UNIVERZITA KARLOVA Přírodovědecká fakulta. Hydrometrie. Hodnocení variability odtokového režimu pomocí základních grafických a statistických metod

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "UNIVERZITA KARLOVA Přírodovědecká fakulta. Hydrometrie. Hodnocení variability odtokového režimu pomocí základních grafických a statistických metod"

Transkript

1 UNIVERZITA KARLOVA Přírodovědecká fakulta Hydrometrie Hodnocení variability odtokového režimu pomocí základních grafických a statistických metod (cvičení z hydrologie) Pavel Břichnáč 1.ročník. BGeKa

2 1. Hodnocení variability odtoku pomocí čar překročení průměrných denních průtoků: Čáry překročení jsou zkonstruovány pro roky 1932 a pro Čáry překročení, rok 1932 průměrný denní průtok 3-1 [m s ] dny Čáry překročení, rok průměrný denní průtok 3-1 [m s ] dny Graf 1 a 2: Čáry překročení pro roky 1932 a 198.

3 M-denní průtok pro rok hodnota Q m průtok Q m [m s ] Q 3 5,5 Q 6 3,75 Q 9 2,87 Q 12 2,4 Q 15 2,4 Q 18 1,98 Q 21 1,74 Q 24 1,74 Q 27 1,48 Q 3 1,12 Q 33 1,2 Q 36,87 Výpočet decilové odchylky: M-denní průtok pro rok 198 hodnota Q m průtok Q m [m s ] 3 1 Q 3 9,5 Q 6 7,75 Q 9 6,78 Q 12 5,57 Q 15 4,65 Q 18 4,19 Q 21 3,34 Q 24 2,84 Q 27 2,35 Q 3 2,18 Q 33 1,85 Q 36 1,76 Tab 1 a 2: M-denní průtoky pro roky 1932 a 198. ( Q Q ) + ( Q Q ) + + ( Q Q ) Q Q D = = 1 1 Q3 Q33 5,5 1,2 3 1 D1932 = =, 4 m s 1 1 Q3 Q33 9, 5 1, D198 = =,72 m s [m s ] Podle charakteristik M-denních průtoků a čar překročení je jasné, že rok 1932 byl méně vodný. Každý hodnocený M-denní průtok byl u roku 1932 nižší než u roku 198. Čára překročení je u maximálních průtoků v roce 198 strmější než u roku Decilová odchylka hodnotí míru variability, která pro rok 198 vyšla větší.

4 2. Hodnocení rozložení měsíčních průtoků (Q m ) v průběhu roku a zhodnocení rozkolísanosti průměrných měsíčních průtoků Měsíc Průměr Q m Podíl [%] Listopad 2,46 7,6 3,42 1,6 4,51 14, 2,34 6,8 1,5 4,7 2,78 8,3 6,87 21,3 3,34 1, 2,3 6,3 1,18 3,7 1,2 3,1 1,14 3,5 Tab 3: Hodnoty Q m pro rok Měsíc Průměr Q m Podíl [%] Listopad 2,79 4,9 6,63 11,6 3,22 5,6 4,53 7,4 2,58 4,5 5,75 9,7 8,15 14,2 5,95 1, 1,35 18,1 3,68 6,4 2,28 3,8 2,16 3,8 Tab 4: Hodnoty Q m pro rok 198. Průměrné měsíční průtoky, rok 1932 průměrný měsíční průtok [m 3 /s] 6 3 Listopad měsíce Graf 2: Hydrogram pro rok Průměrné měsíční průtoky, rok 198 průměrný měsíční průtok [m 3 /s] Listopad měsíce Graf 3: Hydrogram pro rok 198.

5 Rozložení odtoku během roku [%], rok ,1 3,5 Listopad 7,6 3,7 1,6 6,3 1, 14, 6,8 21,3 4,7 8,3 Graf 4: Rozložení odtoku, rok 1932 Rozložení odtoku během roku [%], rok ,1 6,4 1, 3,8 3,8 Listopad 4,9 11,6 5,6 7,4 4,5 9,7 14,2 Graf 5: Rozložení odtoku, rok 198.

6 Rozložení odtoku podle roč. období, rok 1932 Rozložení odtoku podle roč. období, rok % 35% 22% 29% Jaro Léto Podzim Zima 14% Jaro Léto Podzim Zima 11% 21% 35% Graf 6: Rozložení odtoku podle ročních období, rok Graf 7: Rozložení odtoku podle ročních období, rok 198. Koeficient K r : π 8,3 Kr =, kde π je podíl v jednotlivých měsících. 8,3 45,2 K r1932 = 5, 47, hodnota koeficientu K r je blíže nule, proto hodnotím odtok spíše jako 8, 25 vyrovnaný, než naopak. 43,7 K r198 = 5,3, změna oproti roku 1932 je jen nepatrná, odtok je vyrovnaný. 8, 25 Variační koeficient m : ( Qm Qa) n m = Qa a n je počet členů řady. 2, kde Q m je průměrný měsíční průtok, Q a je průměrný dlouhodobý průtok 36,51 1, m1932 = =,51 3,39 3,39 98,82 2,87 12 m198 = =,85 3,39 3,39 Variační koeficient pro rok 198 vyšel vyšší, tzn. vyšší míru variability naměřených dat. V obou vybraných hydrologických letech je odtok mírně nevyrovnaný z hlediska hodnocení odtoku v rámci jednotlivých ročních obdobích. Rozložení odtoku bylo v roce 1932 realizováno nejvíce na jaře a v zimě (35 % a 33 %), podzim a zima jen 11% a 21 %. V roce 198 byla situace z hlediska velikosti obdobná, odtok se však realizoval v jiných obdobích, jak je ostatně vidět z grafů 6 a 7.

7 3. Hodnocení odtokového režimu z pohledu Q r průměrný roční průtok [m 3 /s] Pravděpodobnost překročení: Průměrné roční průtoky, roky hydrologický rok Graf 8: Průměrné roční průtoky za léta , m,3 PQ ( r ) = 1%, kde m je pořadí Q r uspořádaných sestupně a n je počet členů řady Q r. n +, 4 Hydrologický rok P(Q r) Hodnocení ,91 V ,9 S ,96 S ,83 S ,75 V ,49 V ,78 P ,7 P ,3 MV ,7 MS ,64 P ,25 S ,38 S ,51 S ,93 P Hydrologický rok P(Q r) Hodnocení ,36 P ,46 V ,2 V ,33 V ,17 V ,8 S ,54 S ,67 S ,22 P ,41 MS ,12 MS ,88 MV ,59 MV ,62 V ,4 V Tab 5 a 6: Pravděpodobnost překročení a slovní hodnocení pro jednotlivé roky. Hydrogram na grafu 8 ukazuje, jaký byl průměrný průtok za jednotlivá léta. Jsou patrné roky s vyšším průměrným ročním průtokem (roky 1939, 1965 a 1966) a naopak roky s nízkým průměrným průtokem rok 194, 1963, 1964 a Ostatní roky leží mezi těmito extrémy a jsou z hlediska slovního hodnocení vodné (V), průměrně vodné (P) či málo vodné (MV).

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream

Více

HYDROMETRIE. RNDr. Jan Kocum kocum1@natur konzultační hodiny: dle dohody Albertov 6, 128 43 Praha 2 tel. +420221951350

HYDROMETRIE. RNDr. Jan Kocum kocum1@natur konzultační hodiny: dle dohody Albertov 6, 128 43 Praha 2 tel. +420221951350 HYDROMETRIE RNDr. Jan Kocum kocum1@natur natur.cuni.czcz konzultační hodiny: dle dohody Albertov 6, 128 43 Praha 2 tel. +420221951350 Katedra fyzické geografie a geoekologie PřF UK Praha Hydrometrie zkoumá

Více

Číselné charakteristiky

Číselné charakteristiky . Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

PŘÍSPĚVEK K HODNOCENÍ SUCHA NA JIŽNÍ MORAVĚ

PŘÍSPĚVEK K HODNOCENÍ SUCHA NA JIŽNÍ MORAVĚ PŘÍSPĚVEK K HODNOCENÍ SUCHA NA JIŽNÍ MORAVĚ Jiří Sklenář 1. Úvod Extrémy hydrologického režimu na vodních tocích zahrnují periody sucha a na druhé straně povodňové situace a znamenají problém nejen pro

