Porovnání dvou výběrů
|
|
- Robert Mach
- před 2 lety
- Počet zobrazení:
Transkript
1 Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů a párové porovnání dvou výběrů. Nezávislé výběry x, y jsou obecně různě veliké a mezi jednotlivými čísly v jednom a druhém výběru není souvislost. Pořadí prvků obou výběrů lze libovolně zaměnit bez ztráty informace. Hlavním cílem analýzy je rozhodnout, zda se liší střední hodnoty E(x) a E(y) obou výběrů. Příkladem dvou nezávislých výběrů jsou hmotnosti burských oříšků ze dvou lokalit. Z každé lokality se náhodně vybere pár desítek plodů, které se jednotlivě zváží. Párové porovnání naproti tomu analyzuje jeden a týž soubor měřený dvakrát za dvou různých podmínek, tím získáme dvojici proměnných x, y. Cílem je rozhodnout, zda tyto podmínky ovlivňují měřenou hodnotu. Při tom se především posuzuje, zda střední hodnota rozdílu první a druhé proměnné E(x y) je statisticky odlišná od nuly. Příkladem může být skupina pacientů, u nichž se stanoví hladina cholesterolu v krvi před a po léčbě. Oba soubory musí mít stejný počet dat (pacienti zemřelí během léčby se vyloučí) a nesmí se zaměnit pořadí, oba údaje o jednom pacientovi musí být na témže řádku. Slouží především k rozhodnutí, zda dva soubory naměřených dat mají a) shodná rozdělení a b) shodné střední hodnoty a rozptyly. Data a parametry V dialogovém panelu je nutno zadat sloupce s 1. a 2. proměnnou, které se mají porovnat a Druh porovnání, který chceme provést buď Nezávislé výběry nebo Párové porovnání. Je možné změnit Hladinu významnosti, jejíž implicitní hodnota je 0.05, tedy 5%. Stejně jako u ostatních modulů lze analýzu provést pro Všechna data, nebo jen Označená či Neoznačená data. Obrázek 1 Dialogový panel Porovnání dvou výběrů Nezávislé výběry Data jsou ve dvou sloupcích, počet dat může být různý. Buňky s chybějícím údajem se vypustí. Párové porovnání Data jsou ve dvou sloupcích, počet dat v obou sloupcích by měl být stejný, chybí-li hodnota, vypouští se celý odpovídající řádek. Protokol Obsah protokolu závisí na tom, zda jsme provedli porovnání nezávislých výběrů, nebo párové porovnání. Totéž platí pro grafický výstup. Proto uvádíme obě verze výstupů. Nezávislé výběry
2 Název úlohy Název úlohy z dialogového panelu. Hladina významnosti Zadaná hladina významnosti. Porovnávané sloupce Názvy obou porovnávaných sloupců. Počet dat Počet dat prvního (n 1 ) a druhého (n 2 ) výběru. Průměr Aritmetický průměr prvního a druhého sloupce x1, x2. Směr. odchylka Směrodatná odchylka prvního a druhého výběru, s 1 a s 2. Rozptyl Rozptyl prvního a druhého výběru, s 2 1 a s 2 2. Korel. koef. R(x,y) Tento řádek spolu s varováním Významná korelace! se objeví pouze v případě, že korelační koeficient mezi sloupci je statisticky významný (různý od nuly) na hladině. V tom případě je nutno zvážit, zda jsou data a jejich získání v pořádku, nebo zda není na místě párové porovnání. Pokud tento řádek v protokolu chybí, znamená to, že je korelační koeficient nevýznamný. Test shody rozptylů Test shody rozptylů obou výběrů. Tento test je určen pro data, jejichž rozdělení je přibližně normální a která neobsahují vybočující hodnoty. V opačném případě se doporučuje použít brát v úvahu robustní test shody rozptylů, viz níže. Poměr rozptylů Testovací statistika, max( 2 1 / 2 2, 2 2 / 2 1 ) Počet stupňů volnosti Počty stupňů volnosti F-kvantilu, n 1 1 a n 2 1 Kritická hodnota Kvantil F-rozdělení F(, n 1 1, n 2 1) Slovní závěr testu Rozptyly jsou shodné, případně Rozptyly jsou rozdílné. Pravděpodobnost p-hodnota, odpovídá hladině významnosti, na níž by byla hypotéza o Robustní test shody rozptylů Alternativní test shody rozptylů obou