Fakulta stavební GEOSTATISTIKA. Martin Dzurov, Kristýna Kitzbergerová, Lucie Šindelářová

Rozměr: px
Začít zobrazení ze stránky:

Download "Fakulta stavební GEOSTATISTIKA. Martin Dzurov, Kristýna Kitzbergerová, Lucie Šindelářová"

Transkript

1 České Vysoké Učení Technické v Praze Fakulta stavební GEOSTATISTIKA Martin Dzurov, Kristýna Kitzbergerová, Lucie Šindelářová Studijní program: Geoinformatika Vedoucí projektu: Dr. RNDr. Jana Nosková Praha, Říjen 2010

2 Obsah 1 Úvod 1 2 Design a formulace modelu 1 3 Gaussův model Kovarianční funkce a variogram Matérnova funkce Exponenciální funkce Nugget efekt Cross-validace 5 5 Ordinary Kriging 6 Seznam Literatury 13 i

3 Seznam obrázků 1 Rozmístění měřených bodů Variogramy Pravidelná mřížka, na které bude proveden výpočet metodou OK Predikce nadmořských výšek pomocí OK ze 100 náhodně vybraných bodů Predikce nadmořské výšky pomocí OK ze všech hodnot měření 11 6 Variance odhadnutých nadmořských výšek ze 100 náhodně vybraných bodů Variance odhadnutých nadmořských výšek ze všech hodnot měření ii

4 1 Úvod Geostatistika je odvětví prostorové statistiky s konečným počtem měřených dat s prostorovým rozmístěním. Příkladem těchto dat může být topologické měření nadmořských výšek, měření znečištění v síti o konečném počtu monitorovacích stanic, určování vlastností zemin ze vzorků, množství odchyceného hmyzu na různých místech a mnoho dalších. Z předchozího odstavce tedy plyne, že prostorová statistika je používána k popisu širokého spektra statistických modelů a metod určených k analýze prostorově určených dat, které mají následující vlastnosti: 1. hodnoty Y i : i = 1,..., n jsou pozorovány na diskrétní sadě bodů o souřadnicích x i s prostorovým rozložením 2. každá pozorovaná hodnota Y i je bud přímo měřená nebo je statisticky spjata s hodnotou spojitého prostorového fenoménu S(x) na odpovídajících bodech x i Sadu geostatistických dat označíme (x i, Y i ) : i = 1,..., n x i prostorové určení, typicky 2D rozměr Y i naměřená hodnota na bodě o souřadnici x i Rozložení měřených dat je dáno bud deterministicky, tzn. body x i tvoří pravidelnou mřížku napříč celým územím zájmu, nebo stochastickým nezávislým procesem, který generuje měření Y i. Každá hodnota Y i je poté realizací náhodné proměnné, jejíž rozdělení je závislé na hodnotě x i. 2 Design a formulace modelu Abychom mohli navrhnout správný model, musíme si nejprve položit několik otázek: 1. Na kolika různých místech musíme provést měření? 2. Jak tyto body rozmístit po území zájmu? Odpověd na první otázku většinou závisí na časové náročnosti měření a také celkové ceně. Na druhou otázku můžeme odpovědět pouze tak, že body bud rozmístíme kompletně náhodně, a nebo zvolíme pravidelný design. Formulaci modelu lze nejlépe ukázat na jednoduchém příkladu měření nadmořských výšek. Položme si tedy další otázku: Jak můžeme použít měřené 1

5 nadmořské výšky pro konstrukci našeho nejlepšího odhadu v celém území zájmu? Náš model potřebuje zahrnout stochastický prostorově spojitý proces S(x) pracující s reálnými hodnotami a který reprezentuje měřenou elevaci jako funkci souřadnic x. Požadované vlastnosti S(x) (spojitost, diferencovatelnost, vícenásobná diferencovatelnost,... ) závisí na charakteristice terénu. Nejjednodušším statistickým modelem je Gaussův model, který je definován následovně označme sadu geostatistických dat (x i, Y i ) : i = 1,..., n, kde x i je prostorová souřadnice a Y i je naměřená hodnota na bodě x i. Pro stacionární Gaussův model dále předpokládáme 1. {S(x) : x R 2 } je Gaussův proces se střední hodnotou µ, variancí σ 2 = Var{S(x)} a korelační funkcí ϱ(u) = Corr{S(x), S (x)}, kde u = x x a značí vzdálenost 2. za podmínky {S(x) : x R 2 } jsou y i realizována vzájemně nezávislými náhodnými proměnnými Y i s normálním rozdělením s podmíněnou střední hodnotou E [Y i S( )] = S(x i ) a podmíněnou variancí τ 2 Jiný způsob definice můžeme chápat následovně: Y i = S(x i ) + Z i : i = 1,..., n (1) kde {S(x) : x R 2 } je definováno jako bod 1 výše a Z i jsou vzájemně nezávislé náhodné proměnné s rozdělením N(0, τ 2 ). Aby definice byla úplná, korelační funkce ϱ(u) musí být pozitivně definitní, což zajistí, že jakákoliv lineární kombinace m i=1 a i S(x i ) bude mít kladnou varianci. Reálná měření nelze ovšem vždy popsat jen Gaussovým rozdělením a je nutno tento model rozšířit. Jedno z nejjednodušších způsobů jak rozšířit Gaussův model je zavést předpoklad, že model má po aplikaci transformace stále Gaussovo rozdělení. Dalším rozšířením základního modelu může být povolení prostorové variace střední hodnoty, např. nahrazení konstanty µ lineárním regresním modelem pro podmíněnou očekávanou hodnotou Y i, která je dána S(x i ). Třetí možností je povolit, aby S(x) mělo nestacionární strukturu kovariance. 3 Gaussův model Gaussovy stochastické procesy jsou široce používány v praxi jako modely pro geostatistická data. Tyto modely jsou použity jako vyhovující teoretické modely, která zaznamenávají širokou škálu prostorového chování podle specifikace jejich struktury korelace. Rozsah Gaussova modelu může být rozšířen 2

6 pomocí transformace původních dat. Gaussův model je také využíván pro metody geostatistické predikce jako je simple kriging, ordinary kriging nebo universal kriking. 3.1 Kovarianční funkce a variogram Gaussův prostorový proces {S(x) : x R 2 } je stochastický proces s vlastností, že libovolná sada bodů x 1,..., x n, kde x i R 2, má spojitou distribuci a S(x) = {S(x 1 ),..., S(x n )} je Gaussovo rozdělení s více proměnnými. Každý takový proces je plně specifikován funkcí střední hodnoty µ(x) = E [S(x)] a kovarianční funkcí γ(x, x ) = Cov{S(x), S(x )}. V takových procesech nyní předpokládejme sadu bodů x 1,..., x n a definovaný proces S(x) = {S(x 1 ),..., S(x n )}. Zapišme nyní µ S jako vektor s n elementy µ(x i ) a G jako n n matici s elementy G ij = γ(x i, x j ). Proces S(x) nyní odpovídá Gaussově distribuci s více proměnnými se střední hodnotou µ S a kovarianční maticí G. Nyní zvolíme T = n i=1 a is(x i ), kde T má Gaussovo rozdělení se střední hodnotou a variancí σ 2 T = µ T = n i=1 n a i µ(x i ) (2) i=1 n a i a j G ij = a Ga (3) j=1 kde a = (a 1,..., a n ) a musí platit a Ga 0. Tato podmínka, která musí být splněna pro libovolnou volbu n, (x 1,..., x n ) a (a 1,..., a n ), podmiňuje, že G je pozitivně definitní matice a odpovídající γ( ) je pozitivně definitní funkce. Každá funkce γ( ), která je pozitivně definitní je poté kovarianční funkcí pro Gaussův prostorový proces. Prostorový Gaussův proces nazveme stacionární, pokud µ(x) = µ, tedy konstantní pro všechna x a γ(x, x ) = γ(u), kde u = x x, z čehož plyne, že kovariance závisí pouze na vektoru vzdáleností mezi x a x. Řekněme, že stacionární proces je izotropní, pokud γ(u) = γ( u ), kde ( ) značí eukleidovskou vzdálenost, tzn. že kovariance mezi hodnotami S(x) na dvou různých místech závisí pouze na vzdálenosti mezi nimi. Variance stacionárního procesu je konstantní, tedy σ 2 = γ(0). Nyní definujme korelační funkci jako ρ(u) = γ(u)/σ 2. Stejně jako kovarianční funkce, je i korelační funkce symetrická v u, platí tedy ρ( u) = ρ(u) a z toho plyne fakt, že pro libovolné u, Corr{S(x), S(x u)} = Corr{S(x u), S(u)} = Corr{S(x), S(x + u)}. 3

