezpečnost Příroda směsi RISKUJ HRA Mícháme si Najdi Sumární Otázky Bezpečnost Příroda směsi mě vzorce praxe 1000 1000 1000 1000 1000 1000 2000 2000 2000 2000 2000 2000 3000 3000 3000 3000 3000 3000 4000 4000 4000 4000 4000 4000

Více

Neživá příroda. 1.Vznik Země a Vesmíru. 2.Horniny

Neživá příroda. 1.Vznik Země a Vesmíru. 2.Horniny Neživá příroda 1.Vznik Země a Vesmíru Vesmír vznikl náhle před asi 15 miliardami let. Ještě v počátcích jeho existence vznikly lehčí prvky vodík a helium, jejichž gravitačním stahováním a zapálením vznikla

Více

PETROLOGIE CO JSOU TO HORNINY. = směsi minerálů (někdy tvořené pouze 1 minerálem)

PETROLOGIE CO JSOU TO HORNINY. = směsi minerálů (někdy tvořené pouze 1 minerálem) CO JSOU TO HORNINY PETROLOGIE = směsi minerálů (někdy tvořené pouze 1 minerálem) Mohou obsahovat zbytky organismů rostlin či ţivočichů Podle způsobu vzniku dělíme: 1. Vyvřelé (magmatické) vznik utuhnutím

Více

SEMINÁŘ Z PŘÍRODOPISU volitelný předmět. Charakteristika předmětu

SEMINÁŘ Z PŘÍRODOPISU volitelný předmět. Charakteristika předmětu SEMINÁŘ Z PŘÍRODOPISU volitelný předmět Charakteristika předmětu Časové a organizační vymezení Předmět seminář z přírodopisu je jedním z volitelných předmětů pro žáky 9. ročníku. V učebním plánu je mu

Více

2. HORNINY JESENÍKŮ. Geologická minulost Jeseníků

2. HORNINY JESENÍKŮ. Geologická minulost Jeseníků 2. HORNINY JESENÍKŮ Geologická minulost Jeseníků Hrubý Jeseník je stejně jako Rychlebské a Orlické hory budován přeměněnými horninami a hlubinnými vyvřelinami. Nízký Jeseník je tvořen úlomkovitými sedimenty

Více

Magmatické (vyvřelé) horniny

Magmatické (vyvřelé) horniny Magmatické (vyvřelé) horniny Magmatické horniny vznikly chladnutím, tuhnutím a krystalizací silikátové taveniny (magmatu, lávy), tedy cestou magmatickou. Magma je v podstatě suspenze pevných částic v roztaveném

Více

Uhlík a jeho alotropy

Uhlík a jeho alotropy Uhlík Uhlík a jeho alotropy V přírodě se uhlík nachází zejména v karbonátových usazeninách, naftě, uhlí, a to jako směs grafitu a amorfní formy C. Rozeznáváme dvě základní krystalické formy uhlíku: a)

Více

Keramická technologie

Keramická technologie Keramika Slovo označuje rozmanité výrobky vzniklé vypalováním z vhodných přírodních surovin jílů, hlíny, křemene aj. První nálezy keramických nádob pocházejí podle archeologů už ze 7. tisíciletí př.n.l.

Více

Objevy čekají na tebe

Objevy čekají na tebe Objevy čekají na tebe Miniprojekt č.2 Horniny a minerály Autoři: Veronika Blažková (8. tř.), Martin Frýdek (8. tř.), Eliška Hloušková (8. tř.), František Kutnohorský (8. tř.), Martin Lát (8. tř.), Adam

Více

Sklo chemické složení, vlastnosti, druhy skel a jejich použití

Sklo chemické složení, vlastnosti, druhy skel a jejich použití Sklo chemické složení, vlastnosti, druhy skel a jejich použití Jak je definováno sklo? ztuhlá tavenina průhledných křemičitanů (pevný roztok) homogenní amorfní látka (bez pravidelné vnitřní struktury,

Více

Litogeografie HORNINY, TEKTONIKA. Přednášející: RNDr. Martin Culek, Ph.D. Geografický ústav MU