výběrů je určen pro data, jejichž rozdělení není normální, především z hlediska symetrie a špičatosti. Nedoporučuje se pro normálně rozdělená data. Poměr rozptylů Testační statistika, max( 2 1 / 2 2, 2 2 / 2 1 ). Redukované stupně Počty stupňů volnosti korigované na odchylku od normality. volnosti Kritická hodnota Kvantil F-rozdělení. Slovní závěr testu Rozptyly jsou shodné, případně Rozptyly jsou rozdílné. Pravděpodobnost p-hodnota, odpovídá hladině významnosti, na níž by byla hypotéza o Test shody průměrů pro SHODNÉ rozptyly t-statistika Počet stupňů volnosti Kritická hodnota Pravděpodobnost Test shody průměrů pro případ shodných rozptylů. V případě, kdy jsou rozptyly obou výběrů různé, je třeba použít test pro rozdílné rozptyly, viz níže. Testovací statistika. Počet stupňů volnosti pro t-test. Kritický kvantil t-rozdělení. Slovní závěr testu. p-hodnota, odpovídá hladině významnosti, na níž by byla hypotéza o
3 Test shody průměrů pro ROZDÍLNÉ rozptyly t-statistika Redukované stupně volnosti Kritická hodnota Pravděpodobnost Test shody průměrů pro případ rozdílných rozptylů. V případě, kdy jsou rozptyly obou výběrů shodné, je třeba použít test pro shodné rozptyly, viz výše. Testovací statistika. Počet stupňů volnosti pro t-test. Kritický kvantil t-rozdělení. Slovní závěr testu. p-hodnota, odpovídá hladině významnosti, na níž by byla hypotéza o Test dobré shody rozdělení, dvouvýběrový K-S test Diference DF Test shody rozdělení podle Kolmogorova a Smirnova založený na maximálním rozdílu empirických (výběrových) distribučních funkcí obou výběrů. Může nastat situace, kdy rozptyly i průměry vyjdou shodné a rozdělení vyjdou rozdílná. To bývá způsobeno výraznou odchylkou jednoho nebo obou rozdělení od normality (obyčejně asymetrie nebo bimodality). V takovém případě půjde zřejmě o nevhodná data. Hodnota maximální diference výběrových distribučních funkcí, tedy testační kritérium testu. Kritická hodnota Kritická hodnota KS-rozdělení. Slovně formulovaný závěr testu: Rozdělení jsou ROZDÍLNÁ / SHODNÁ. Párové porovnání Název úlohy Název úlohy Hladina významnosti Porovnávané sloupce Název úlohy z dialogového panelu. Počet proměnných (sloupců). Počet platných řádků. Názvy obou porovnávaných sloupců. Analýza diference Počet dat Počet dvojic dat, n. Průměrná diference Aritmetický průměr rozdílu dvojic x 1 x 2 (první druhý), x d Interval spolehlivosti Interval spolehlivosti aritmetického průměru diferencí na hladině významnosti. Směr. odchylka Směrodatná odchylka diferencí, s d. Rozptyl Rozptyl diferencí, s 2 d. Korelační koeficient Výběrový korelační koeficient r mezi prvním a druhým sloupcem. R(x,y) V případě, že korelační koeficient je statisticky nevýznamný, je toto varování zvýrazněno červeně. Párové porovnání pak nemá zřejmě smysl, jedná se o nevhodná data, mohlo být nedopatřením změněno pořadí dat v některém ze sloupců, nebo je zvolený interval vzorkování dvojic x 1, x 2 příliš úzký. Test významnosti rozdílu Vlastní test významnosti rozdílu mezi dvojicemi, tedy test významnosti průměrné diference. t-statistika Testovací statistika, xd n s d. Počet stupňů volnosti Počet stupňů volnosti, n 1. Kritická hodnota Slovní formulace závěru testu: Rozdíly jsou VÝZNAMNÉ /