7 Variogram stochastického prostorového procesu S(x) je funkce V (x, x ) = 1 2 Var{S(x) S(x )} (4) Platí V (x, x ) = 1 2 [Var{S(x)} + Var{S(x )} 2Cov{S(x), S(x )}]. V případě stacionarity se vzorec zjednoduší na funkci s proměnnou u = x x. Variogram je poté ekvivalentní kovarianční funkci γ(u) = Cov{S(x), S(x u)} Tato ekvivalence je vyjádřena vztahem V (u) = γ(0) γ(u) = σ 2 {1 ρ(u)} Hlavní výhodou variogramu je vlastnost, že je výborným nástrojem pro analýzu dat, zvláště pak pro data, která jsou nerovnoměrně rozmístěna. Nyní předpokládejme, že máme data (x i, y i ) : i = 1,..., n generována stacionárním procesem Y i = S(x i ) + Z i (5) kde Z i jsou vzájemně nezávislé proměnné s normálním rozdělením se střední hodnotou 0 a variancí τ 2. Nyní definujme variogram pro tento stacionární proces V Y (u) = τ 2 + σ 2 {1 ρ(u)} (6) Typicky je ρ(u) monotonně klesající funkce s vlastností, že ρ(0) = 1 a ρ(u) = 0, když u, z čehož plyne, že variogram pro geostatistická data je monotonně rostoucí funkce s následujícími vlastnostmi: rozdíl τ 2 odpovídá tzv. nuggetu asymptota τ 2 + σ 2 odpovídá varianci a je nazývána sill pokud je ρ(u) = 0 pro u větší než nějaká konečná hodnota, nazývá se tato hodnota range variogramu. Vlastnost funkce, že je pozitivně definitní je nutná a nezbytná podmínka pro definici parametrických funkcí, které určují třídu kovariančních funkcí. Avšak dokázat tuto vlastnost přímo není snadné. Proto je vhodné mít skupinu dostupných funkcí, o kterých je známo, že jsou pozitivně definitní a jsou dostatečně flexibilní, aby je bylo možné aplikovat na různá geostatistická data. 4

8 3.1.1 Matérnova funkce Nejběžnější forma empirického chování pro stacionární kovarianční strukturu geodat je, že korelace mezi S(x) a S(x ) klesá s rostoucí vzdáleností u = x x. Hledáme tedy funkci, která má podobné chování. Takovou funkcí je Matérnova funkce, jejíž definice je však příliš složitá pro účely této práce Exponenciální funkce Speciálním případem Matérnovy funkce je exponenciální funkce, která je definována následovně ϱ(u) = exp{ (u/φ) κ } (7) Stejně jako Matérnova funkce, má i tato funkce parametr měřítka φ > 0, parametr tvaru κ, který je v tomto případě ohraničen 0 < κ 2 a generuje korelační funkci, která monotónně klesá v u. Stejně jako u Matérnovy funkce, závisí vztah skutečného rozsahu a φ na hodnotě κ. Tato funkce je však méně flexibilní v tom smyslu, že Gaussův proces S(x) je spojitý, ale není diferencovatelný pro všechna 0 < κ < 2. Je diferencovatelný pro κ = 2, tedy pro maximální platnou hodnotu κ. Tento extrémní případ, kdy κ = 2, může generovat velmi nevhodně kovarianční strukturu. Proces S(x) s těmito korelačními funkcemi pak má tu vlastnost, že jeho realizace na libovolném malém intervalu určuje realizaci na celé reálné ose. 3.2 Nugget efekt Pojem Nugget efekt vyjadřuje nespojitost na počátku variogramu, což můžeme interpretovat jako varianci chyby měření τ 2 nebo také podmíněnou varianci každé měřené hodnoty Y i daného procesu S(x i ). Nugget efekt je definován takto { 1 : x = x Corr{Y (x), Y (x )} = σ 2 ϱ( x x )/(σ 2 + τ 2 ) : x x (8) kde ϱ( ) je (spojitá) korelační funkce S(x) a značí vzdálenost. 4 Cross-validace Cross-validace je jednoduchý způsob, jak porovnat různé předpoklady, např. o modelu (typ variogramu a jeho parametry, velikost nejbližšího okolí použitého pro následnou interpolaci), o datech (detekce odlehlých hodnot nebo anomálií). 5

9 V procesu cross-validace je každá hodnota z(x α ), na které se cross-validace provádí, odstraněna z množiny dat a hodnota v tomto bodě z (x α ) je poté odhadnuta pomocí zbývajících n 1 hodnot. Rozdíl mezi hodnotou naměřenou a hodnotou určenou odhadem poté ukazuje, jak dobře zvolený model odpovídá skutečným naměřeným hodnotám. z(x α ) z (x α ) (9) Pokud je aritmetický průměr chyby cross-validace blízký nule, pak lze tvrdit, že se nejedná o zjevné zkreslení, avšak pokud je tento průměr značně kladný nebo záporný, lze předpokládat, že došlo k systematickému nadhodnocení nebo podhodnocení. 1 n n (z(x α ) z (x α )) = 0 (10) α=1 Pokud se následující rovná jedné, pak lze tvrdit, že se aktuální chyba odhadu rovná v průměru chybě zvoleného modelu. Pokud je tato podmínka splněna, lze zvolený model a jeho parametry považovat za adekvátní. σ α 1 n n (z(x α ) z (x α )) 2 = 1 (11) α=1 je směrodatná odchylka reprezentující chybu odhadu modelu σ 2 α 5 Ordinary Kriging Metoda Ordinary Kriging (OK) je nejrozšířenější metodou typu kriging. Slouží k odhadu hodnoty na bodě nebo na celém regionu, pro který známe variogram, za použití dat v blízkém okolí tohoto bodu. Přejeme-li si odhadnout hodnotu v místě x 0, kde nemáme provedeno měření, získáme tuto hodnotu lineární kombinací hodnot ze sousedních bodů a vah, které jsou těmto bodům přidělené: n ẑ(x 0 ) = w α z(x α ), α=1 n w α = 1 (12) α=1 6

10 Je však nutné dodržet několik předpokladů: pozitivní semidefinitnost Matice A je pozitivně semidefinitní, pokud její kvadratická forma je pozitivně semidefinitní: x T Ax 0, x 0 (13) Best Linear Unbiased Predictor (BLUP) nejlepší lineární nestranný prediktor ĥ0 = n α=1 w αh α + w 0 je lineární prediktor podle definice } ĥ0 je nestranný prediktor, pokud platí E {ĥ0 h 0 = 0 } ĥ0 je nejlepší, pokud platí E { ĥ0 h 0 2 je minimální Minimalizací tedy získáme systém rovnic pro metodu kriging: γ(x 1 x 1 ) γ(x 1 x n ) 1 w 1 γ(x 1 x 0 ) =. γ(x n x 1 ) γ(x n x n ) 1 w n γ(x n x 0 ) } 1 γ(x n x n ) {{ 0 }} λ {{ } } 1 {{ } C n w n d n (14) C n w n vyjadřuje kovarianci mezi naměřenými daty obsahuje váhy přiřazené měřením λ je Langrangův multiplikátor d n vyjadřuje kovarianci mezi měřenými hodnotami a hodnotami odhadnutými Neznámou v tomto případě je matice vah, kterou snadno vypočítáme a dosadíme do rovnice č. 12. w n = Cn 1 d n (15) Variance odhadnutých hodnot je pak dána následovně: σ 2 = λ γ(x 0 x 0 ) + n w n γ(x α x 0 ) (16) α=1 7

