Ionizující záření pro zdraví: radioterapie, nukleární medicína a rentgenová diagnostika

Rozměr: px
Začít zobrazení ze stránky:

Download "Ionizující záření pro zdraví: radioterapie, nukleární medicína a rentgenová diagnostika"

Transkript

1 Ionizující záření pro zdraví: radioterapie, nukleární medicína a rentgenová diagnostika Ing. Pavel Dvořák Fakulta jaderná a fyzikálně inženýrská ČVUT v Praze dvorak@fjfi.cvut.cz Ionizující záření doznalo širokého uplatnění ve vědě, technice a medicíně již velmi záhy poté, co ho v roce 1896 W. C. Roentgen objevil. Za ionizující záření, jak z názvu plyne, je považováno záření schopné ionizace prostředí, kterým prochází, tj. záření (elektromagnetické i korpuskulární) o energii 30 kev a více. Produktem interakce ionizujícího záření s látkou jsou tedy na jedné straně ionty a volné elektrony na straně druhé. Tyto sekundární elektrony jsou, mají-li dostatečnou kinetickou energii, dále schopny ionizovat atomy prostředí. V humánní medicíně našly využití následující druhy ionizujícího záření, lišící se způsobem interakce s lidskou tkání a samozřejmě původem, resp. způsobem produkce:

2 Ionizující záření Využití v medicíně Produkce Rentgenové záření (záření X) rentgenová diagnostika (~ kev) radioterapie externími svazky brzdné a charakteristické záření vzniká interakcemi svazku elektronů v materiálu terčíku (~ MeV) Záření γ diagnostické metody nukleární medicíny brachy(radio)terapie radioterapie externími svazky vzniká v důsledku radionuklidové přeměny atomových jader radioaktivních prvků Elektrony, resp. částice β produkce rentgenového záření terapeutické metody nukleární medicíny brachy(radio)terapie radioterapie externími svazky svazky elektronů vznikají termoemisí žhavením katody částice β - (také elektrony) jsou produktem radionuklidové přeměny β - atomových jader radioaktivních prvků Pozitrony resp. částice β + diagnostické metody nukleární medicíny (pozitronová emisní tomografie) částice β + (pozitrony) jsou produktem radionuklidové přeměny β + atomových jader radioaktivních prvků Těžké nabité částice/lehké ionty (protony, jádra helia,...) speciální radioterapie externími svazky lehké ionty jsou produkovány ionizací příslušných plynů Neutrony speciální radioterapie externími svazky neutrony jsou produkovány v jaderném reaktoru nebo vhodnou jadernou reakcí urychlených těžkých nabitých částic Rentgenová diagnostika Zeslabení svazku rentgenového záření po průchodu tkání (tkáněmi) lidského těla se využívá od samého začátku oboru k zobrazení vnitřních struktur. Princip zeslabení lze zjednodušeně popsat exponenciálním zeslabovacím zákonem: φ = φ e µx 0, kde φ je fluence (intenzita) svazku rentgenového záření po průchodu tkání o tloušťce x, φ 0 je fluence (intenzita) svazku rentgenového záření před vstupem do těla pacienta, µ je lineární součinitel zeslabení, konstanta závisející na atomovém složení tkáně a energii rentgenového záření.

3 Takovýto model platí exaktně pouze za idealizovaného předpokladu tzv. geometrie úzkého svazku (interakce každého fotonu znamená jeho odstranění ze svazku, tj. když foton interaguje, už se nemůže např. dalším rozptylem do svazku vrátit s menší energií a být detekován) a pro monoenergetické fotonové záření (rentgenové spektrum je spojité od nulové energie až po maximální energii elektronů, které jej generují). Základním fyzikálním principem rentgenového zobrazení je vysoká závislost µ na atomovém čísle Z prostředí (~Z 5 ) pro energie rentgenových fotonů řádově desítek kev, tj. malá změna v atomovém složení tkáně způsobí velkou změnu v zeslabení svazku rentgenového záření a tím dostatečný kontrast obrazu. Princip planárního (rovinného) rentgenového zobrazování je znázorněn na obr. 1. Elektrony jsou produkovány žhavením katody, jsou urychlovány napětím řádově desítek kev (max. cca 150 kev) a dopadají na terčíkovou katodu, kde ztrácejí svou kinetickou energii Obr. 1. Princip planárního zobrazení pomocí rentgenového záření formou brzdného záření a zároveň také dochází k produkci charakteristického záření materiálu terčíku. Efektivita produkce brzdného záření těchto relativně nízkých energií je relativně malá (řádově jednotky procent), značná část energie je ztracena formou kolizí elektronů s materiálem terčíku, což vede k velké produkci tepla. Proto se katoda konstruuje rotační. Svazek rentgenového záření pak prochází tělem pacienta, kde je zeslabován v závislosti na tloušťce příslušné vrstvy/tkáně a také v závislosti na jejím složení (kost má vyšší hodnotu µ než např. plicní tkáň, tedy zeslabuje záření více). Záznam svazku, který je v příčném řezu obecně různě zeslaben, se může provést na rentgenový film nebo moderně

4 na digitální plošný detektor. Takto pořízený planární snímek (rentgenogram) je vážený, tzn. intenzita (stupeň šedi) konkrétního pixelu obrázku je určena součinem µx, resp. jeho integrálem přes všechny prozářené tkáně v daném směru: φ = φ e µdx 0 Není možné rozlišit, zda příslušné zeslabení bylo způsobeno tloušťkou určité tkáně nebo složením jiné tkáně ve stejném směru. Na konvenčním rentgenogramu jsou také na sobě superponovány obrazy tkání ležící ve stejném směru, určeném bodem na rentgenogramu a zdrojem záření ohniskem rentgenky. Obr. 2. Problém CT: určení prostorové distribuce lineárních součinitelů zeslabení prostřednictvím (digitální) matice obrazu, série projekcí objektu z různých smětů a jejich tomografické rekonstrukce Podstatně kvalitnější obraz poskytuje metoda rentgenové výpočetní tomografie CT (Computed Tomography). Tomografické zobrazování umožňuje zobrazení těla pacienta po vrstvách (tomos), a tím i jeho trojrozměrné zobrazení. Zásadním rozdílem oproti planárnímu snímkování je, že obraz není přímo zaznamenáván/měřen detektorem, ale je vypočten/matematicky rekonstruován na základě série změřených projekcí zobrazovaného objektu získaných jeho prozářením z různých směrů. Základní myšlenka CT je znázorněna na obr.2: cílem tomografické rekonstrukce je určit hodnoty µ i,j, které přísluší jednotlivým pixelům obrazu. Těmto hodnotám pak lze přiřadit konkrétní stupeň šedé stupnice a obraz může být zobrazen. Intuitivní algebraická rekonstrukční technika pro paralelní svazek, pole o dvou detektorech, pro dvě ortogonální projekce a digitální obraz o 4 pixelech je znázorněna na

5 obr. 3. Kvalitativní výhodou CT obrazu je, že je vážený pouze hodnotou µ i,j (tloušťka dílčí vrstvy tkáně je konstantní a je rovna rozměru pixelu), tedy pouze atomovým složením tkáně. Další kvalitativní výhodou je, že zobrazení po vrstvách v principu značně omezuje negativní příspěvek záření rozptýleného v dalších vrstvách. Planární rentgenové zobrazovací metody se dělí do několika kategorií v závislosti na způsobu jejich aplikace a použitém receptoru obrazu. Prakticky u všech druhů receptorů obrazu se využívá konverze rentgenového záření na světlo, kvůli vyšší detekční účinnosti a tím vyšší kvalitě zaznamenaného obrazu. Obr. 3. Schéma rotačního uspořádání rentgenky a pole detektorů k získání rentgenových projekcí pacienta z různých směrů (vlevo). Princip algebraické rekonstrukční techniky pro jednoduchý případ 2 projekcí, 2 paralelních svazků (detektorů) a matice (digitálního) obrazu o rozměru 2x2 pixely. Nukleární medicína Princip diagnostických metod (omezíme se pouze na zobrazovací metody) nukleární medicíny je v aplikaci subfarmakologického (stopového) množství určité látky do těla pacienta (nejčastěji intravenózně, inhalací, ingescí), které se specificky chová vůči vyšetřované tkáni či orgánu. Na tuto látku se naváže specifický radionuklid produkující záření γ (nebo pozitrony), který umožní detekcí záření vně těla pacienta zobrazit prostorovou i časovou distribuci tohoto radiofarmaka v těle pacienta. Známe-li chování radiofarmaka u zdravého člověka, můžeme z anomálií usoudit na případné patologie. Velmi často se nukleární medicíny využívá při diagnostice nádorových onemocnění, např. při hledání metastáz. Na radionuklidy, resp. na jejich fyzikální charakteristiky, jsou kladeny následující požadavky: cílem je, aby se záření dostalo vně pacienta, aniž by v něm interagovalo, a tím deponovalo veškerou nebo část své energie v těle. Tím by bylo ztraceno pro detekci

6 a diagnostický účel a přispělo by pouze k radiační zátěži pacienta a k riziku komplikací. Tento požadavek nejlépe splňuje záření γ s pokud možno vysokou energií. Na druhou stranu Obr. 4. Princip pozitronové emisní tomografie: koincidenční detekce dvou fotonů γ určující přímku v zorném poli PET skeneru, kde došlo k anihilaci, resp. rozpadu jádra, tedy kde je přítomno radiofarmakum. Tomografickou rekonstrukční metodou takto získaných projekcí se získá tomografický obraz distribuce radiofarmaka. je třeba fotony γ detekovat vně pacienta a detekční účinnost je lepší pro nižší energie. Kompromisem je oblast energií kev. Protože jakékoli vyšetření na bázi ionizujícího záření je spojeno s radiační zátěží pacienta a určitým rizikem, je žádoucí, aby radionuklid byl v těle pacienta přítomen pouze po dobu vyšetření a pak se co nejrychleji rozpadl. Z tohoto důvodu se používají radionuklidy s krátkým poločasem přeměny (řádově desítky minut až hodiny). Nejčastěji používaným radionuklidem v nukleární medicíně je 99m Tc, produkující čisté záření γ o energii 140 kev a s poločasem přeměny 6 hod. Krátkodobé radionuklidy přirozeně nemohou být získány z jakékoli rudy na zemi, proto musejí být připravovány uměle, a to zejména v jaderném reaktoru. Prvním způsobem výroby radionuklidů v reaktoru je aktivace vhodného stabilního prvku (reaktor je silný zdroj neutronů a jadernou reakcí stabilního jádra s neutronem může vzniknout vhodné radioaktivní jádro), druhým pak separace štěpných fragmentů (produktem štěpení uranu je celá řada radionuklidů s hmotnostním číslem kolem 100 a 130). Pro pozitronovou emisní tomografii (PET) se využívá β+ radionuklidů jejichž produktem je pozitron. Pozitron po uvolnění z přeměněného jádra prodělá řadu kolizí, kterými ztratí kinetickou energii. Pak na velmi krátkou dobu utvoří útvar zvaný pozitronium s elektronem a následuje anihilace, jejímž produktem jsou dva fotony γ o energii 511 kev v opačném směru. Schéma PET je znázorněno na obr. 4.

7 Základním zobrazovacím detektorem v nukleární medicíně je gama kamera (obr. 5). Foton γ z těla pacienta prochází nejdříve kolimátorem. Pak interaguje ve scintilačním krystalu, který konvertuje absorbovanou energii na odpovídající množství světla. Světlo se krystalem šíří a je detekováno sérií fotonásobičů. Elektrický signál ze všech fotonásobičů se geometricky zváží a určí se místo detekce v krystalu fotonásobič nad místem detekce bude Obr. 5. Vyšetření pacienta metodou SPECT pomocí gama kamery a jí snímaných projekcí z různých směrů pro tomografickou rekonstrukci obrazu (vlevo) a schéma gama kamery (vpravo) mít přirozeně nejvyšší signál. Nakonec se místu detekce v krystalu na základě geometrie kolimátoru přiřadí směr, odkud foton γ přišel a kde je tedy přítomno dané radiofarmakum. Pomocí gama kamery se pořizují např. celotělové skeny při vyhledávání kostních metastáz, vyšetřuje se srdeční činnost apod. Pořídí-li se série planárních projekcí (obrazů) pacienta pod různým úhlem kamery, získá se metodou tomografické rekonstrukce obrazu principiálně trojrozměrné zobrazení distribuce radiofarmaka v těle. Rekonstrukční techniky jsou v zásadě podobné jako v případě již zmiňovaného rentgenového CT. V tomto případě mluvíme o jednofotonové emisní výpočetní tomografii (SPECT). Pro SPECT je výhodnější použít více (2 3) gama kamery najednou (osově symetricky uspořádané), čímž se zvýší množství detekovaných fotonů během vyšetření, a tím samozřejmě kvalita zobrazení. Metoda PET se liší od SPECT především použitým typem radionuklidu (β + ), což znamená, že z místa radionuklidové přeměny vyletují v opačném směru dva fotony γ (v opačném směru) a nikoli pouze jeden! Výhoda tkví v tom, že není nutné použít

8 (absorpční) kolimátor jako u metody SPECT (k přiřazení směru emise místu detekce v krystalu), ale používá se tzv. elektronická kolimace. Oba fotony pocházejí z jedné události radionuklidové přeměny, a jsou tak detekovány současně. Zaznamenají-li tedy detektory PET systému koincidenční detekci (dvě detekce v jeden okamžik), pak místo emise (a tím i sledované radiofarmakum) leží na spojnici míst těchto dvou detekčních událostí. PET systém má také uspořádány detektory ve fixní kruhové geometrii, což znamená, že podstatně méně fotonů unikne z těla jiným směrem, než je v daném okamžiku nastaven detektor jako u SPECT. Kruhová geometrie detektorů a absence kolimátoru tedy u PET vedou k tomu, že během vyšetření je detekováno více užitečných fotonů, které tak zformují kvalitnější obraz v porovnání se SPECT (efektivita absorpční kolimace u SPECT je pouze do 10%!). Radionuklidy pro PET se produkují vhodnou jadernou reakcí pomocí cyklotronem urychleného svazku nabitých částic. Nejpoužívanější radionuklid pro PET je 18 F (pro označení FluoroDeoxyGlukózy FDG) a produkuje se jadernou reakcí urychlených protonů na jádrech 18 O. V současné době již existují i velmi drahé a velmi výkonné hybridní systémy SPECT/CT resp. PET/CT. Jedná se o kombinaci tomografického zobrazení rentgenovým zářením (CT) a nukleárně medicínského tomografického zobrazení (SPECT, PET). Protože pacient je zobrazen oběma modalitami během jednoho vyšetření, ve stejné poloze na stejném stole, mohou být obě série tomografických obrazů zfúzovány. Fúzované série se obvykle Obr. 6. Hybridní SPECT/CT a zejména PET/CT systémy představují obrovský diagnostický potenciál moderní medicíny. Velmi přesně kombinují kvalitní zobrazení anatomických struktur (rentgenové CT) se zobrazením funkce, resp. biologické aktivity (SPECT/PET) vyšetřovaného objektu/oblasti.

9 zobrazují promítnutím barevné stupnice obrazu jedné modality (SPECT, PET) do šedé stupnice druhé modality (CT). Obrovskou výhodou daného vyšetření je, že lékař má k dispozici jak velmi kvalitní zobrazení anatomických struktur (CT), tak geometricky odpovídající zobrazení funkční. Kvalitativně jsou obrazy z nukleární medicíny mnohem chudší (v porovnání s jinými modalitami), nicméně jejich obrovský přínos je právě v tom, že zobrazují patologickou funkci orgánu, či ukazují např. na patologický metabolismus glukózy v těle, což může identifikovat zhoubný nádor. V terapeutických aplikacích nukleární medicíny se využívá selektivního vychytávání radiofarmaka specifickou tkání. Nabité částice emitované z radioaktivních jader (obvykle β - ) ionizují atomy léčené tkáně a v důsledku způsobují poškození DNA v jádrech buněk, a tím jejich zničení. Toto je zároveň obecný princip radioterapie léčby zářením. Radioterapie Dalším způsobem, jak doručit terapeutickou dávku do příslušného cílového objemu (např. nádoru), je zavedení uzavřeného (tentokrát fotonového, γ) zářiče buď přímo do cílového objemu (nádoru), nebo do jeho těsné blízkosti. Pro tento druh radioterapie na blízkou vzdálenost se používá termín brachyterapie. Nejrozšířenější radioterapeutickou metodou je ovšem radioterapie externími fotonovými či elektronovými (pro ozařování povrchů) svazky. Základním cílem jakékoli radioterapeutické metody je doručení vysoké terapeutické dávky do cílového objemu za současného minimálního ozáření okolní normální (zdravé) tkáně, protože riziko poškození zdravých buněk je podobné jako u tkáně zhoubné. Různé typy tkáně (ať zhoubné či zdravé) vykazují různou radiosenzitivitu, tedy míru pravděpodobnosti poškození po ozáření určitou dávkou záření. Radiosenzitivitu tkáně popisují tzv. křivky dávkové odezvy, znázorněné na obr. 7. V ideálním případě např. dávka 50 Gy odpovídá 95% pravděpodobnosti lokální kontroly nádoru (jeho zničení) a stejná dávka současně představuje akceptovatelné 5% riziko komplikací zdravé tkáně, která je spolu s nádorem ozařována. V praxi jsou ovšem nádory, resp. kritické orgány, kde může být radiosenzitivita méně výhodná, nebo dokonce obrácená. Proto se obecně terapeutická dávka musí koncentrovat do oblasti cílového objemu a současně musí být zdravá tkáň ozařována minimální možnou dávkou. Toho se dosahuje kombinací více radioterapeutických svazků (při radioterapii externími svazky) vstupujících do pacienta z různých směrů a protínajících se v jednom bodě izocentru.

10 Obr. 7. Základní principy radioterapie: radiosenzitivita nádoru a zdravé tkáně, resp. kritických orgánů, vyjádřená prostřednictvím křivek dávkové odezvy Moderním zdrojem externích fotonových svazků je klinický lineární urychlovač, kterým jsou urychlovány elektrony na energie řádově jednotek až desítek MeV viz obr. 8. Na terčíku se potom jejich kinetická energie s vysokou účinností mění ve vysokoenergetické rentgenové záření. Svazek fotonového záření je dále homogenizován pomocí vyhlazovacího filtru a kolimován do požadované velikosti a tvaru. Clony sekundárního kolimátoru umožňují vytvářet pole obecně obdélníkového tvaru. Tak malá variabilita tvaru radiačního pole je samozřejmě pro moderní radioterapii nedostatečná, neboť neposkytuje efektivní stínění zdravé tkáně v okolí cílového objemu (projekce žádného reálného nádoru není přesně obdélníkového tvaru). Z tohoto důvodu může být tvar radiačního pole dále modifikován Obr. 8. Klinický lineární urychlovač: schéma (vlevo) a fotografie (vpravo)

11 prostřednictvím tzv. stínících bloků, které stíní ty části obdélníkového radiačního pole, které by jinak přispěly pouze k ozáření zdravé tkáně, či dokonce kritického orgánu. Protože je ale výroba individuálních stínících bloků obecně pro každé jednotlivé pole časově a technologicky náročná, jsou moderní klinické lineární urychlovače vybaveny tzv. vícelistým kolimátorem (MLC). MLC je zařízení tvořené mnoha páry lamel z těžkého kovu, jejichž pozice je individuálně ovládaná počítačově řízeným motorkem. MLC tak umožňuje definici obecně libovolného tvaru radiačního pole s omezením, které je dáno počtem párů lamel a jejich šířkou viz obr. 9. Moderní, tzv. konformní radioterapie je charakterizována kombinací většího počtu radiačních polí, které jsou tvarově optimalizovány pomocí MLC. Technologie MLC lze ovšem využít ještě efektivněji. Protože se obvykle ozařují cílové objemy o rozměrech řádově centimetrů, intenzita (přesněji fluence) fotonových svazků je vyhlazena filtrem tak, že je po celé ploše radiačního pole konstantní a prudce klesá až na kraji pole. Všechny části cílového objemu ve stejné vzdálenosti ke zdroji a ve stejné hloubce v tkáni tak dostávají od jednoho radiačního pole stejnou dávku. Volitelná 2D distribuce fluence (fluenční mapa) představuje další stupeň volnosti v tvarování, resp. optimalizaci Obr. 9. Demonstrace vícelistého kolimátoru (MLC), používaného k tvarování a k modulaci fluence externích fotonových svazků prostorové distribuce dávky. Tato nehomogenní fluenční mapa radiačního pole je standardně realizována právě pomocí MLC. Série mnoha nepravidelných (sub)polí odzářená ze stejného směru s různou relativní vahou de facto reprezentuje právě takové nehomogenní radiační pole. Tato nejmodernější radioterapeutická technologie se nazývá radioterapie svazky s modulovanou fluencí (IMRT). Radioterapie každého individuálního pacienta se plánuje pomocí moderních výpočetních plánovacích systémů. Na obr. 10 je vidět obrazovka jednoho z nich pro plán radioterapie prostaty: horní levé pole indikuje geometrii 7 terapeutických fotonových svazků, největší pole znázorňuje prostorovou distribuci dávky promítnutou na sérii (axiálních) CT snímků pacienta, dolní dvě pole jsou sagitální a koronální rekonstrukcí téhož, pole vlevo

12 demonstruje geometrii aktuálního svazku (úhel ramene urychlovače a úhel rotace stolu s pacientem a nakonec bílé pole vlevo uprostřed demonstruje 2D fluenční mapu aktuálního svazku. Tmavší intenzita bixelu odpovídá vyšší relativní váze, tj. většímu množství záření z toho elementárního zdroje. Obr. 10. Obrazovka radioterapeutického plánovacího systému pro případ léčby karcinomu prostaty. Demonstrováno je použití techniky 7 fotonových svazků s modulovanou fluencí (IMRT) a odpovídající distribuce dávky v těle pacienta Vedle konvenčních radioterapeutických technik existují i techniky speciální. Jednou z nejvýznamnějších je tzv. stereotaktická radioterapie a radiochirurgie. Speciálnost techniky spočívá v aplikaci extrémně vysoké terapeutické dávky v jedné nebo několika málo frakcích. To implikuje extrémní požadavky na zajištění geometrické přesnosti ozáření. K fixaci pacienta (nejčastěji jeho hlavy) se proto používají speciální stereotaktické rámy či masky, které minimalizují nejistotu polohy cílového objemu vůči zdroji externích fotonových svazků. Nejznámějším stereotaktickým zařízením je Leksellův gama nůž znázorněný na obr. 11. Alternativně se stereotaktická radioterapie provádí klinickým lineárním urychlo-

13 vačem se speciálními kolimátory s válcovou aperturou či tzv. mikro-mlc (MLC s proměnnou a velmi malou šířkou lamel). Obr. 11. Leksellův gama nůž ke stereotaktickému ozařování kraniálních cílových objemů Stručnou prezentaci radioterapeutických modalit uzavřeme radioterapií pomocí hadronů, zejména protonů, lehkých iontů a okrajově neutronů. Těžké nabité částice mají oproti fotonům tu výhodu, že maxima deponované energie dávky z jednoho svazku se dosahuje až hluboko v tkáni, blízko maximálního dosahu částic (fotony dosah nemají, maximum dávky je blízko povrchu a dávka potom s hloubkou přibližně exponenciálně klesá, ale nikdy není nulová). Tato výhoda se tedy okamžitě projeví v tom, že je možné dosáhnou podstatně vyšší konformity dávkové distribuce (šetření zdravé tkáně) s velmi malým počtem svazků. Další výhoda těžkých nabitých částic je v radiobiologii díky vysokému LET (lineární přenos energie) mají výrazně vyšší radiobiologickou účinnost v oblasti maxima depozice energie tzv. Braggova píku. Ostatní výhody souvisí s menší závislostí účinku na okysličení nádoru než u fotonů. Tato, v současné době ještě stále experimentální, radioterapeutická modalita je vysoce finančně náročná (vyžaduje vysoce sofistikované urychlovače nabitých částic cyklotrony, synchrotrony), nicméně vhodnou strategií spádové oblasti je možné výrazně zlepšit léčbu určitých diagnóz, kde je prokazatelně vyšší efekt než u konvenční, fotonové radioterapie. Posledním druhem ionizujícího záření experimentálně a velmi okrajově používaným v radioterapii jsou neutrony. Zdrojem neutronů je jaderný reaktor nebo urychlovač nabitých částic, kde se vhodnou jadernou reakcí na terčíku generují neutrony. Jediná metoda využívající v současné době neutrony je tzv. neutronová záchytová terapie na bóru (BNCT) pro léčbu mozkových lézí. Nejdříve se pacientovi aplikuje substance, která se selektivně vychytává v postižené tkáni. Tato substance je bohatá na izotop 10 B. Takto připravený pacient se pak ozáří na jaderném reaktoru svazkem víceméně nekolimovaných epitermálních

14 neutronů, přičemž dochází k jaderné reakci (neutronovému záchytu) s jádrem bóru. Výsledné složené jádro se okamžitě rozpadá na částici α 4 He a jádro 7 Li. Tyto dva fragmenty hustě ionizují podél své dráhy a mají velmi omezený dosah. Svou kinetickou energii tedy deponují přímo v postižené tkáni. Vzhledem k vysoké cenové a technické náročnosti neutronových zdrojů a vzhledem k problémům se specifickou selektivitou substance obohacené izotopem bóru je tato metoda velmi okrajová a v porovnání s ostatními uvedenými modalitami neperspektivní. V článku byly použity materiály z projektu EMERALD a dále materiály k přednáškám studentům oboru Radiologická fyzika na Katedře dozimetrie a aplikace ionizujícího záření FJFI ČVUT v Praze ( ), na kterých se podílí řada odborníků z oboru.

Zobrazovací metody v radioterapii zhoubných nádorů. Obrazem řízená radioterapie. Radioterapie: od základních principů až k IMRT Obr.

Zobrazovací metody v radioterapii zhoubných nádorů. Obrazem řízená radioterapie. Radioterapie: od základních principů až k IMRT Obr. Zobrazovací metody v radioterapii zhoubných nádorů. Obrazem řízená radioterapie. Ing. Pavel Dvořák Fakulta jaderná a fyzikálně inženýrská ČVUT v Praze dvorak@fjfi.cvut.cz Moderní planární a tomografické

Více

Test z fyzikálních fyzikálních základ ů nukleární medicíny

Test z fyzikálních fyzikálních základ ů nukleární medicíny Test z fyzikálních základů nukleární medicíny 1. Nukleární medicína se zabývá a) diagnostikou pomocí otevřených zářičů a terapií pomocí uzavřených zářičů aplikovaných in vivo a in vitro b) diagnostikou

Více

Aplikace jaderné fyziky

Aplikace jaderné fyziky Aplikace jaderné fyziky Ing. Carlos Granja, Ph.D. Ustav technické a experimentální fyziky ČVUT v Praze XI 2004 1 Aplikace jaderné fyziky lékařské aplikace (zobrazování, radioterapie) výroba radioisotopů

Více

M ASARYKŮ V ONKOLOGICKÝ ÚSTAV Žlutý kopec 7, Brno

M ASARYKŮ V ONKOLOGICKÝ ÚSTAV Žlutý kopec 7, Brno PET. PET / CT, PET Centrum, Cyklotron Pozitronová emisní tomografie ( PET ) je neinvazivní vyšetřovací metoda nukleární medicíny založená na detekci záření z radiofarmaka podaného pacientovi.nejčastěji

Více

Identifikace typu záření

Identifikace typu záření Identifikace typu záření U radioaktivního záření rozeznáváme několik druhů, jejichž vlastnosti se diametrálně liší. Jednotlivé druhy rozeznáváme podle druhu emitovaného záření. Tyto druhy radioaktivity

Více

3.ZÁKLADNÍ POJMY 11 3.1. ROZDĚLENÍ NÁDORŮ 11 3.2.TNM SYSTÉM 11 3.3. INDIKACE RADIOTERAPIE PODLE ZÁMĚRU LÉČBY 14 3.4.

3.ZÁKLADNÍ POJMY 11 3.1. ROZDĚLENÍ NÁDORŮ 11 3.2.TNM SYSTÉM 11 3.3. INDIKACE RADIOTERAPIE PODLE ZÁMĚRU LÉČBY 14 3.4. 2. POSTAVENÍ RADIOTERAPIE V KOMPLEXNÍ LÉČBĚ NÁDORŮ 10 3.ZÁKLADNÍ POJMY 11 3.1. ROZDĚLENÍ NÁDORŮ 11 3.2.TNM SYSTÉM 11 3.3. INDIKACE RADIOTERAPIE PODLE ZÁMĚRU LÉČBY 14 3.4. FRAKCIONACE 15 4. FYZIKÁLNÍ ASPEKTY

Více

Přednášky z lékařské přístrojové techniky

Přednášky z lékařské přístrojové techniky Přednášky z lékařské přístrojové techniky Masarykova univerzita v Brně Biofyzikální centrum Radionuklidové zobrazovací a jiné diagnostické metody Úvodem Můžeme definovat tyto hlavní oblasti diagnostického

Více

Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas Třída: 9. C

Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas Třída: 9. C Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití Jméno: Ondřej Lukas Třída: 9. C Co to je Radioaktivita/Co je radionuklid Radioaktivita = Samovolná přeměna atomových jader Objev 1896

Více

Nebezpečí ionizujícího záření

Nebezpečí ionizujícího záření Nebezpečí ionizujícího záření Radioaktivita versus Ionizující záření Radioaktivita je schopnost jader prvků samovolně se rozpadnout na jádra menší stabilnější. Rozeznáváme pak radioaktivitu přírodní (viz.