Litogeografie HORNINY, TEKTONIKA. Přednášející: RNDr. Martin Culek, Ph.D. Geografický ústav MU Litogeografie HORNINY, TEKTONIKA Přednášející: RNDr. Martin Culek, Ph.D. Geografický ústav MU Tento předmět vznikl v rámci projektu Inovace výuky geografických studijních oborů (Geoinovace) - (CZ.1.07/2.2.00/15.0222)

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.3 Polovodiče a jejich využití Kapitola

Více

SOLI A JEJICH VYUŽITÍ. Soli bezkyslíkatých kyselin Soli kyslíkatých kyselin Hydrogensoli Hydráty solí

SOLI A JEJICH VYUŽITÍ. Soli bezkyslíkatých kyselin Soli kyslíkatých kyselin Hydrogensoli Hydráty solí SOLI A JEJICH VYUŽITÍ Soli bezkyslíkatých kyselin Soli kyslíkatých kyselin Hydrogensoli Hydráty solí POUŽITÍ SOLÍ Zemědělství dusičnany, draselné soli, fosforečnany. Stavebnictví, sochařství vápenaté soli.

Více

5. MINERALOGICKÁ TŘÍDA UHLIČITANY

5. MINERALOGICKÁ TŘÍDA UHLIČITANY 5. MINERALOGICKÁ TŘÍDA UHLIČITANY Minerály 5. mineralogické třídy jsou soli kyseliny uhličité. Jsou anorganického i organického původu (vznikaly usazováním a postupným zkameněním vápenitých koster a schránek

Více

SKRIPTA KE GEOLOGICKÉ EXPOZICI POD KLOKOTY

SKRIPTA KE GEOLOGICKÉ EXPOZICI POD KLOKOTY SKRIPTA KE GEOLOGICKÉ EXPOZICI POD KLOKOTY GEOLOGICKÁ EXPOZICE POD KLOKOTY Záměrem geologické expozice Pod Klokoty v Táboře je předvést široké veřejnosti vybrané druhy hornin, které nás obklopují a jsou

Více

VY_32_INOVACE_06_GALENIT_27

VY_32_INOVACE_06_GALENIT_27 VY_32_INOVACE_06_GALENIT_27 Autor:Vladimír Bělín Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Číslo projektu: CZ.1.07/1.4.00/21.2400

Více

Usazené horniny úlomkovité

Usazené horniny úlomkovité Usazené horniny úlomkovité Autor: Mgr. Vlasta Hlobilová Datum (období) tvorby: 4. 10. 2012 Ročník: devátý Vzdělávací oblast: přírodopis Anotace: Žáci se seznámí s horninami, které vznikly z úlomků vzniklých

Více

materiál č. šablony/č. sady/č. materiálu: Autor:

materiál č. šablony/č. sady/č. materiálu: Autor: Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVACE_CH8SA_01_03_06

Více

Klasifikace struktur

Klasifikace struktur Klasifikace struktur typ vazby iontové, kovové, kovalentní, molekulové homodesmické x heterodesmické stechiometrie prvky, binární: AX, AX 2, A m X n, ternární: A m B k X n,... Title page symetrie prostorové

Více

ze separace elektromagnetem. Více informací o odběru vzorků a jejich semikvantitativní mineralogickou charakteristiku uvádějí Žáček a Páša (2006).

ze separace elektromagnetem. Více informací o odběru vzorků a jejich semikvantitativní mineralogickou charakteristiku uvádějí Žáček a Páša (2006). 1 V Bažantnici 2636, 272 01 Kladno; vprochaska@seznam.cz 2 GEOMIN Družstvo, Znojemská 78, 586 56 Jihlava 3 Boháčova 866/4, 14900 Praha 4 4 Ústav geochemie, mineralogie a nerostných zdrojů, Přírodovědecká