11 Ordinary Kriging je tzv. přesný interpolátor, to znamená, že pokud hodnota x 0 je identická s místem, kde bylo provedeno měření, bude vyinterpolovaná hodnota identická s hodnotou naměřenou: ẑ(x 0 ) = z(x α ), x 0 = x α (17) Metodu kriging lze použít jako interpolační metodu pro odhad hodnot na pravidelné mřížce pomocí nepravidelně rozmístěných dat. Tuto metodu jsme využili i pro interpolaci výšek ČR. Datový soubor použitý k výpočtu obsahuje 797 měřených nadmořských výšek. Původní souřadnice bodů byly udány v systému S-JTSK a bylo nutné je převést do matematického systému, a proto dostáváme záporné souřadnice. Nejmenší x-souřadnice je m a největší m. Nejmenší y-souřadnice je m a největší Nejmenší vzdálenost mezi dvěma body činí 1.2 km a největší je 488 km. Nejmenší hodnota nadmořské výšky činí 205 m, nejvyšší hodnota je 1602 m, průměrná nadmořská výška je m a medián 641 m. Graf na obrázku č. 1 zobrazuje 2D polohu bodů s barevným rozlišením hodnot atributu (nadmořských výšek) rozdělených do několika tříd, dále graf hodnot atributu v souřadnicích X a Y a poslední z grafů zobrazuje histogram souboru dat. Na obrázku č. 2 je vykreslen variogram pro daná data. Obrázek č. 3 zobrazuje pravidelnou mřížku, na které budou odhadnuty hodnot nadmořských výšek, červené body zobrazují 100 náhodně vybraných bodů, na kterých známe hodnotu hledaného atributu. Celý výpočet bude proveden uvnitř polygonu, který lemuje hranice území ČR. Výsledný graf vyinterpolovaných nadmořských výšek je zobrazen na obrázku č.4, varianci interpolace zobrazuje obrázek č. 6. Výsledek interpolace za použití pouze 100 náhodně vybraných bodů pro interpolaci a za použití celého souboru měření. Stejné porovnání lze provést na grafech č. 6 a č. 7 s variancí určené nadmořské výšky. 8

12 Obrázek 1: Rozmístění měřených bodů 9

13 Obrázek 2: Variogramy Obrázek 3: Pravidelná mřížka, na které bude proveden výpočet metodou OK 10

14 Obrázek 4: Predikce nadmořských výšek pomocí OK ze 100 náhodně vybraných bodů Obrázek 5: Predikce nadmořské výšky pomocí OK ze všech hodnot měření 11

15 Obrázek 6: Variance odhadnutých nadmořských výšek ze 100 náhodně vybraných bodů Obrázek 7: Variance odhadnutých nadmořských výšek ze všech hodnot měření 12

16 Reference [1] Peter J. Diggle and Paulo J. Ribeiro Jr. Model-based Geostatistics. Springer, [2] Hans Wackernagel. Multivariate Geostatistics An Introduction with Applications. Springer, third edition,

Geostatistika v R-projektu

Geostatistika v R-projektu Geostatistika v R-projektu Martin Dzurov, Kristýna Kitzbergerová, Lucie Šindelářová Abstrakt Geostatistika se zabývá odhady a předpovědí spojitých jevů v prostoru za použití dat jen z omezeného počtu míst

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

Časové řady, typy trendových funkcí a odhady trendů

Časové řady, typy trendových funkcí a odhady trendů Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces

Více

Časové řady, typy trendových funkcí a odhady trendů

Časové řady, typy trendových funkcí a odhady trendů Časové řady, typy trendových funkcí a odhady trendů Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Jiří Neubauer (Katedra ekonometrie UO Brno) Časové

Více

MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATICKÁ STATISTIKA.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní ..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Pokročilé metody geostatistiky v R-projektu

Pokročilé metody geostatistiky v R-projektu ČVUT V PRAZE, Fakulta stavební, Geoinformatika Pokročilé metody geostatistiky v R-projektu Autoři: Vedoucí projektu: RNDr. Dr. Nosková Jana Studentská grantová soutěž ČVUT 2011 Praha, 2011 Geostatistika

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti

Více

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.