Více

Radiační ochrana pojetí a interpretace veličin a jednotek v souladu s posledními mezinárodními doporučeními

Radiační ochrana pojetí a interpretace veličin a jednotek v souladu s posledními mezinárodními doporučeními Radiační ochrana pojetí a interpretace veličin a jednotek v souladu s posledními mezinárodními doporučeními doc.ing. Jozef Sabol, DrSc. Fakulta biomedicínského inženýrství, ČVUT vpraze Nám. Sítná 3105

Více

Otázky ke zkoušce z DIA 2012/13

Otázky ke zkoušce z DIA 2012/13 Otázky ke zkoušce z DIA 2012/13 Obecná část 1. Rentgenové záření charakteristika, princip rentgenky 2. Skiagrafie princip, indikace, postavení v diagnostickém algoritmu, radiační zátěž 3. Skiaskopické

Více

Vybrané funkční metody mapování mozku: PET a SPECT (SISCOM)

Vybrané funkční metody mapování mozku: PET a SPECT (SISCOM) Vybrané funkční metody mapování mozku: PET a SPECT (SISCOM) MUDr. Ondřej Volný 1 MUDr. Petra Cimflová 2 prof. MUDr. Martin Bareš PhD 1 1 I. neurologická klinika FN u sv. Anny a LF Masarykovy univerzity

Více

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie je klinický obor využívající účinků ionizujícího záření v léčbě jak zhoubných, tak nezhoubných nádorů

Více

Nukleární medicína je obor zabývající se diagnostikou a léčbou pomocí otevřených radioaktivních zářičů, aplikovaných do vnitřního prostředí

Nukleární medicína je obor zabývající se diagnostikou a léčbou pomocí otevřených radioaktivních zářičů, aplikovaných do vnitřního prostředí Nukleární medicína je obor zabývající se diagnostikou a léčbou pomocí otevřených radioaktivních zářičů, aplikovaných do vnitřního prostředí organismu. zobrazovací (in vivo) diagnostika laboratorní (in

Více

Měření zeslabení těžkých nabitých částic při průchodu materiálem pomocí detektorů stop

Měření zeslabení těžkých nabitých částic při průchodu materiálem pomocí detektorů stop Měření zeslabení těžkých nabitých částic při průchodu materiálem pomocí detektorů stop Vít Kanclíř, G. Turnov Kristína Nešporová, G. Boskovice Tomáš Pikálek, G. Boskovice Abstrakt Práce se zabývá těžkými

Více

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí

Více

Počítačová tomografie (1)

Počítačová tomografie (1) Počítačová tomografie (1) velký počet měření průchodů rtg paprsků tělem - projekční data matematické metody pro rekonstrukci CT obrazů z projekčních dat Počítačová tomografie (2) generace CT 1. generace

Více

Metody nukleární medicíny. Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika

Metody nukleární medicíny. Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika Metody nukleární medicíny Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika Nukleární medicína Zobrazení metodami nukleární medicíny (rovněž označované jako skenování) patří mezi diagnostické

Více

Rozměr a složení atomových jader

Rozměr a složení atomových jader Rozměr a složení atomových jader Poloměr atomového jádra: R=R 0 A1 /3 R0 = 1,2 x 10 15 m Cesta do hlubin hmoty Složení atomových jader: protony + neutrony = nukleony mp = 1,672622.10 27 kg mn = 1,6749272.10

Více

Pozitronová emisní tomografie.

Pozitronová emisní tomografie. Pozitronová emisní tomografie. Pozitronová emisní tomografie (PET) s využitím 18F-2-D-fluor-2- deoxy-glukózy (FDG), je jedna z metod nukleární medicíny, která umožňuje funkční zobrazení tkání organismu,

Více

Měření absorbce záření gama

Měření absorbce záření gama Měření absorbce záření gama Úkol : 1. Změřte záření gama přirozeného pozadí. 2. Změřte záření gama vyzářené gamazářičem. 3. Změřte záření gama vyzářené gamazářičem přes absorbátor. 4. Naměřené závislosti

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast. Vlnění, optika Číslo a název materiálu VY_32_INOVACE_0301_0310 Anotace

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast. Vlnění, optika Číslo a název materiálu VY_32_INOVACE_0301_0310 Anotace VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka

Více

1. Zadání Pracovní úkol Pomůcky

1. Zadání Pracovní úkol Pomůcky 1. 1. Pracovní úkol 1. Zadání 1. Ověřte měřením, že směry výletu anihilačních fotonů vznikajících po β + rozpadu jader 22 Na svírají úhel 180. 2. Určete pološířku úhlového rozdělení. 3. Vysvětlete tvar

Více

Základy radioterapie

Základy radioterapie Základy radioterapie E-learningový výukový materiál pro studium biofyziky v 1.ročníku 1.L F UK MUDr. Jaroslava Kymplová, Ph.D. Ústav biofyziky a informatiky 1.LF UK Radioterapie Radioterapie využívá k

Více

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace) Referát z atomové a jaderné fyziky Detekce ionizujícího záření (principy, technická realizace) Měřicí a výpočetní technika Šimek Pavel 5.7. 2002 Při všech aplikacích ionizujícího záření je informace o

Více

Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011

Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011 Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011 OCHRANA PŘED ZÁŘENÍM Přednáška pro stáže studentů MU, podzimní semestr 2010-09-08 Ing. Oldřich Ott Osnova přednášky Druhy ionizačního záření,

Více

Radiační patofyziologie. Zdroje záření. Typy ionizujícího záření: Jednotky pro měření radiace:

Radiační patofyziologie. Zdroje záření. Typy ionizujícího záření: Jednotky pro měření radiace: Radiační patofyziologie Radiační poškození vzniká účinkem ionizujícího záření. Co se týká jeho původu, ionizující záření vzniká: při radioaktivním rozpadu prvků, přichází z kosmického prostoru, je produkováno

Více

Aplikace jaderné fyziky (několik příkladů)

Aplikace jaderné fyziky (několik příkladů) Aplikace jaderné fyziky (několik příkladů) Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK pavel.cejnar@mff.cuni.cz Příklad I Datování Galileiho rukopisů Galileo Galilei (1564 1642) Všechny vázané

Více

Identifikace typu záření

Identifikace typu záření Identifikace typu záření U radioaktivního záření rozeznáváme několik druhů, jejichž vlastnosti se diametrálně liší. Jednotlivé druhy rozeznáváme podle druhu emitovaného záření. Tyto druhy radioaktivity

Více

PROBLÉMY A CHYBY ODHALENÉ NEZÁVISLÝMI PROVĚRKAMI RADIOTERAPEUTICKÝCH OZAŘOVAČŮ LESSONS LEARNED

PROBLÉMY A CHYBY ODHALENÉ NEZÁVISLÝMI PROVĚRKAMI RADIOTERAPEUTICKÝCH OZAŘOVAČŮ LESSONS LEARNED PROBLÉMY A CHYBY ODHALENÉ NEZÁVISLÝMI PROVĚRKAMI RADIOTERAPEUTICKÝCH OZAŘOVAČŮ LESSONS LEARNED Irena Koniarová, Ivana Horáková, Vladimír Dufek, Helena Žáčková NEZÁVISLÉ PROVĚRKY V RADIOTERAPII 1996 2016:

Více

VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI

VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI Přehled dosimrických veličin: Daniel KULA (verze 1.0), 1. Aktivita: Definice veličiny: Poč radioaktivních přeměn v radioaktivním materiálu, vztažený na

Více

Nebezpečí ionizujícího záření

Nebezpečí ionizujícího záření Nebezpečí ionizujícího záření Ionizující záření je proud: - fotonů - krátkovlnné elektromagnetické záření, - elektronů, - protonů, - neutronů, - jiných částic, schopný přímo nebo nepřímo ionizovat atomy

Více

Základy výpočetní tomografie

Základy výpočetní tomografie Základy výpočetní tomografie Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika Základní principy výpočetní tomografie Výpočetní tomografie - CT (Computed Tomography) CT je obecné označení

Více

pro vybrané pracovníky radioterapeutických pracovišť č. dokumentu: VF A-9132-M0801T3 Jméno Funkce Podpis Datum

pro vybrané pracovníky radioterapeutických pracovišť č. dokumentu: VF A-9132-M0801T3 Jméno Funkce Podpis Datum Výukový program č. dokumentu: Jméno Funkce Podpis Datum Zpracoval Ing. Jiří Filip srpen 2008 Kontroloval Ing. Jan Binka SPDRO 13.2.2009 Schválil strana 1/7 Program je určen pro vybrané pracovníky připravované

Více

Radiační onkologie- radioterapie. Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika

Radiační onkologie- radioterapie. Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika Radiační onkologie- radioterapie Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika Historie radioterapie Ionizující záření základní léčebný prostředek (často se však používá v kombinaci

Více

3. MINIMÁLNÍ SEZNAM TEST

3. MINIMÁLNÍ SEZNAM TEST Doporučení SÚJB Zavedení systému jakosti při využívání významných zdrojů ionizujícího záření v radioterapii lineární urychlovače pro 3D konformní radioterapii a IMRT 2006 OPRAVA A DOPLNĚNÍ 1.4.2010 Tato

Více

Léčba nádorů prostaty moderní fotonovou terapií je značně efektivní

Léčba nádorů prostaty moderní fotonovou terapií je značně efektivní Léčba nádorů prostaty moderní fotonovou terapií je značně efektivní prof. MUDr. Pavel Šlampa, CSc. Klinika radiační onkologie, přednosta, Masarykův onkologický ústav, Brno V poslední době se v médiích

Více

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru Pracovní úkol: 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé

Více

INTEGRACE ZOBRAZOVACÍCH A OZAŘOVACÍCH RADIOLOGICKÝCH

INTEGRACE ZOBRAZOVACÍCH A OZAŘOVACÍCH RADIOLOGICKÝCH INTEGRACE ZOBRAZOVACÍCH A OZAŘOVACÍCH RADIOLOGICKÝCH METOD : off-line on-line NUKLEÁRNÍ MEDICÍNA a RADIOTERAPIE - možnosti spolupráce Vojtěch U l l m a n n fyzik Klinika nukleární mediciny FN Ostrava Ústav

Více

Letní škola RADIOAKTIVNÍ LÁTKY a možnosti detoxikace

Letní škola RADIOAKTIVNÍ LÁTKY a možnosti detoxikace Letní škola 2008 RADIOAKTIVNÍ LÁTKY a možnosti detoxikace 1 Periodická tabulka prvků 2 Radioaktivita radioaktivita je schopnost některých atomových jader odštěpovat částice, neboli vysílat záření jádro

Více

Fludeoxythymidine ( 18 F) 1 8 GBq k datu a hodině kalibrace voda na injekci, chlorid sodný 9 mg/ml

Fludeoxythymidine ( 18 F) 1 8 GBq k datu a hodině kalibrace voda na injekci, chlorid sodný 9 mg/ml Příbalová informace Informace pro použití, čtěte pozorně! Název přípravku 3 -[ 18 F]FLT, INJ Kvalitativní i kvantitativní složení 1 lahvička obsahuje: Léčivá látka: Pomocné látky: Léková forma Injekční

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura

Více

Konference radiologické fyziky 2018

Konference radiologické fyziky 2018 Konference radiologické fyziky 2018 Hrotovice, 25. - 27. 4. 2018 Český metrologický institut hlavní sídlo v Brně Inspektorát ionizujícího záření Od 1.5.2014 pouze pracoviště IZ pod OI Praha Konference

Více

Tematické okruhy k SZZ v bakalářském studijním oboru Radiologický asistent bakalářského studijního programu B5345 Specializace ve zdravotnictví

Tematické okruhy k SZZ v bakalářském studijním oboru Radiologický asistent bakalářského studijního programu B5345 Specializace ve zdravotnictví Tematické okruhy k SZZ v bakalářském studijním oboru Radiologický asistent bakalářského studijního programu B5345 Specializace ve zdravotnictví Dle čl. 7 odst. 2 Směrnice děkana pro realizaci bakalářských

Více

Výukový program. pro vybrané pracovníky radiodiagnostických RTG pracovišť č. dokumentu: VF A-9132-M0801T1

Výukový program. pro vybrané pracovníky radiodiagnostických RTG pracovišť č. dokumentu: VF A-9132-M0801T1 Výukový program č. dokumentu: Jméno Funkce Podpis Datum Zpracoval Ing. Jiří Filip srpen 2008 Kontroloval Ing. Jan Binka SPDRO 13.2.2009 Schválil strana 1/7 Program je určen pro vybrané pracovníky připravované

Více

Zobrazovací systémy v transmisní radiografii a kvalita obrazu. Kateřina Boušková Nemocnice Na Františku

Zobrazovací systémy v transmisní radiografii a kvalita obrazu. Kateřina Boušková Nemocnice Na Františku Zobrazovací systémy v transmisní radiografii a kvalita obrazu Kateřina Boušková Nemocnice Na Františku Rentgenové záření Elektromagnetické záření o λ= 10-8 10-13 m V lékařství obvykle zdrojem rentgenová

Více

Nukleární medicína: atestační otázky pro lékaře

Nukleární medicína: atestační otázky pro lékaře Nukleární medicína: atestační otázky pro lékaře I. Klinická část 1. Nukleární kardiologie A Perfuzní SPECT myokardu, procedurální doporučení EANM. Radiofarmaka. Metodika. Zátěžové testy kontraindikace

Více

RENTGENKY ČASU. Vojtěch U l l m a n n f y z i k OD KATODOVÉ TRUBICE PO URYCHLOVAČE

RENTGENKY ČASU. Vojtěch U l l m a n n f y z i k OD KATODOVÉ TRUBICE PO URYCHLOVAČE RENTGENKY V PROMĚNÁCH ČASU OD KATODOVÉ TRUBICE PO URYCHLOVAČE Vojtěch U l l m a n n f y z i k Klinika nukleární mediciny FN Ostrava Ústav zobrazovacích metod ZSF OU Ostrava VÝBOJKY: plynem plněné trubice

Více

Test z radiační ochrany

Test z radiační ochrany Test z radiační ochrany v nukleární medicíně ě 1. Mezi přímo ionizující záření patří a) záření alfa, beta a gama b) záření neutronové c) záření alfa, beta a protonové záření 2. Aktivita je definována a)

Více

Radioaktivní záření, jeho druhy, detekce a základní vlastnosti

Radioaktivní záření, jeho druhy, detekce a základní vlastnosti Radioaktivní záření, jeho druhy, detekce a základní vlastnosti M. Vohralík vohralik.m@email.cz Gymnázium Dr. Emila Holuba, Holice D. Horák dombas1999@gmail.com Reálné Gymnázium a základní škola města Prostějova

Více

Dosah γ záření ve vzduchu

Dosah γ záření ve vzduchu Dosah γ záření ve vzduchu Intenzita bodového zdroje γ záření se mění podobně jako intenzita bodového zdroje světla. Ve dvojnásobné vzdálenosti, paprsek pokrývá dvakrát větší oblast povrchu, což znamená,

Více

1. ZDROJE IONIZUJÍCÍHO ZÁŘENÍ (Václav Hušák) 1.1 Přírodní zdroje ionizujícího záření

1. ZDROJE IONIZUJÍCÍHO ZÁŘENÍ (Václav Hušák) 1.1 Přírodní zdroje ionizujícího záření KLINICKÁ RADIOBIOLOGIE 10 1. ZDROJE IONIZUJÍCÍHO ZÁŘENÍ (Václav Hušák) 1.1 Přírodní zdroje ionizujícího záření K přírodním zdrojům náleží kosmické záření a přírodní radionuklidy vyskytující se v přírodě,

Více

JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník JADERNÁ FYZIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Základní pojmy Jaderná síla - drží u sebe nukleony, velmi krátký dosah, nasycení Vazebná energie jádra: E V = ( Z m p + N

Více

Zkušenosti s aplikací protonové terapie. MUDr. Jiří Kubeš, Ph.D. PTC Praha

Zkušenosti s aplikací protonové terapie. MUDr. Jiří Kubeš, Ph.D. PTC Praha Zkušenosti s aplikací protonové terapie MUDr. Jiří Kubeš, Ph.D. PTC Praha Protonová terapie - východiska Protonová radioterapie je formou léčby ionizujícím zářením Ionizující záření lze použít k destrukci

Více

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory.

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích

Více

CT-prostorové rozlišení a citlivost z

CT-prostorové rozlišení a citlivost z CT-prostorové rozlišení a citlivost z Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová fyzika Prostorové rozlišení a citlivost z Prostorové rozlišení význam vyjádření rozlišení měření rozlišení

Více

- Uvedeným způsobem získáme obraz na detektoru (v konvenční radiografii na radiografickém filmu).

- Uvedeným způsobem získáme obraz na detektoru (v konvenční radiografii na radiografickém filmu). P9: NDT metody 2/5 - Princip průmyslové radiografie spočívá v umístění zkoušeného předmětu mezi zdroj vyzařující RTG nebo gama záření a detektor, na který dopadá záření prošlé daným předmětem. - Uvedeným

Více

VYŠETŘENÍ NERVOVÉHO SYSTÉMU. seminář z patologické fyziologie

VYŠETŘENÍ NERVOVÉHO SYSTÉMU. seminář z patologické fyziologie VYŠETŘENÍ NERVOVÉHO SYSTÉMU seminář z patologické fyziologie Osnova Morfologické vyšetřovací metody (zobrazovací diagnostika) 1 Počítačová (výpočetní) tomografie 2 Pozitronová emisní tomografie (PET) 3

Více

Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1.

Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1. Ionizační manometry Princip: ionizace molekul a měření počtu nabitých částic Rozdělení podle způsobu ionizace: Manometry se žhavenou katodou Manometry se studenou katodou Manometry s radioaktivním zářičem

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Nukleární medicína

Více

Radioterapie Radiační onkologie v nové legislativě. Seminář SÚJB pro lektory odborné přípravy Čestmír Berčík

Radioterapie Radiační onkologie v nové legislativě. Seminář SÚJB pro lektory odborné přípravy Čestmír Berčík Radioterapie Radiační onkologie v nové legislativě Seminář SÚJB pro lektory odborné přípravy 8.3.2017 Čestmír Berčík 1 Specifika radiační onkologie Kategorizace ZIZ pro účely zabezpečení : 1. kat. = Radionuklidový

Více

Klinická dozimetrie v NM 131. I-MIBG terapie neuroblastomu

Klinická dozimetrie v NM 131. I-MIBG terapie neuroblastomu Klinická dozimetrie v NM 131 I-MIBG terapie neuroblastomu Prchalová D., Solný P., Kráčmerová T. Klinika nukleární medicíny a endokrinologie 2. LF UK a FN Motol 7. Konference radiologické fyziky Harrachov,

Více

GATE Software pro metodu Monte Carlo na bázi GEANTu

GATE Software pro metodu Monte Carlo na bázi GEANTu GATE Software pro metodu Monte Carlo na bázi GEANTu Jiří Trnka 1, Jiří Terš 2 1 Oddělení radiační ochrany Všeobecné fakultní nemocnice v Praze 2 Radioizotopové pracoviště IKEM Co je to GATE? Software pro

Více

Urychlovače částic principy standardních urychlovačů částic

Urychlovače částic principy standardních urychlovačů částic Urychlovače částic principy standardních urychlovačů částic Základní info technické zařízení, které dodává kinetickou energii částicím, které je potřeba urychlit nabité částice jsou v urychlovači urychleny

Více

Interakce záření s hmotou

Interakce záření s hmotou Interakce záření s hmotou nabité částice: ionizují atomy neutrální částice: fotony: fotoelektrický jev Comptonův jev tvorba párů e +, e neutrony: pružný a nepružný rozptyl jaderné reakce (radiační záchyt

Více

ZOBRAZOVACÍ VYŠETŘOVACÍ METODY MAGNETICKÁ REZONANCE RADIONUKLIDOVÁ

ZOBRAZOVACÍ VYŠETŘOVACÍ METODY MAGNETICKÁ REZONANCE RADIONUKLIDOVÁ ZOBRAZOVACÍ VYŠETŘOVACÍ METODY MAGNETICKÁ REZONANCE RADIONUKLIDOVÁ Markéta Vojtová MAGNETICKÁ REZONANCE MR 1 Nejmodernější a nejsložitější vyšetřovací metoda Umožňuje zobrazit patologické změny Probíhá

Více

Ukázka spolupráce na návrhu klasifikačního systému CZ-DRG Zhoubný novotvar prsu

Ukázka spolupráce na návrhu klasifikačního systému CZ-DRG Zhoubný novotvar prsu Ukázka spolupráce na návrhu klasifikačního systému CZ-DRG Zhoubný novotvar prsu Jiří Šedo Česká onkologická společnost ČLS JEP Masarykův onkologický ústav, Brno ÚZIS ČR Konference DRG Restart 2016 9. 11.

Více

Radiologická fyzika (technika) v radioterapii Seznam přednášek a klinických praxí Letní semestr 2015 (RFRT1 a RTRT)

Radiologická fyzika (technika) v radioterapii Seznam přednášek a klinických praxí Letní semestr 2015 (RFRT1 a RTRT) Radiologická fyzika (technika) v radioterapii Seznam přednášek a klinických praxí Letní semestr 2015 (RFRT1 a RTRT) 1 přednáška = 100 minut 1 praxe = 240 minut (pokud není uvedeno jinak) Klinické praxe

Více

RADIOAKTIVITA A VLIV IONIZUJÍCÍHO ZÁŘENÍ

RADIOAKTIVITA A VLIV IONIZUJÍCÍHO ZÁŘENÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 RADIOAKTIVITA A VLIV IONIZUJÍCÍHO

Více

Spektrometrie záření gama

Spektrometrie záření gama Spektrometrie záření gama M. Kroupa, Gymnázium Děčín, trellac@centrum.cz B. Dvorský, Gymnázium Šternberk, bohuslav.dvorsky@seznam.cz Abstrakt Tento článek pojednává o spektroskopii záření gama. Bylo měřeno

Více

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO

Více

Konkrétní možnosti uplatnění principu ALARA k optimalizaci ozáření obsluhy teleterapeutických radionuklidových ozařovačů

Konkrétní možnosti uplatnění principu ALARA k optimalizaci ozáření obsluhy teleterapeutických radionuklidových ozařovačů Konkrétní možnosti uplatnění principu ALARA k optimalizaci ozáření obsluhy teleterapeutických radionuklidových ozařovačů Ing. Jana Hudzietzová 1, Doc.Ing. Jozef Sabol, DrSc. 1,, Ing. Lenka Grayová-Bulíčková

Více

Nové NRS RF radiodiagnostika. Daníčková K.

Nové NRS RF radiodiagnostika. Daníčková K. Nové NRS RF radiodiagnostika Daníčková K. Věstník MZ 6/2015 Rok na úpravu (dosud platné z 2011) Zásadní změny: Ruší se výpočet efektivní dávky Stanovení orgánové dávky jen v definovaných případech Vyšetření

Více

Okruhy k Státním závěrečným zkouškám na Fakultě zdravotnických věd UP pro akademický rok 2014/2015

Okruhy k Státním závěrečným zkouškám na Fakultě zdravotnických věd UP pro akademický rok 2014/2015 Pracoviště: Ústav radiologických metod Studijní obor: Radiologický asistent Diagnostické zobrazovací postupy 1. Vznik a vlastnosti rentgenového záření, vznik a tvorba rentgenového obrazu, radiační ochrana

Více

Česká republika. Abstrakt

Česká republika. Abstrakt Kvantifikace ozáření osob pro účely radiační ochrany Doc. Ing. Jozef Sabol, DrSc., Ing. Jana Hudzietzová Fakulta biomedicínského inženýrství ČVUT v Praze, Nám. Sítná 3105, 272 01 Kladno Česká republika

Více

PATENTOVÝ SPIS CO 00 N O. o CV1 A 61 M 36/14. (Věstník č: 08/2002) 14.04.2004. Způsob přípravy radioaktivní fólie pro aplikaci v nukleární medicíně

PATENTOVÝ SPIS CO 00 N O. o CV1 A 61 M 36/14. (Věstník č: 08/2002) 14.04.2004. Způsob přípravy radioaktivní fólie pro aplikaci v nukleární medicíně PATENTOVÝ SPIS (19) ČESKÁ REPUBLIKA (21) číslo přihlášky: 2000-4559 (22) Přihlášeno: 07.12.2000 (40) Zveřejněno: 14.08.2002 (Věstník č: 08/2002) (47) Uděleno: 27.02.04 (24) Oznámení o udělení ve Věstníku:

Více

Problematika určování SUV z PET/CT obrazů (při použití 18F-FDG)

Problematika určování SUV z PET/CT obrazů (při použití 18F-FDG) Problematika určování SUV z PET/CT obrazů (při použití 18F-FDG) Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc email: ptacekj@fnol.cz ICQ#: 22496995 Konference radiologických

Více

8.STAVBA ATOMU ELEKTRONOVÝ OBAL

8.STAVBA ATOMU ELEKTRONOVÝ OBAL 8.STAVBA ATOMU ELEKTRONOVÝ OBAL 1) Popiš Daltonovu atomovou teorii postuláty. (urči, které platí dodnes) 2) Popiš Rutherfordův planetární model atomu a jeho přínos. 3) Bohrův model atomu vysvětli kvantování

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

Analýza časového vývoje 3D dat v nukleární medicíně

Analýza časového vývoje 3D dat v nukleární medicíně Diplomová práce Analýza časového vývoje 3D dat v nukleární medicíně Jan Kratochvíla Prezentováno Seminář lékařských aplikací 12. prosince 2008 Vedoucí: Mgr. Jiří Boldyš, PhD., ÚTIA AV ČR Konzultant: Ing.

Více

LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ

LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ LEPTONY Elektrony a pozitrony a elektronová neutrina Pozitronium, elektronové neutrino a antineutrino Beta rozpad nezachování parity, měření helicity neutrin Miony a mionová neutrina Lepton τ a neutrino

Více

Česká společnost fyziků v medicíně, o. s.

Česká společnost fyziků v medicíně, o. s. Pravidla procesu hodnocení místních radiologických standardů a jejich souladu s národními radiologickými standardy pro radiační onkologii 1. Úvod Požadavky na klinické audity jsou stanoveny v hlavě V díl

Více

CT - dozimetrie. Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová fyzika

CT - dozimetrie. Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová fyzika CT - dozimetrie Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová fyzika CT dozimetrie Rozdělení dávky Definice dávky Instrumentace Definice CTDI Rizika, efektivní dávka Diagnostické referenční

Více

DUM č. 15 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník

DUM č. 15 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník projekt GML Brno Docens DUM č. 15 v sadě 12. Fy-3 Průvodce učitele fyziky pro 4. ročník utor: Miroslav Kubera Datum: 27.05.2014 Ročník: 4B notace DUMu: Prezentace je souhrnem probírané tématiky. Ve stručném

Více

Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje

Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje 16.3.2009,vyhotovila Mgr. Alena Jirčáková Atom atom (z řeckého átomos nedělitelný)

Více

Potřebné pomůcky Sešit, učebnice, pero

Potřebné pomůcky Sešit, učebnice, pero Potřebné pomůcky Druh interaktivity Cílová skupina Stupeň a typ vzdělání Potřebný čas Velikost Zdroj Sešit, učebnice, pero Výklad, aktivita žáků 9. ročník 2. stupeň, ZŠ 45 minut 754 kb Viz použité zdroje

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

Radiační zátěž na palubách letadel

Radiační zátěž na palubách letadel Radiační zátěž na palubách letadel M. Flusser 1, L. Folwarczny 2, D. Kalasová 3, L. Lachman 4, V. Větrovec 5 1 Smíchovská střední průmyslová škola, Praha, martin.flusser@atlas.cz 2 Gymnázium Komenského,

Více

20. Radionuklidy jako indikátory

20. Radionuklidy jako indikátory 20. Radionuklidy jako indikátory Indikátorová metoda spočívá v umělých změnách izotopového složení prvku říkáme, že prvek je označen radioaktivním izotopem (metoda značených atomů) Vztah izotopového indikátoru

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider

Více

Dozimetrie při léčbě benigních onemocnění štítné žlázy Ing. Michal Koláček, MUDr. Martin Havel Klinika nukleární medicíny FN Ostrava Katedra

Dozimetrie při léčbě benigních onemocnění štítné žlázy Ing. Michal Koláček, MUDr. Martin Havel Klinika nukleární medicíny FN Ostrava Katedra Dozimetrie při léčbě benigních onemocnění štítné žlázy Ing. Michal Koláček, MUDr. Martin Havel Klinika nukleární medicíny FN Ostrava Katedra zobrazovacích metod LF OSU Požadavky na radioterapii Nová legislativa

Více

Okruhy k Státním závěrečným zkouškám na Fakultě zdravotnických věd UP pro akademický rok 2015/2016

Okruhy k Státním závěrečným zkouškám na Fakultě zdravotnických věd UP pro akademický rok 2015/2016 Pracoviště: Ústav radiologických metod Studijní obor: Radiologický asistent Diagnostické zobrazovací postupy 1. Vznik a vlastnosti rentgenového záření, vznik a tvorba rentgenového obrazu, radiační ochrana

Více

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci

Více

Patofyziologie radiačního poškození Jednotky, měření, vznik záření Bezprostřední biologické účinky Účinky na organizmus: - nestochastické - stochastické Ionizující záření Radiační poškození vzniká účinkem

Více

Senzory ionizujícího záření

Senzory ionizujícího záření Senzory ionizujícího záření Senzory ionizujícího záření dozimetrie α = β = He e 2+, e + γ, n X... elmag aktivita [Bq] (Becquerel) A = A e 0 λt λ...rozpadová konstanta dávka [Gy] (Gray) = [J/kg] A = 0.5

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

Zhodnocení dozimetrických vlastností MicroDiamond PTW detektoru a jeho využití ve stereotaktických ozařovacích polích

Zhodnocení dozimetrických vlastností MicroDiamond PTW detektoru a jeho využití ve stereotaktických ozařovacích polích Zhodnocení dozimetrických vlastností MicroDiamond PTW 60019 detektoru a jeho využití ve stereotaktických ozařovacích polích T. Veselský 1,2,4, J. Novotný Jr. 1,2,4, V. Paštyková 1,3,4, B. Otáhal 5, L.

Více

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.

Více

SBÍRKA PŘEDPISŮ ČESKÉ REPUBLIKY

SBÍRKA PŘEDPISŮ ČESKÉ REPUBLIKY Ročník 2012 SBÍRKA PŘEDPISŮ ČESKÉ REPUBLIKY PROFIL PŘEDPISU: Titul předpisu: Vyhláška o stanovení pravidel a postupů při lékařském ozáření Citace: 410/2012 Sb. Částka: 150/2012 Sb. Na straně (od-do): 5212-5215

Více