Více

STATISTICKÉ CHARAKTERISTIKY

STATISTICKÉ CHARAKTERISTIKY STATISTICKÉ CHARAKTERISTIKY 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Popisná statistika. Komentované řešení pomocí MS Excel

Popisná statistika. Komentované řešení pomocí MS Excel Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,

Více

4. Zpracování číselných dat

4. Zpracování číselných dat 4. Zpracování číselných dat 4.1 Jednoduché hodnocení dat 4.2 Začlenění dat do písemné práce Zásady zpracování vědecké práce pro obory BOZO, PÚPN, LS 2011 4.1 Hodnocení číselných dat Popisná data: střední

Více

26 NÁVRH NA ODTĚŽENÍ A ULOŽENÍ NAPLAVENIN NA VTOKU DO VODNÍHO DÍLA DALEŠICE

26 NÁVRH NA ODTĚŽENÍ A ULOŽENÍ NAPLAVENIN NA VTOKU DO VODNÍHO DÍLA DALEŠICE 26 NÁVRH NA ODTĚŽENÍ A ULOŽENÍ NAPLAVENIN NA VTOKU DO VODNÍHO DÍLA DALEŠICE Tereza Lévová Vysoké učení technické v Brně Fakulta stavební Ústav vodních staveb 1. Problematika splavenin - obecně Problematika

Více

5.5 Malé vody. kapitola 5.5.1. 5.5.1 Výskyt a důsledky

5.5 Malé vody. kapitola 5.5.1. 5.5.1 Výskyt a důsledky 5.5 Malé vody 5.5.1 Výskyt a důsledky Příroda je neúprosná a nezměnitelná. Je jí jedno, zda jsou či nejsou srozumitelné člověku příčiny a úmysly jejího konání. (Galileo Galilei) kapitola 5.5.1 Období malých

Více

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar

Více

Sbírka příkladů k procvičení VMZDP, VMZDH, VMZDK

Sbírka příkladů k procvičení VMZDP, VMZDH, VMZDK Sbírka příkladů k procvičení VMZDP, VMZDH, VMZDK 1. Na základě údajů uvedených v tabulce rozhodněte, zda existuje závislost mezi roky a počtem firem ve Šluknovském výběžku, které zaměstnávaly osoby zdravotně

Více

Máme se dál obávat sucha i v roce 2016?

Máme se dál obávat sucha i v roce 2016? Máme se dál obávat sucha i v roce 2016? V našich geografických podmínkách nelze spolehlivě predikovat vznik sucha v horizontu několika týdnů či měsíců. To, zda hrozí sucho i v roce 2016, bude dáno vývojem

Více

3. Základní statistické charakteristiky. KGG/STG Zimní semestr Základní statistické charakteristiky 1

3. Základní statistické charakteristiky. KGG/STG Zimní semestr Základní statistické charakteristiky 1 3. charakteristiky charakteristiky 1 charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme charakteristiky 2 charakteristiky Dva hlavní

Více

Popisná statistika. Statistika pro sociology

Popisná statistika. Statistika pro sociology Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky

Více

Základní statistické charakteristiky

Základní statistické charakteristiky Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni

Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni Kvantifikace dat Pro potřeby statistického zpracování byly odpovědi převedeny na kardinální intervalovou

Více

Analýza teplotních. řad. Petr Štěpánek. Czech Hydrometeorological Institute, regional office Brno

Analýza teplotních. řad. Petr Štěpánek. Czech Hydrometeorological Institute, regional office Brno Analýza teplotních řad ČR Petr Štěpánek Czech Hydrometeorological Institute, regional office Brno Počty stanic s homogenními mi měřm ěřeními 1771-2000 Charakteristika Počet stanic po homogenizaci Průměrná

Více

4 HODNOCENÍ EXTREMITY POVODNĚ

4 HODNOCENÍ EXTREMITY POVODNĚ 4 HODNOCENÍ EXTREMITY POVODNĚ Tato část projektu se zabývala vyhodnocením dob opakování kulminačních (maximálních) průtoků a objemů povodňových vln, které se vyskytly v průběhu srpnové povodně 2002. Dalším

Více

Hydrologie cvičení Měření průtoku hydrometrickou vrtulí

Hydrologie cvičení Měření průtoku hydrometrickou vrtulí Hydrologie cvičení Michal Jeníček Univerzita Karlova v Praze, Přírodovědecká fakulta michal.jenicek@natur.cuni.cz, http://hydro.natur.cuni.cz/jenicek/ 2011 Měření hydrometrickou vrtulí tekoucí voda svým

Více

Pavel Balvín, Magdalena Mrkvičková, Jarmila Skybová. Návrh postupu ke stanovení minimálního zůstatkového průtoku

Pavel Balvín, Magdalena Mrkvičková, Jarmila Skybová. Návrh postupu ke stanovení minimálního zůstatkového průtoku Pavel Balvín, Magdalena Mrkvičková, Jarmila Skybová Návrh postupu ke stanovení minimálního zůstatkového průtoku Úvod - Na základě novely vodního zákona č. 150/2010 Sb. bylo MŽP pověřeno připravit nařízení

Více

Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,

Více

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami. 3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Základy genetiky populací

Základy genetiky populací Základy genetiky populací Jedním z významných odvětví genetiky je genetika populací, která se zabývá studiem dědičnosti a proměnlivosti u velkých skupin jedinců v celých populacích. Populace je v genetickém

Více

ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY

ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

GEOGRAFIE ČR. klimatologie a hydrologie. letní semestr přednáška 6. Mgr. Michal Holub,

GEOGRAFIE ČR. klimatologie a hydrologie. letní semestr přednáška 6. Mgr. Michal Holub, GEOGRAFIE ČR klimatologie a hydrologie přednáška 6 letní semestr 2009 Mgr. Michal Holub, holub@garmin.cz klima x počasí přechodný typ klimatu na pomezí oceánu a kontinentu jednotlivé měřené a sledované

Více

Praktikum I úloha IX. Měření modulu pružnosti v tahu

Praktikum I úloha IX. Měření modulu pružnosti v tahu Praktikum I úloha IX. Měření modulu pružnosti v tahu Štěpán Roučka úkol 1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu

Více

Univerzální prohlížeč naměřených hodnot

Univerzální prohlížeč naměřených hodnot Návod na používání autorizovaného software Univerzální prohlížeč naměřených hodnot V Ústí nad Labem 14. 8. 2009 Vytvořil: doc. Ing., Ph.D. 1 z 10 Obsah 1Úvod...3 2Instalace...3 3Spuštění programu...3 3.1Popis

Více

Základy pravděpodobnosti a statistiky. Popisná statistika

Základy pravděpodobnosti a statistiky. Popisná statistika Základy pravděpodobnosti a statistiky Popisná statistika Josef Tvrdík Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace v úterý 14.10 až 15.40 hod. Příklad ze života Cimrman, Smoljak/Svěrák,

Více

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Speciální praktikum z abc

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Speciální praktikum z abc Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Speciální praktikum z abc Zpracoval: Jan Novák Naměřeno: 1. ledna 2001 Obor: F Ročník: IV Semestr: IX Testováno:

Více

Vývoj zemědělského půdního fondu ve světě

Vývoj zemědělského půdního fondu ve světě UNIVERZITA KARLOVA Přírodovědecká fakulta Vývoj zemědělského půdního fondu ve světě (cvičení z ekonomické geografie) 2005/2006 Pavel Břichnáč 1.roč. Ge-Ka 1.1 Vývoj zemědělského půdního fondu podle makroregionů

Více

Česká zemědělská univerzita v Praze. Provozně ekonomická fakulta. Statistické softwarové systémy projekt

Česká zemědělská univerzita v Praze. Provozně ekonomická fakulta. Statistické softwarové systémy projekt Česká zemědělská univerzita v Praze Provozně ekonomická fakulta Statistické softwarové systémy projekt Analýza časové řady Analýza počtu nahlášených trestných činů na území ČR v letech 2000 2014 autor:

Více

VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky

VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky PRAVDĚPODOBNOST A STATISTIKA Zadání 1 JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL

Více

Funkce odvodnění na zemědělských půdách během extrémních průtoků Functioning of Drainage on Agricultural Lands During Extreme Flows

Funkce odvodnění na zemědělských půdách během extrémních průtoků Functioning of Drainage on Agricultural Lands During Extreme Flows Příspěvek Bratislava 1999 Soukup, Kulhavý, Doležal Strana 1 (5) Funkce odvodnění na zemědělských půdách během extrémních průtoků Functioning of Drainage on Agricultural Lands During Extreme Flows Mojmír

Více

Obecné, centrální a normované momenty

Obecné, centrální a normované momenty Obecné, centrální a normované momenty Obsah kapitoly 4. Elementární statistické zpracování - parametrizace vhodnými empirickými parametry Studijní cíle Naučit se počítat centrální a normované momenty pomocí

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

Aplikace teoretických postupů pro ocenění rizika při upisování pojistných smluv v oblasti velkých rizik

Aplikace teoretických postupů pro ocenění rizika při upisování pojistných smluv v oblasti velkých rizik Aplikace teoretických postupů pro ocenění rizika při upisování pojistných smluv v oblasti velkých rizik Ondřej Pavlačka Praha, 18. ledna 2011 Cíle projektu Vytvořit matematický model pro oceňování přijímaného

Více

Lineární regrese. Komentované řešení pomocí MS Excel

Lineární regrese. Komentované řešení pomocí MS Excel Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních

Více

Odvození základních hydrologických údajů za referenční období Ladislav Budík, Petr Šercl, Pavel Kukla, Petr Lett, Martin Pecha

Odvození základních hydrologických údajů za referenční období Ladislav Budík, Petr Šercl, Pavel Kukla, Petr Lett, Martin Pecha Odvození základních hydrologických údajů za referenční období 1981 2010 Ladislav Budík, Petr Šercl, Pavel Kukla, Petr Lett, Martin Pecha ČHMÚ je dle ČSN 75 1400 Hydrologické údaje povrchových vod jediným

Více

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice

Více

TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA

TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA Semestrální práce Semestrální práce z předmětu Statistický rozbor dat z dotazníkového šetření Vypracoval: Bonaconzová, Bryknarová, Milkovičová, Škrdlová

Více

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka 2. Statistická terminologie a vyjadřovací prostředky 2.1. Statistická terminologie Statistická jednotka Statistická jednotka = nositel statistické informace, elementární prvek hromadného jevu. Příklady:

Více

Statistika I (KMI/PSTAT)

Statistika I (KMI/PSTAT) Statistika I (KMI/PSTAT) Cvičení druhé aneb Kvantily, distribuční funkce Statistika I (KMI/PSTAT) 1 / 1 Co se dnes naučíme Po absolvování této hodiny byste měli být schopni: rozumět pojmu modus (modální

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

GLOBÁLNÍ OTEPLOVÁNÍ A JEHO DOPADY

GLOBÁLNÍ OTEPLOVÁNÍ A JEHO DOPADY GLOBÁLNÍ OTEPLOVÁNÍ A JEHO DOPADY 2010 Ing. Andrea Sikorová, Ph.D. 1 Globální oteplování a jeho dopady V této kapitole se dozvíte: Co je to globální oteplování. Jak ovlivňují skleníkové plyny globální

Více

STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST

STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST VÝVOJ PRŮTOKU V ŘECE JIHLAVĚ V LETECH 1992-2008 Martina Štorová Moravské Budějovice 2010 STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST Obor SOČ: 05. geologie, geografie VÝVOJ PRŮTOKU V ŘECE

Více

Zpravodaj. Českého hydrometeorologického ústavu, pobočky Ostrava. Číslo 3 / 2010. Český hydrometeorologický ústav, pobočka Ostrava

Zpravodaj. Českého hydrometeorologického ústavu, pobočky Ostrava. Číslo 3 / 2010. Český hydrometeorologický ústav, pobočka Ostrava Českého hydrometeorologického ústavu, pobočky Ostrava, vydává Český hydrometeorologický ústav, pobočka Ostrava, K Myslivně 3/2182, 708 00 Ostrava. Informace a údaje uvedené v tomto materiálu neprošly předepsanou

Více

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily Testování hypotéz Testování hypotéz jsou klasické statistické úsudky založené na nějakém apriorním předpokladu. Vyslovíme-li předpoklad o hodnotě neznámého parametru nebo o zákonu rozdělení sledované náhodné

Více

Výběrové šetření o zdravotním stavu české populace (HIS CR 2002) Fyzická aktivita (VIII. díl)

Výběrové šetření o zdravotním stavu české populace (HIS CR 2002) Fyzická aktivita (VIII. díl) Aktuální informace Ústavu zdravotnických informací a statistiky České republiky Praha 12. 12. 2002 60 Výběrové šetření o zdravotním stavu české populace (HIS CR 2002) Fyzická aktivita (VIII. díl) Tato

Více

Hydrologické poměry obce Lazsko

Hydrologické poměry obce Lazsko Hydrologické poměry obce Lazsko Hrádecký potok č.h. p. 1 08 04 049 pramení 0,5 km západně od obce Milín v nadmořské výšce 540 m. n. m. Ústí zleva do Skalice u obce Myslín v nadmořské výšce 435 m. n. m.

Více

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

Aproximace binomického rozdělení normálním

Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné

Více

Projekt Systémová podpora rozvoje meziobecní spolupráce v ČR v rámci území správních obvodů obcí s rozšířenou působností (číslo projektu:

Projekt Systémová podpora rozvoje meziobecní spolupráce v ČR v rámci území správních obvodů obcí s rozšířenou působností (číslo projektu: Benchmarking pro správní obvod ORP Moravská Třebová s rozšířenou působností (číslo projektu: CZ.1.04/4.1.00/B8.00001) 1 SO ORP Moravská Třebová charakteristika území Správní obvod obce s rozšířenou působností

Více

Analýza výsledků testu čtenářské gramotnosti v PRO23 2010/11

Analýza výsledků testu čtenářské gramotnosti v PRO23 2010/11 Analýza výsledků testu čtenářské gramotnosti v PRO23 2010/11 Zpracoval: www.scio.cz, s.r.o. (15. 2. 2012) Datové podklady: výsledky a dotazníky z PRO23, test čtenářské gramotnosti, www.scio.cz, s.r.o.

Více

VLIV OKRAJOVÝCH PODMÍNEK NA VÝSLEDEK ZKOUŠKY TEPELNÉHO VÝKONU SOLÁRNÍHO KOLEKTORU

VLIV OKRAJOVÝCH PODMÍNEK NA VÝSLEDEK ZKOUŠKY TEPELNÉHO VÝKONU SOLÁRNÍHO KOLEKTORU Energeticky efektivní budovy 2015 sympozium Společnosti pro techniku prostředí 15. října 2015, Buštěhrad VLIV OKRAJOVÝCH PODMÍNEK NA VÝSLEDEK ZKOUŠKY TEPELNÉHO VÝKONU SOLÁRNÍHO KOLEKTORU Bořivoj Šourek,

Více

VÝVOJ PLODNOSTI VE STÁTECH A REGIONECH EVROPSKÉ UNIE PO ROCE 1991

VÝVOJ PLODNOSTI VE STÁTECH A REGIONECH EVROPSKÉ UNIE PO ROCE 1991 UNIVERZITA KARLOVA V PRAZE PŘÍRODOVĚDECKÁ FAKULTA KATEDRA DEMOGRAFIE A GEODEMOGRAFIE VÝVOJ PLODNOSTI VE STÁTECH A REGIONECH EVROPSKÉ UNIE PO ROCE 1991 Seminář mladých demografů Proměny demografického chování

Více

ČVUT FEL X36PAA - Problémy a algoritmy. 4. úloha - Experimentální hodnocení algoritmů pro řešení problému batohu

ČVUT FEL X36PAA - Problémy a algoritmy. 4. úloha - Experimentální hodnocení algoritmů pro řešení problému batohu ČVUT FEL X36PAA - Problémy a algoritmy 4. úloha - Experimentální hodnocení algoritmů pro řešení problému batohu Jméno: Marek Handl Datum: 3. 2. 29 Cvičení: Pondělí 9: Zadání Prozkoumejte citlivost metod