Více

1. Přednáška. Ing. Miroslav Šulai, MBA

1. Přednáška. Ing. Miroslav Šulai, MBA N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy

Více

STATISTICKÉ ODHADY Odhady populačních charakteristik

STATISTICKÉ ODHADY Odhady populačních charakteristik STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním

Více

MATEMATICKÁ STATISTIKA - XP01MST

MATEMATICKÁ STATISTIKA - XP01MST MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

LINEÁRNÍ MODELY. Zdeňka Veselá

LINEÁRNÍ MODELY. Zdeňka Veselá LINEÁRNÍ MODELY Zdeňka Veselá vesela.zdenka@vuzv.cz Genetika kvantitativních vlastností Jednotlivé geny nejsou zjistitelné ani měřitelné Efekty většího počtu genů poskytují variabilitu, kterou lze většinou

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

Klasická a robustní ortogonální regrese mezi složkami kompozice

Klasická a robustní ortogonální regrese mezi složkami kompozice Klasická a robustní ortogonální regrese mezi složkami kompozice K. Hrůzová, V. Todorov, K. Hron, P. Filzmoser 13. září 2016 Kompoziční data kladná reálná čísla nesoucí pouze relativní informaci, x = (x

Více

Interpolace pomocí splajnu

Interpolace pomocí splajnu Interpolace pomocí splajnu Interpolace pomocí splajnu Připomenutí U interpolace požadujeme, aby graf aproximující funkce procházel všemi uzlovými body. Interpolační polynom aproximující funkce je polynom

Více

Diagnostika regrese pomocí grafu 7krát jinak

Diagnostika regrese pomocí grafu 7krát jinak StatSoft Diagnostika regrese pomocí grafu 7krát jinak V tomto článečku si uděláme exkurzi do teorie regresní analýzy a detailně se podíváme na jeden jediný diagnostický graf. Jedná se o graf Předpovědi

Více

Stavový model a Kalmanův filtr

Stavový model a Kalmanův filtr Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,

Více

EUKLIDOVSKÉ PROSTORY

EUKLIDOVSKÉ PROSTORY EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

Interpolační funkce. Lineární interpolace

Interpolační funkce. Lineární interpolace Interpolační funkce VEKTOR RASTR Metody Globální Regrese - trend Lokální Lineární interpolace Výstupy Regrese lokální trend Inverse Distance Weighted IDW Spline Thiessenovy polygony Natural Neighbours

Více

Detekce interakčních sil v proudu vozidel

Detekce interakčních sil v proudu vozidel Detekce interakčních sil v proudu vozidel (ANEB OBECNĚJŠÍ POHLED NA POJEM VZDÁLENOSTI V MATEMATICE) Doc. Mgr. Milan Krbálek, Ph.D. Katedra matematiky Fakulta jaderná a fyzikálně inženýrská České vysoké

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO

Více

Modelování sesuvu svahu v Halenkovicích pomocí metody kriging

Modelování sesuvu svahu v Halenkovicích pomocí metody kriging Modelování sesuvu svahu v Halenkovicích pomocí metody kriging Robert Zůvala, Eva Fišerová Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta Univerzity Palackého v Olomouci ROBUST

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Základní statistické modely Statistické vyhodnocování exp. dat M. Čada ~ cada

Základní statistické modely Statistické vyhodnocování exp. dat M. Čada   ~ cada Základní statistické modely 1 Statistika Matematická statistika se zabývá interpretací získaných náhodných dat. Snažíme se přiřadit statistickému souboru vhodnou distribuční funkci a najít základní číselné

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Úvod do optimalizace, metody hladké optimalizace

Úvod do optimalizace, metody hladké optimalizace Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady

Více

Základy ekonometrie. XI. Vektorové autoregresní modely. Základy ekonometrie (ZAEK) XI. VAR modely Podzim / 28

Základy ekonometrie. XI. Vektorové autoregresní modely. Základy ekonometrie (ZAEK) XI. VAR modely Podzim / 28 Základy ekonometrie XI. Vektorové autoregresní modely Základy ekonometrie (ZAEK) XI. VAR modely Podzim 2015 1 / 28 Obsah tématu 1 Prognózování s VAR modely 2 Vektorové modely korekce chyb (VECM) 3 Impulzní

Více

2 Hlavní charakteristiky v analýze přežití

2 Hlavní charakteristiky v analýze přežití 2 Hlavní charakteristiky v analýze přežití Předpokládané výstupy z výuky: 1. Student umí definovat funkci přežití, rizikovou funkci a kumulativní rizikovou funkci a zná funkční vazby mezi nimi 2. Student

Více

Pro bodový odhad při základním krigování by soustava rovnic v maticovém tvaru vypadala následovně:

Pro bodový odhad při základním krigování by soustava rovnic v maticovém tvaru vypadala následovně: KRIGING Krigování (kriging) označujeme interpolační metody, které využívají geostacionární metody odhadu. Těchto metod je celá řada, zde jsou některé příklady. Pro krigování se používá tzv. Lokální odhad.

Více

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Úvod do zpracování signálů

Úvod do zpracování signálů 1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování

Více

Řešení. Označme po řadě F (z) Odtud plyne, že

Řešení. Označme po řadě F (z) Odtud plyne, že Úloha Nechť ~ R(, ) a Y = Jinak řečeno, Y je odmocnina čísla vybraného zcela náhodně z intervalu (, ) Popište rozdělení veličiny Y a určete jeho modus, medián, střední hodnotu a rozptyl Řešení Označme

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními

Více

Hledání extrémů funkcí

Hledání extrémů funkcí Hledání extrémů funkcí Budeme se zabývat téměř výhradně hledáním minima. Přes nost nalezeného extrému Obecně není hledání extrému tak přesné jako řešení rovnic. Demonstrovat to můžeme na příkladu hledání

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Náhodný vektor a jeho charakteristiky

Náhodný vektor a jeho charakteristiky Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich

Více

RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.

RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných

Více

Pozn. 1. Při návrhu aproximace bychom měli aproximační funkci vybírat tak, aby vektory ϕ (i) byly lineárně

Pozn. 1. Při návrhu aproximace bychom měli aproximační funkci vybírat tak, aby vektory ϕ (i) byly lineárně 9. Řešení typických úloh diskrétní metodou nejmenších čtverců. DISKRÉTNÍ METODA NEJMENŠÍCH ČTVERCŮ použití: v případech, kdy je nevhodná interpolace využití: prokládání dat křivkami, řešení přeurčených

Více

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ 5 přednáška S funkcemi se setkáváme na každém kroku ve všech přírodních vědách ale i v každodenním životě Každá situace kdy jsou nějaký jev nebo veličina jednoznačně určeny

Více

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,

Více

Vícerozměrná rozdělení

Vícerozměrná rozdělení Vícerozměrná rozdělení 7. září 0 Učivo: Práce s vícerozměrnými rozděleními. Sdružené, marginální, podmíněné rozdělení pravděpodobnosti. Vektorová střední hodnota. Kovariance, korelace, kovarianční matice.

Více

AVDAT Náhodný vektor, mnohorozměrné rozdělení

AVDAT Náhodný vektor, mnohorozměrné rozdělení AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární

Více

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s. 3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě

Více

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23

Více

Lineární regrese. Komentované řešení pomocí MS Excel

Lineární regrese. Komentované řešení pomocí MS Excel Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Pokročilé metody geostatistiky v R-projektu

Pokročilé metody geostatistiky v R-projektu ČVUT Fakulta stavební, Geoinformatika Pokročilé metody geostatistiky v R-projektu Autoři: Martin Šmejkal, Adéla Volfová Vedoucí projektu: RNDr. Dr. Jana Nosková Abstrakt Geostatistika se zabývá odhady

Více

Statistika II. Jiří Neubauer

Statistika II. Jiří Neubauer Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou

Více

15 Maticový a vektorový počet II

15 Maticový a vektorový počet II M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.

Více

Smíšené regresní modely a možnosti jejich využití. Karel Drápela

Smíšené regresní modely a možnosti jejich využití. Karel Drápela Smíšené regresní modely a možnosti jejich využití Karel Drápela Regresní modely Základní úloha regresní analýzy nalezení vhodného modelu studované závislosti vyjádření reálného tvaru závislosti minimalizace

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 5 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).

vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x). Řešené příklady z lineární algebry - část 6 Typové příklady s řešením Příklad 6.: Kvadratickou formu κ(x) = x x 6x 6x x + 8x x 8x x vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOS A SAISIKA Regresní analýza - motivace Základní úlohou regresní analýzy je nalezení vhodného modelu studované závislosti. Je nutné věnovat velkou pozornost tomu aby byla modelována REÁLNÁ

Více

Přednáška 4. Lukáš Frýd

Přednáška 4. Lukáš Frýd Přednáška 4 Lukáš Frýd Časová řada: stochastický (náhodný) proces, sekvence náhodných proměnných indexovaná časem Pozorovaná časová řada: jedna realizace stochastického procesu Analogie: Průřezový výběr,

Více

Úvod do analýzy časových řad

Úvod do analýzy časových řad Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2... } se nazývá stochastický

Více

AVDAT Mnohorozměrné metody, metody klasifikace

AVDAT Mnohorozměrné metody, metody klasifikace AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných

Více

z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin

z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

Teorie náhodných matic aneb tak trochu jiná statistika

Teorie náhodných matic aneb tak trochu jiná statistika Teorie náhodných matic aneb tak trochu jiná statistika B. Vlková 1, M.Berg 2, B. Martínek 3, O. Švec 4, M. Neumann 5 Gymnázium Uničov 1, Gymnázium Václava Hraběte Hořovice 2, Mendelovo gymnázium Opava

Více

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při

Více

Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení

Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynom nad R = zobrazení f : R R f(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, kde a i R jsou pevně daná

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Chyby měření 210DPSM

Chyby měření 210DPSM Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D. Ing. Michal Dorda, Ph.D. 1 Př. 1: Cestující na vybraném spoji linky MHD byli dotazováni za účelem zjištění spokojenosti s kvalitou MHD. Legenda 1 Velmi spokojen Spokojen 3 Nespokojen 4 Velmi nespokojen

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 = Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu

Více

Regrese. používáme tehdy, jestliže je vysvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA

Regrese. používáme tehdy, jestliže je vysvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA Regrese používáme tehd, jestliže je vsvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA Specifikace modelu = a + bx a závisle proměnná b x vsvětlující proměnná Cíl analýz Odhadnout hodnot

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Vícenásobná regresní a korelační analýza 1 1 Tto materiál bl vtvořen za pomoci grantu FRVŠ číslo 1145/2004. O vícenásobné závislosti mluvíme tehd, jestliže je závisle proměnná závislá na více nezávislých

Více

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6) 1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht

Více

3 Bodové odhady a jejich vlastnosti

3 Bodové odhady a jejich vlastnosti 3 Bodové odhady a jejich vlastnosti 3.1 Statistika (Skripta str. 77) Výběr pořizujeme proto, abychom se (více) dověděli o souboru, ze kterého jsme výběr pořídili. Zde se soustředíme na situaci, kdy známe

Více

4EK213 LINEÁRNÍ MODELY

4EK213 LINEÁRNÍ MODELY 4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 3. přednáška SIMPLEXOVÁ METODA I. OSNOVA PŘEDNÁŠKY Standardní tvar MM Základní věta LP Princip simplexové metody Výchozí řešení SM Zlepšení řešení

Více

Náhodné (statistické) chyby přímých měření

Náhodné (statistické) chyby přímých měření Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28. INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška

Více

Detekce kartografického zobrazení z množiny

Detekce kartografického zobrazení z množiny Detekce kartografického zobrazení z množiny bodů Tomáš Bayer Katedra aplikované geoinformatiky Albertov 6, Praha 2 bayertom@natur.cuni.cz Abstrakt. Detekce kartografického zobrazení z množiny bodů o známých

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více