4 Pravděpodobnost NEVÝZNAMNÉ. p-hodnota, odpovídá hladině významnosti, na níž by byla hypotéza o významnosti diference právě zamítnuta. Grafy Podobně jako protokol, i grafický výstup se liší podle toho, zda jde o porovnání nezávislých výběrů, nebo párové porovnání. Nezávislé výběry Q-Q graf pro všechna data, data se berou jako jediný soubor, příslušnost k prvnímu nebo druhému výběru je rozlišena barvou (viz legenda v grafu). Orientačně jsou znázorněny polohy průměrů obou výběrů se svými intervaly spolehlivosti jako šrafované obdélníky. Přímky znázorňují polohu střední hodnoty, jejich směrnice odpovídají směrodatné odchylce, strmější přímka tedy odpovídá výběru s vyšší směrodatnou odchylkou. Krabicové grafy slouží především k vizuálnímu porovnání výběrů. Větší obdélník ohraničuje vnitřních 50% dat, horní okraj zeleného (vyšrafovaného) obdélníku odpovídá 75% kvantilu, spodní okraj zeleného obdélníku odpovídá 25% kvantilu, střed bílého pruhu v zeleném obdélníku odpovídá mediánu, šířka bílého pruhu odpovídá intervalu spolehlivosti mediánu, dva černé proužky jsou tzv. vnitřní hradby. Data mimo vnitřní hradby jsou označena červeným bodem a lze je považovat za vybočující měření. Asymetrické umístění bílého pruhu v zeleném kvartilovém obdélníku svědčí o možné asymetrii dat. Simultánní jádrové odhady hustoty pro oba výběry. Modrá a červená barva odpovídá prvnímu a druhému výběru. Křivky představují odhady hustoty pravděpodobnosti, šrafované obdélníky jsou intervaly spolehlivosti průměrů. Pokud se tyto obdélníky nepřekrývají, jsou průměry statisticky rozdílné na zadané hladině významnosti. Gaussovy křivky hustoty normálního rozdělení odpovídající průměru a rozptylu obou výběrů. Barevné rozlišení je stejné jako v předchozím grafu. Pro orientaci je v grafu i hustota pravděpodobnosti průměrů (y-souřadnice je redukovaná). Sdružený empirický F-F graf pro testování rozdílnosti rozdělení dvou výběrů. Na osách jsou hodnoty pravděpodobnosti z výběrových distribučních funkcí obou výběrů (zobrazených na dalším grafu). Jsou-li rozdělení obou výběrů totožná, leží body přibližně na centrální přímce. Překročení některé červené mezní přímky alespoň v jednom bodě indikuje, že rozdělení výběrů jsou rozdílná.
5 Graf výběrové (empirické) distribuční funkce prvního a druhého výběru. Y-ová hodnota křivky vyjadřuje pravděpodobnost, že naměřená hodnota bude nižší, než odpovídající X. Párové porovnání Q-Q graf pro kvalitativní posouzení normality rozdílu proměnných. Leží-li body přibližně na přímce, lze předpokládat normální rozdělení. Při výrazné odchylce od normality se snižuje vypovídací schopnost a spolehlivost testů v protokolu. Graf podle Blanda a Altmana, na ose X je průměr páru hodnot, na ose Y je rozdíl páru hodnot. Tento graf slouží k odhalení případné závislosti variability (vyjádřené rozdílem) na velikosti měřené hodnoty. Pro lepší orientaci je v grafu vyznačena horizontální nulová linie, vyhlazená střední hodnota (černě) s vyznačeným intervalem spolehlivosti (červeně) a neparametrickým odhadem směrodatné odchylky ( 2, černě). V ideálním případě nulovosti rozdílu by měla být nulová linie uvnitř červených mezí a interval 2 zhruba konstantní. Gaussova křivka hustoty pravděpodobnosti, která aproximuje rozdělení rozdílů párů za předpokladu, že toto rozdělení je normální. Vnitřní Gaussova křivka představuje přibližně rozdělení aritmetického průměru (Y-ová souřadnice je z důvodu přehlednosti redukována). Svislá linie odpovídá nulovému rozdílu, šrafovaný obdélník představuje interval spolehlivosti průměru rozdílů. Leží-li v tomto intervalu nula, je rozdíl statisticky nevýznamně rozdílný od nuly. Grafické vyjádření závislosti prvních a druhých hodnot s vyznačenou přímkou y=x (červeně), která odpovídá nevýznamnému rozdílu a přímkou, která reprezentuje skutečnou závislost mezi y a x.
6 Body v tomto grafu jsou shodné s předchozím grafem. Data se zde považují za výběr z dvourozměrného normálního rozdělení, černá elipsa představuje 100.(1- )% oblast dat, menší červená elipsa představuje 100.(1 )% oblast spolehlivosti průměru, který je vyznačen černými přímkami.