Více

Prvky 8. B skupiny. FeCoNi. FeCoNi. FeCoNi 17.12.2011

Prvky 8. B skupiny. FeCoNi. FeCoNi. FeCoNi 17.12.2011 FeCoNi Prvky 8. B skupiny FeCoNi Valenční vrstva: x [vzácný plyn] ns 2 (n-1)d 6 x [vzácný plyn] ns 2 (n-1)d 7 x [vzácný plyn] ns 2 (n-1)d 8 Tomáš Kekrt 17.12.2011 SRG Přírodní škola o. p. s. 2 FeCoNi Fe

Více

Polymerní kompozity. Bronislav Foller Foller

Polymerní kompozity. Bronislav Foller Foller Bronislav Foller Foller Polymerní kompozity ve ve stavebnictví stavebnictví a a strojírenství strojírenství Stavebnictví Strojírenství Vojenský průmysl Automobilový průmysl Letecký průmysl Lodní Lodníprůmysl

Více

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Předmět: CHEMIE Ročník: 8. Časová dotace: 2 hodiny týdně Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Konkretizované tematické okruhy realizovaného průřezového tématu září orientuje se

Více

HOŘČÍK KOVY ALKALICKÝCH ZEMIN. Pozn. Elektronová konfigurace valenční vrstvy ns 2

HOŘČÍK KOVY ALKALICKÝCH ZEMIN. Pozn. Elektronová konfigurace valenční vrstvy ns 2 HOŘČÍK KOVY ALKALICKÝCH ZEMIN Pozn. Elektronová konfigurace valenční vrstvy ns 2 Hořčík Vlastnosti: - stříbrolesklý, měkký, kujný kov s nízkou hustotou (1,74 g.cm -3 ) - diagonální podobnost s lithiem

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Základní vlastnosti zemin a klasifikace zemin cvičení doc. Dr. Ing. Hynek Lahuta Inovace studijního oboru Geotechnika CZ.1.07/2.2.00/28.0009. Tento projekt

Více

Mineralogie a petrografie II. Pro 1. ročník kombinovaného studia, VŠB-TUO HGF

Mineralogie a petrografie II. Pro 1. ročník kombinovaného studia, VŠB-TUO HGF Mineralogie a petrografie II Pro 1. ročník kombinovaného studia, VŠB-TUO HGF MINERALOGIE GENETICKÁ Minerály i n e r á l y jjsou s o u ssloučeniny l o u č e n i n y cchemických h e m i c k ý c h pprvků.

Více

DETERMINAČNÍ VLASTNOSTI MINERÁLŮ

DETERMINAČNÍ VLASTNOSTI MINERÁLŮ KATEDRA GEOLOGIE PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO DETERMINAČNÍ VLASTNOSTI MINERÁLŮ ZDENĚK DOLNÍČEK JIŘÍ ZIMÁK Olomouc 2009 2 Obsah Obsah... 3 1. Úvod... 5 2. Diagnostické znaky založené na fyzikálních

Více

2. Určete frakční objem dendritických částic v eutektické slitině Mg-Cu-Zn. Použijte specializované programové vybavení pro obrazovou analýzu.

2. Určete frakční objem dendritických částic v eutektické slitině Mg-Cu-Zn. Použijte specializované programové vybavení pro obrazovou analýzu. 1 Pracovní úkoly 1. Změřte střední velikost zrna připraveného výbrusu polykrystalického vzorku. K vyhodnocení snímku ze skenovacího elektronového mikroskopu použijte kruhovou metodu. 2. Určete frakční

Více

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal.

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal. Chemická vazba Volné atomy v přírodě jen zcela výjimečně (vzácné plyny). Atomy prvků mají snahu se navzájem slučovat a vytvářet molekuly prvků nebo sloučenin. Atomy jsou v molekulách k sobě poutány chemickou

Více

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák:

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák: očekávané výstupy RVP témata / učivo Chemie - 1. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 7.3. 1. Chemie a její význam charakteristika

Více

Během chladnutí začínají krystalovat minerály. Jednotlivé minerály krystalují podle svého bodu tuhnutí (mění se kapalné skupenství v pevné)

Během chladnutí začínají krystalovat minerály. Jednotlivé minerály krystalují podle svého bodu tuhnutí (mění se kapalné skupenství v pevné) VZNIK NEROSTŮ A STRUNZŮV MINERALOGICKÝ SYSTÉM Krystalizace z magmatu Vetšina minerálů vzniká v nitru Země za teplot 900-1300 C a vysokého tlaku. Za takových podmínek existuje žhavá silikátová tavenina

Více

Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.

Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34. Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_467A Škola: Akademie - VOŠ, Gymn. a SOŠUP Světlá nad

Více

Základní škola Karviná Nové Město tř. Družby 1383

Základní škola Karviná Nové Město tř. Družby 1383 Základní škola Karviná Nové Město tř. Družby 1383 Projekt OP VK oblast podpory 1.4 Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projektu: CZ.1.07/1.4.00/21.3526 Název projektu:

Více

statigrafie barevných vrstev identifikace pigmentů určení složení omítek typ pojiva a kameniva, zrnitost kameniva

statigrafie barevných vrstev identifikace pigmentů určení složení omítek typ pojiva a kameniva, zrnitost kameniva Chemicko-technologický průzkum Akce: Průzkum a restaurování fragmentů nástěnných maleb na východní stěně presbytáře kostela sv. Martina v St. Martin (Dolní Rakousko) Zadání průzkumu: statigrafie barevných

Více

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1 DUM Základy přírodních věd DUM III/2-T3-2-20 Téma: Test obecná chemie Střední škola Rok: 2012 2013 Varianta: A Test obecná chemie Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Otázka 1 OsO 4 je

Více

SLEDOVÁNÍ VÝSKYTU GENOTOXICKÝCH LÁTEK V POVODÍ ŘEKY SVRATKY V SOUVISLOSTI S URANOVÝM PRŮMYSLEM

SLEDOVÁNÍ VÝSKYTU GENOTOXICKÝCH LÁTEK V POVODÍ ŘEKY SVRATKY V SOUVISLOSTI S URANOVÝM PRŮMYSLEM SLEDOVÁNÍ VÝSKYTU GENOTOXICKÝCH LÁTEK V POVODÍ ŘEKY SVRATKY V SOUVISLOSTI S URANOVÝM PRŮMYSLEM Jana Badurová, Hana Hudcová, Radoslava Funková, Helena Mojžíšková, Jana Svobodová Toxikologická rizika spojená

Více

HLAVNÍ GEOLOGICKÉ PROCESY (miniprojekt)

HLAVNÍ GEOLOGICKÉ PROCESY (miniprojekt) Základní škola, Staré Město, okres Uherské Hradiště, příspěvková organizace HLAVNÍ GEOLOGICKÉ PROCESY (miniprojekt) Miniprojekt zpracovaný v rámci projektu OBJEVY ČEKAJÍ NA TEBE. 1 Obsah miniprojektu 1.

Více

Horniny ve zdivu hranolové věže Hláska u hradu Cornštejn

Horniny ve zdivu hranolové věže Hláska u hradu Cornštejn Krátká sdělení Short notes THAYENSIA (ZNOJMO) 2013, 10: 115 119. ISSN 1212-3560 Horniny ve zdivu hranolové věže Hláska u hradu Cornštejn Rocks in the masonry square tower Hláska above Cornštejn castle

Více

ANODA KATODA elektrolyt:

ANODA KATODA elektrolyt: Ukázky z pracovních listů 1) Naznač pomocí šipek, které částice putují k anodě a které ke katodě. Co je elektrolytem? ANODA KATODA elektrolyt: Zn 2+ Cl - Zn 2+ Zn 2+ Cl - Cl - Cl - Cl - Cl - Zn 2+ Cl -

Více

Dw - Krycí bílé cíničité glazury

Dw - Krycí bílé cíničité glazury Dw - Krycí bílé cíničité glazury DW10691 bílá 960-1140 C; 27,74 % PbO; KTR 70,2 65,70 DW15391 bílá 960-1140 C; 29 % PbO; KTR 71,3 125,99 DW19691 bílá 960-1140 C; 14,1 % PbO; KTR 71,3 123,05 G - Transparentní

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Ostrava. Olomouc. Jihlava. Zlín. Brno. České Budějovice. Plzeň PRAHA Vlastějovice Litice. Horní LIBEREC Řasnice Libochovany Dubnice Bezděčín

Ostrava. Olomouc. Jihlava. Zlín. Brno. České Budějovice. Plzeň PRAHA Vlastějovice Litice. Horní LIBEREC Řasnice Libochovany Dubnice Bezděčín Horní LIBEREC Řasnice Libochovany Dubnice Bezděčín Tachov Dolánky Ústí n.l. Chlum Chraberce Smrčí Úhošťany Košťálov Straškov Královec Děpoltovice Rvenice Hradec Králové Karlovy Vary Velká Černoc Pamětník

Více

Role nerudních surovin v české ekonomice

Role nerudních surovin v české ekonomice Role nerudních surovin v české ekonomice Jaromír Starý Koněprusy VČS východ : vysokoprocentní vápenec (VV) 1 Obsah Úvod, postavení nerud v EU a ČR Celkové zásoby a těžba nerostných surovin v ČR Kaolin

Více

GEOLOGIE KOLEM NÁS EXKURZNÍ PRŮVODCE

GEOLOGIE KOLEM NÁS EXKURZNÍ PRŮVODCE EXKURZNÍ PRŮVODCE > ÚVOD > LÁMÁNÍ ŽUL NA VRCHOVINĚ BOREK BEZLEJOV U CHOTĚBOŘE HORNÍ STUDENEC LIPNICE NAD SÁZAVOU NOVÉ RANSKO - HUTĚ STARÉ RANSKO HALDY HLUBINNÉ VYVŘELINY LIPNICE N. SÁZAVOU Každý z nás

Více

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.

Více

Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Ročník Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Chemie anorganická výskyt a zpracování kovů 2. ročník Datum tvorby 22.4.2014

Více

* TĚŽKÉ KOVY * CHUŤ As méně A VŮNĚ než 3 mg/kg Pb méně než 10 mg/kg Cd méně než 1 mg/kg Hg méně než 1 mg/kg

* TĚŽKÉ KOVY * CHUŤ As méně A VŮNĚ než 3 mg/kg Pb méně než 10 mg/kg Cd méně než 1 mg/kg Hg méně než 1 mg/kg rozpouštědla - voda, glycerol (E 422 20%) ČÍSLO aromatické VÝROBKU složky - aromatické 518255 přípravky, aromatické látky v. 2 NÁZEV VÝROBKU látka - E GRIOTTE 202 (1500 AROMA mg/kg) NT PRO CUKRÁŘSKÉ VÝROBKY

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL

DIGITÁLNÍ UČEBNÍ MATERIÁL DIGITÁLNÍ UČEBNÍ MATERIÁL Pořadové číslo DUM 254 Jméno autora Jana Malečová Datum, ve kterém byl DUM vytvořen 3.4.2012 Ročník, pro který je DUM určen 9. Vzdělávací oblast (klíčová slova) Metodický list

Více

Uhlíkové struktury vázající ionty těžkých kovů

Uhlíkové struktury vázající ionty těžkých kovů Uhlíkové struktury vázající ionty těžkých kovů 7. června/june 2013 9:30 h 17:30 h Laboratoř metalomiky a nanotechnologií, Mendelova univerzita v Brně a Středoevropský technologický institut Budova D, Zemědělská

Více

Řezná keramika. Moderní a produktivní způsob obrábění žárovzdorných slitin

Řezná keramika. Moderní a produktivní způsob obrábění žárovzdorných slitin Řezná keramika Moderní a produktivní způsob obrábění žárovzdorných slitin Obrábění pomocí řezné keramiky Použití Keramické třídy je možné použít pro široký okruh aplikací a materiálů, přičemž nejčastěji

Více

Zaniklé sopky, jezera a moře mezi Novou Pakou a Jičínem

Zaniklé sopky, jezera a moře mezi Novou Pakou a Jičínem ZÁKLADNÍ ŠKOLA NOVÁ PAKA, HUSITSKÁ 1695 ročníková práce Zaniklé sopky, jezera a moře mezi Novou Pakou a Jičínem Radek Vancl Vedoucí ročníkové práce: Lukáš Rambousek Předmět: Přírodopis Školní rok: 2010-2011

Více

Univerzita Karlova v Praze Přírodovědecká fakulta katedra fyzické geografie a geoekologie Pedologie

Univerzita Karlova v Praze Přírodovědecká fakulta katedra fyzické geografie a geoekologie Pedologie Univerzita Karlova v Praze Přírodovědecká fakulta katedra fyzické geografie a geoekologie Pedologie Metody ve fyzické geografii I. Václav ČERNÍK 2. UBZM 3. 12. 2012 ZS 2012/2013 Mapa půd katastrálního

Více

Korespondenční seminář Chemie, 1.kolo

Korespondenční seminář Chemie, 1.kolo Korespondenční seminář Chemie, 1.kolo Milí žáci, připravili jsme pro vás korespondenční seminář, ve kterém můžete změřit své síly v oboru chemie se svými vrstevníky z jiných škol. Zadání bude vyhlašováno

Více

ROZDĚLENÍ HORNIN. hlubinné (intruzívní, plutonické) žilné výlevné (vulkanické)

ROZDĚLENÍ HORNIN. hlubinné (intruzívní, plutonické) žilné výlevné (vulkanické) ROZDĚLENÍ HORNIN Horniny je možné dělit z mnoha hledisek. Pro základní představu je však nejvýhodnější členění na základě geologického prostředí a podmínek, ve kterých horniny vznikaly. Tomuto se říká

Více

Názvosloví anorganických sloučenin

Názvosloví anorganických sloučenin Chemické názvosloví Chemické prvky jsou látky složené z atomů o stejném protonovém čísle (počet protonů v jádře atomu. Každému prvku přísluší určitý mezinárodní název a od něho odvozený symbol (značka).

Více

Úvod do studia organické chemie

Úvod do studia organické chemie Úvod do studia organické chemie 1828... Wöhler... uměle připravil močovinu Organická chemie - chemie sloučenin uhlíku a vodíku, případně dalších prvků (O, N, X, P, S) Příčiny stability uhlíkových řetězců:

Více

STAVEBNÍ HMOTY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 26. 4. 2013. Ročník: devátý

STAVEBNÍ HMOTY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 26. 4. 2013. Ročník: devátý STAVEBNÍ HMOTY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 26. 4. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemie a společnost 1 Anotace: Žáci se seznámí s historickými

Více

Přírodní zdroje uhlovodíků

Přírodní zdroje uhlovodíků Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje Říjen 2010 Mgr. Alena Jirčáková Zemní plyn - vznik: Výskyt často spolu s ropou (naftový zemní plyn) nebo

Více

Plastická deformace a pevnost

Plastická deformace a pevnost Plastická deformace a pevnost Anelasticita vnitřní útlum Tahová zkouška (kovy, plasty, keramiky, kompozity) Fyzikální podstata pevnosti - dislokace (monokrystal polykrystal) - mez kluzu nízkouhlíkových

Více

Název projektu: Multimédia na Ukrajinské

Název projektu: Multimédia na Ukrajinské VY_32_Inovace_PŘ.9.5.2.20 Usazené horniny Základní škola, Ostrava Poruba, Ukrajinská 1533, příspěvková organizace Operační program Vzdělávání pro konkurenceschopnost Název projektu: Multimédia na Ukrajinské

Více

GEOLOGIE ZAJÍMAVĚ. sbírka úloh z geologie

GEOLOGIE ZAJÍMAVĚ. sbírka úloh z geologie GEOLOGIE ZAJÍMAVĚ sbírka úloh z geologie Gymnázium Botičská Praha 2014 Autorka: Mgr. Jana Hájková, Ph.D. (Gymnázium Botičská) Recenzentka: RNDr. Jaroslava Hajná, Ph.D. (Ústav geologie a paleontologie

Více