Více

Průběh průměrných ročních teplot vzduchu (ºC) v období na stanici Praha- Klementinum

Průběh průměrných ročních teplot vzduchu (ºC) v období na stanici Praha- Klementinum Změna klimatu v ČR Trend změn na území ČR probíhá v kontextu se změnami klimatu v Evropě. Dvě hlavní klimatologické charakteristiky, které probíhajícím změnám klimatického systému Země nejvýrazněji podléhají

Více

charakteristiky KGG/STG Zimní semestr Základní statistické charakteristiky, Teoretická rozdělení 1

charakteristiky KGG/STG Zimní semestr Základní statistické charakteristiky, Teoretická rozdělení 1 3. ZákladnZ kladní statistické charakteristiky rozdělení 1 charakteristiky Dva hlavní druhy základnz kladních charakteristik statistického souboru: charakteristiky úrovně,, polohy (středn ední hodnoty)

Více

TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT

TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT EXPLORAČNÍ ANALÝZA DAT TEST Z TEORIE 1. Test ze Statistiky píše velké množství studentů. Představte si, že každý z nich odpoví správně přesně na polovinu otázek. V tomto případě bude směrodatná odchylka

Více

Pracovní list č. 3 Charakteristiky variability

Pracovní list č. 3 Charakteristiky variability 1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte

Více

DODATEK PARAMETRY ZVLÁŠTNÍCH POVODNÍ 3 POUŽITÉ PODKLADY A LITERATURA

DODATEK PARAMETRY ZVLÁŠTNÍCH POVODNÍ 3 POUŽITÉ PODKLADY A LITERATURA DODATEK PARAMETRY ZVLÁŠTNÍCH POVODNÍ ÚVOD V roce 28 byl v akciové společnosti VODNÍ DÍLA TBD vypracován dokument Parametry zvláštních povodní pro Borecký rybník, který se zabývá odvozením časového průběhu

Více

Berounka a Mže - levostranný přítok vodního toku Vltavy - podélný profil ovlivnění vodního toku

Berounka a Mže - levostranný přítok vodního toku Vltavy - podélný profil ovlivnění vodního toku Graf č. 1 Berounka a Mže - levostranný přítok vodního toku Vltavy - podélný profil ovlivnění vodního toku významný vodní tok; délka toku 246,4 km; plocha povodí 8 855,1 km 2 ; největší přítok - Radbuza

Více

VŠB Technická univerzita Ostrava BIOSTATISTIKA

VŠB Technická univerzita Ostrava BIOSTATISTIKA VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: BIOSTATISTIKA Zadání 11 DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL 1: DOMÁCÍ ÚKOL

Více

Měření permitivity a permeability vakua

Měření permitivity a permeability vakua Měření permitivity a permeability vakua Online: http://www.sclpx.eu/lab3r.php?exp=2 Permitivita i permeabilita vakua patří svojí hodnotou měřenou v základních jednotkách SI mezi poměrně malé fyzikální

Více

Odhady parametrů základního souboru. Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára

Odhady parametrů základního souboru. Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára Odhady parametrů základního souboru Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára Motivační příklad Mám průměrné roční teploty vzduchu z 8 stanic

Více

Seminární práce: Fyzická geografie I. (Hydrologie)

Seminární práce: Fyzická geografie I. (Hydrologie) Seminární práce: Fyzická geografie I. (Hydrologie) Téma: Hydrologické a klimatické poměry vybraného povodí DOUBRAVA Vladimír Stehno ERG 26 řeka Doubrava 1. HYDROLOGICKÉ POMĚRY Pramení 1 km jihozápadně

Více

Zhodnocení dopadů inovace na studijní výsledky

Zhodnocení dopadů inovace na studijní výsledky Zhodnocení dopadů inovace na studijní výsledky Zpracoval: doc. Ing. Josef Weigel, CSc. hlavní řešitel projektu Hodnocené studijní programy: - Bakalářský studijní program Geodézie a kartografie v prezenční

Více

VŠB Technická univerzita Ostrava

VŠB Technická univerzita Ostrava VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: PRAVDĚPODOBNOST A STATISTIKA Domácí úkoly Zadání 21 DATUM ODEVZDÁNÍ

Více

Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?

Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.

Více

Teplotní poměry a energetická náročnost otopných období 21. století v Praze

Teplotní poměry a energetická náročnost otopných období 21. století v Praze Vytápění Ing. Daniela PTÁKOVÁ Teplotní poměry a energetická náročnost otopných období 21. století v Praze Temperature Conditions and Energy Demand for the Heating Periods of the 21 st Century in Prague

Více

MATEMATIKA III V PŘÍKLADECH

MATEMATIKA III V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 7 Rozdělení pravděpodobnosti spojité náhodné veličiny Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka

Více

VYHODNOCENÍ METEOROLOGICKÝCH PRVKŮ ZA ROK 2014

VYHODNOCENÍ METEOROLOGICKÝCH PRVKŮ ZA ROK 2014 VYHODNOCENÍ METEOROLOGICKÝCH PRVKŮ ZA ROK 2014 Měření denní teploty a množství srážek na stanici Ústředního kontrolního a zkušebního ústavu zemědělského (ÚKZÚZ) se datuje už od roku 1945. Postupně přibývají

Více

Výsledky rozborů komunálních odpadů prováděných v lokalitě Náchod. rok: 2015. EKO-KOM, a.s.

Výsledky rozborů komunálních odpadů prováděných v lokalitě Náchod. rok: 2015. EKO-KOM, a.s. Výsledky rozborů komunálních odpadů prováděných v lokalitě Náchod rok: 2015 EKO-KOM, a.s. Úvod Na základě platné metodiky bylo v rámci rozborů odděleně sbíraných složek komunálního odpadu (tj. 200101 Papír

Více

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je = Příklad 1 Metodou nejmenších čtverců nalezněte odhad lineární regresní funkce popisující závislost mezi výnosy pšenice a množstvím použitého hnojiva na základě hodnot výběrového souboru uvedeného v tabulce.

Více

Vybrané statistické metody. You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.

Vybrané statistické metody. You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf. Vybrané statistické metody Analýza časových řad Statistická řada je posloupnost hodnot znaku, které jsou určitým způsobem uspořádány. Je-li toto uspořádání realizováno na základě časového sledu hodnot

Více

Úvod do problematiky měření

Úvod do problematiky měření 1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek

Více

Český hydrometeorologický ústav

Český hydrometeorologický ústav Český hydrometeorologický ústav Průvodce operativními hydrologickými informacemi na webu ČHMÚ Vaše vstupní brána do sítě webových stránek Českého hydrometeorologického ústavu, které mají za úkol informovat

Více

VŠB Technická univerzita Ostrava BIOSTATISTIKA

VŠB Technická univerzita Ostrava BIOSTATISTIKA VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: BIOSTATISTIKA Domácí úkoly Zadání 5 DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL 1:

Více

Katedra biomedicínské techniky

Katedra biomedicínské techniky ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA BIOMEDICÍNSKÉHO INŽENÝRSTVÍ Katedra biomedicínské techniky BAKALÁŘSKÁ PRÁCE 2008 Jakub Schlenker Obsah Úvod 1 1 Teoretický úvod 2 1.1 Elektrokardiografie............................

Více

Matematická statistika

Matematická statistika Matematická statistika Daniel Husek Gymnázium Rožnov pod Radhoštěm, 8. A8 Dne 12. 12. 2010 v Rožnově pod Radhoštěm Osnova Strana 1) Úvod 3 2) Historie matematické statistiky 4 3) Základní pojmy matematické

Více

IDENTIFIKAČNÍ ÚDAJE AKCE...

IDENTIFIKAČNÍ ÚDAJE AKCE... Obsah 1. IDENTIFIKAČNÍ ÚDAJE AKCE... 2 2. ÚVOD... 2 3. POUŽITÉ PODKLADY... 2 3.1 Geodetické podklady... 2 3.2 Hydrologické podklady... 2 3.2.1 Odhad drsnosti... 3 3.3 Popis lokality... 3 3.4 Popis stavebních

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více