Modul Základní statistika
Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),
Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2
Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik
Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
Simulace. Simulace dat. Parametry
Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
Zobecněná analýza rozptylu, více faktorů a proměnných
Zobecněná analýza rozptylu, více faktorů a proměnných Menu: QCExpert Anova Více faktorů Zobecněná analýza rozptylu (ANalysis Of VAriance, ANOVA) umožňuje posoudit do jaké míry ovlivňují kvalitativní proměnné
STATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
Korelační a regresní analýza
Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná
Průzkumová analýza dat
Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí
Národníinformačnístředisko pro podporu jakosti
Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov
Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13
Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test
Cvičení ze statistiky - 9. Filip Děchtěrenko
Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní
LINEÁRNÍ REGRESE. Lineární regresní model
LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu
2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení
2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků
Stručný úvod do vybraných zredukovaných základů statistické analýzy dat
Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní
Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.
Nejlepší odhady polohy a rozptýlení chemických dat
Nejlepší odhady polohy a rozptýlení chemických dat Prof. RNDr. Milan Meloun, DrSc., Katedra analytické chemie, Univerzita Pardubice, 532 10 Pardubice email: milan.meloun@upce.cz, http://meloun.upce.cz
Ilustrační příklad odhadu LRM v SW Gretl
Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná
Neuronové časové řady (ANN-TS)
Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr
StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Protokol č. 1. Tloušťková struktura. Zadání:
Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále
ROZDĚLENÍ NÁHODNÝCH VELIČIN
ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Testování hypotéz. 4. přednáška 6. 3. 2010
Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo
veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
Statistické testování hypotéz II
PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení
t-test, Studentův párový test Ing. Michael Rost, Ph.D.
Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se
STATISTICA Téma 7. Testy na základě více než 2 výběrů
STATISTICA Téma 7. Testy na základě více než 2 výběrů 1) Test na homoskedasticitu Nalezneme jej v několika submenu. Omezme se na submenu Základní statistiky a tabulky základního menu Statistika. V něm
Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1
Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát
Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.
Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní
PSY117/454 Statistická analýza dat v psychologii Přednáška 10
PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot
přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech.
3 Grafické zpracování dat Grafické znázorňování je velmi účinný způsob, jak prezentovat statistické údaje. Grafy nejsou tak přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých
Tabulka 1 Příklad dat pro kalibraci
Kalibrace Menu: QCExpert Kalibrace Modul Kalibrace je určen především pro analytické laboratoře a metrologická pracoviště. Nabízí kalibrační modely pro lineární a nelineární kalibrační závislosti s možností
Způsobilost. Data a parametry. Menu: QCExpert Způsobilost
Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány
E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
10. Předpovídání - aplikace regresní úlohy
10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu
Kalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě
Přejímka jedním výběrem
Přejímka jedním výběrem Menu: QCExpert Přejímka Jedním výběrem Statistická přejímka jedním výběrem slouží k rozhodnutí, zda dané množství nějakých výrobků vyhovuje našim požadavkům na kvalitu, která je
Národní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem
diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme
motivační příklad Párový Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky
marek.pomp@vsb.cz http://homel.vsb.cz/~pom68
Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové
Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení
Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;
Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)
Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník
Biostatistika a matematické metody epidemiologie- stručné studijní texty
Biostatistika a matematické metody epidemiologie- stručné studijní texty Bohumír Procházka, SZÚ Praha 1 Co můžeme sledovat Pro charakteristiku nebo vlastnost, kterou chceme sledovat zvolíme termín jev.
Souhrnné výsledky za školu
XYZ třída počet žáků percentil skupinový percentil (G4) čistá úspěšnost skóre směrodatná odchylka skóre x geometrie funkce algebra třída počet žáků percentil skupinový percentil (G4) čistá úspěšnost skóre
Aktivita A 0803. Zmapování a analýza disparit mezi regiony NUTS 3 ve fyzické dostupnosti bydlení
Aktivita A 0803 Zmapování a analýza disparit mezi regiony NUTS 3 ve fyzické dostupnosti bydlení 1/62 Aktivita A0803 Zmapování a analýza disparit mezi regiony NUTS 3 ve fyzické dostupnosti bydlení Datum
Popisná statistika kvantitativní veličiny
StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali
Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.
Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech
STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7
Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru
KALIBRACE. Definice kalibrace: mezinárodní metrologický slovník (VIM 3)
KALIBRACE Chemometrie I, David MILDE Definice kalibrace: mezinárodní metrologický slovník (VIM 3) Činnost, která za specifikovaných podmínek v prvním kroku stanoví vztah mezi hodnotami veličiny s nejistotami
5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846
1 5 ANALÝZA ROZPTYLU Vzorová úloha 5.1 Zkrácený postup jednofaktorové analýzy rozptylu Na úloze B5.02 Porovnání nové metody v sedmi laboratořích ukážeme postup 16 jednofaktorové analýzy rozptylu. Kirchhoefer
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,
Metoda Monte Carlo a její aplikace v problematice oceňování technologií. Manuál k programu
Metoda Monte Carlo a její aplikace v problematice oceňování technologií Manuál k programu This software was created under the state subsidy of the Czech Republic within the research and development project
3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT
PROKAZOVÁNÍ SHODY VÝROBKŮ část 3, díl 8, kapitola 4, str. 1 3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT Vyjadřování standardní kombinované nejistoty výsledku zkoušky Výsledek zkoušky se vyjadřuje v
T E O R I E C H Y B A V Y R O V N Á V A C Í P O
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu T E O R I E C H Y B A V Y R O V N Á V A C Í P O Č E T 2 č. úlohy 6 název úlohy T
Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky
Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného
SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ
SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ FIGALA V. a), KAFKA V. b) a) VŠB-TU Ostrava, FMMI, katedra slévárenství, 17. listopadu 15, 708 33 b) RACIO&RACIO, Vnitřní
6. T e s t o v á n í h y p o t é z
6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně
10 KONTROLA A ŘÍZENÍ JAKOSTI
1 10 KONTROLA A ŘÍZENÍ JAKOSTI Vzorová úloha 10.1 Aplikace regulačního diagramu pro průměry a směrodatné odchylky. Při konstrukci diagramu x s pruhem se vychází z průměrů a směrodatných odchylek tzv. logických
Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Sedm základních nástrojů řízení kvality Doc. RNDr. Jiří Šimek,
Třídění statistických dat
2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.
a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily
Testování hypotéz Testování hypotéz jsou klasické statistické úsudky založené na nějakém apriorním předpokladu. Vyslovíme-li předpoklad o hodnotě neznámého parametru nebo o zákonu rozdělení sledované náhodné
Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY
VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový
6.1 Normální (Gaussovo) rozdělení
6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů
INFLUENCE OF SPEED RADAR SIGN ON VELOCITY CHANGE IN THE SELECTED LOCATION
VLIV INFORMATIVNÍ TABULE NA ZMĚNU RYCHLOSTI VE VYBRANÉ LOKALITĚ INFLUENCE OF SPEED RADAR SIGN ON VELOCITY CHANGE IN THE SELECTED LOCATION Martin Lindovský 1 Anotace: Článek popisuje měření prováděné na
Úvod do statistické analýzy jednorozměrných dat Cvičebnice pro předmět: Zdravotnická statistika Fakulta zdravotnických studií
Úvod do statistické analýzy jednorozměrných dat Cvičebnice pro předmět: Zdravotnická statistika Fakulta zdravotnických studií Ing. Jana Holá, Ph.D Zdravotnické studijní programy v inovaci Projekt reg.
Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy
24.11.2009 Václav Jirchář, ZTGB
24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci
Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.
Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme
Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech.
Statistics ToolBox Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. [manual ST] 1. PROBABILITY DISTRIBUTIONS Statistics
VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA
VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA Katedra matematiky STATISTIKA V SPSS Jana Borůvková, Petra Horáčková, Miroslav Hanáček 2014 Jana Borůvková, Petra Horáčková, Miroslav Hanáček STATISTIKA V SPSS 1. vydání
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2014/15 Cvičení 5: Vícenásobná regrese, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Jednoduchá
EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy
EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých
Statistické metody uţívané při ověřování platnosti hypotéz
Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy
Grafické metody analýzy ekonomických časových řad
Statistika 32: (11), str. 483-493, ČSÚ, 1995. ISSN 0322-788x. Ing. Markéta ARLTOVÁ Ing. Josef ARLT, CSc. VŠE - katedra statistiky a pravděpodobnosti Grafické metody analýzy ekonomických časových řad Úvod
BALISTICKÝ MĚŘICÍ SYSTÉM
BALISTICKÝ MĚŘICÍ SYSTÉM UŽIVATELSKÁ PŘÍRUČKA Verze 2.3 2007 OBSAH 1. ÚVOD... 5 2. HLAVNÍ OKNO... 6 3. MENU... 7 3.1 Soubor... 7 3.2 Měření...11 3.3 Zařízení...16 3.4 Graf...17 3.5 Pohled...17 1. ÚVOD
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS
Modul Analýza síly testu Váš pomocník při analýze dat.
6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení
Metodologie pro Informační studia a knihovnictví 2
Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci