Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel"

Transkript

1 Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23

2 Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu) této závislosti pomocí vhodné funkce vystihnout pomocí regresní funkce průběh (trend) závislosti mezi X a Y na základě znalosti dvojic empirických hodnot [x i, y i], kde i = 1, 2,..., n. Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 2 / 23

3 Regresní přímka Regresní přímka Princip regresní analýzy nejdříve vysvětlíme na jednoduchém modelu dvou náhodných veličin X a Y, kde Y bude vysvětlovaná proměnná a X bude vysvětlující proměnná (regresor). Budeme předpokládat, že mezi vysvětlovanou proměnnou Y a vysvětlující proměnnou X platí přibližně lineární vztah. Měření nebo pozorování veličiny Y může být zatíženo náhodnou chybou e. Y = β 1 + β 2X + e, kde β 1, β 2 jsou neznámé parametry (neznámé reálné konstanty), Y a e jsou náhodné veličiny a X je daná reálná proměnná. Dále předpokládáme, že při hodnotách x 1, x 2,..., x n proměnné X pozorujeme hodnoty y 1,..., y n proměnné Y zatížené chybami e 1,..., e n. Pozorování vyhovují modelu y i = β 1 + β 2x i + e i, i = 1,..., n. Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 3 / 23

4 Regresní přímka Regresní přímka O chybách e 1,..., e n předpokládáme, že jsou to nezávislé náhodné veličiny, že jsou nesystematické, tj. střední hodnota E(e i) = 0, a homogenní, tj. že mají stejný rozptyl D(e i) = σ 2, i = 1,..., n. Cílem je najít odhad parametrů β 1, β 2 a σ 2. Použijeme k tomu metodu nejmenších čtverců. Označíme S 2 (β 1, β 2) = ei 2 = (y i (β 1 + β 2x i)) 2 součet čtverců náhodných chyb e i a odhady β 1, β 2 parametrů β 1, β 2 stanovíme tak, aby součet čtverců chyb S 2 (β 1, β 2) nabyl minimální možné hodnoty. Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 4 / 23

5 Regresní přímka Regresní přímka Z matematiky je známo, že nutnou podmínkou pro existenci extrému funkce dvou a více proměnných je nulovost prvních parciálních derivací, tj. v našem případě S 2 (β 1, β 2) β 1 = S 2 (β 1, β 2) β 2 = 0, podmínku postačující pro minimum nemusíme vyšetřovat, neboť funkce S(β 1, β 2) je ryze konvexní. Dostáváme tedy S 2 (β 1, β 2) β 1 = 2 S 2 (β 1, β 2) β 2 = 2 (y i β 1 β 2x i)( 1) = 0, (y i β 1 β 2x i)( x i) = 0. odkud získáme tzv. soustavu normálních rovnic β 1n + β 2 x i = β 1 x i + β 2 x 2 i = y i, x iy i. Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 5 / 23

6 Regresní přímka Regresní přímka Obrázek: Lineární regresní model přímka Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 6 / 23

7 Regresní přímka Regresní přímka Vyřešíme-li tuto soustavu (např. Cramerovým pravidlem), obdržíme odhady parametrů n n β 1 = yi x i 2 n n xi xiyi n n x i 2 ( n ) 2, β2 = n n xiyi n n xi yi xi n n x i 2 ( n ) 2. xi Tyto odhady lze také vyjádřit ve tvaru β 1 = y β 2x = y sxy s 2 x x, β2 = sxy, sx 2 kde x = 1 n n xi a y = 1 n n yi jsou výběrové průměry, s2 x = 1 n n 1 (xi x)2 je výběrový rozptyl a s xy = 1 n n 1 (xi x)(yi y) je výběrová kovariance. Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 7 / 23

8 Regresní přímka Regresní přímka Přímku o rovnici y = β 1 + β 2x nazýváme regresní přímkou, β 1, β 2 jsou tzv. regresní parametry (koeficienty) a přímku o rovnici ŷ = β 1 + β 2x nazýváme regresní přímkou s odhadnutými parametry β 1 a β 2. Hodnota ŷ i = β 1 + β 2x i je predikovaná hodnota y v bodě x i a veličiny ê i = y i ŷ i = y i β 1 β 2x i nazýváme rezidua. Dále platí, že minimální hodnota součtu čtverců S 2 (β 1, β 2) je rovna S e = S 2 ( β1, β 2 ) = êi 2 = (y i ŷ i) 2 = y 2 i β 1 y i β 2 x iy i. S e nazýváme reziduální součet čtverců. Je možné ukázat, že veličina se 2 = 1 Se je n 2 nevychýleným odhadem rozptylu σ 2, a tedy platí E(se 2 ) = σ 2. Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 8 / 23

9 Regresní přímka Regresní přímka příklad Následující tabulka udává informaci o teplotě (ve stupních Celsia) v jednom městě a množství zmrzliny (v kilogramech) prodaných v osmi náhodně vybraných cukrárnách. teplota zmrzlina Vysvětlovanou proměnnou je v tomto případě množství zmrzliny, vysvětlující proměnnou potom teplota ve městě. Metodou nejmenších čtverců odhadneme parametry regresní přímky ŷ = 71, ,918x. Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 9 / 23

10 Regresní přímka Regresní přímka příklad Obrázek: Regresní přímka závislost množství prodané zmrzliny na teplotě Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 10 / 23

11 Lineární regresní model Zobecníme předchozí výsledky a budeme předpokládat, že je potřeba modelovat nějakou sledovanou (hůře dostupnou či nesnadno měřitelnou) náhodnou veličinu Y (tzv. vysvětlovaná veličina nebo odezva) pomocí jiných snáze dostupných veličin X 1, X 2,..., X k (nazývaných vysvětlující proměnné nebo regresory). Vyjdeme ze situace, kdy příslušná statistická data obsahují n nezávislých pozorování vysvětlované proměnné Y a odpovídajících n pozorování každého z regresorů X 1, X 2,..., X k. Budeme předpokládat, že i-té pozorování vysvětlované proměnné Y lze modelovat rovnicí: y i = β 1x i1 + β 2x i2 + + β k x ik + e i, (1) kde 1. y i je i-té pozorování Y, i = 1,..., n, 2. x ij je i-té pozorování regresoru X j, i = 1,..., n, j = 1,..., k, 3. β j, j = 1,..., k, jsou neznámé parametry, 4. e i, i = 1,..., n, jsou neznámé náhodné chyby, které vznikají při pozorování vysvětlované proměnné Y a které nemůžeme přímo pozorovat ani měřit. Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 11 / 23

12 Lineární regresní model Přitom dále předpokládáme, že x ij jsou pevně dané známé reálné hodnoty a veličiny Y i a e i jsou náhodného charakteru (náhodné veličiny). Na jejich pravděpodobnostní rozdělení klademe následující předpoklady: (P1) Střední hodnota E(e i) = 0, i = 1,..., n, tj. náhodné chyby jsou nesystematické. (P2) Rozptyl D(e i) = σ 2, i = 1,..., n, tj. náhodné chyby jsou homogenní se stejným neznámým rozptylem σ 2. (P3) Náhodné chyby e i jsou nezávislé. Model daný rovnicí (1) spolu s předpoklady (P1), (P2), (P3) se nazývá lineární regresní model (LRM). Často se v lineárním regresním modelu předpokládá, že první regresor je konstanta, potom pozorované hodnoty x i1 = 1, i = 1,..., n a model má tvar y i = β 1 + β 2x i2 + + β k x ik + e i. Funkci, která popisuje závislost vysvětlované proměnné Y na regresorech X 1, X 2,..., X k pak nazýváme regresní funkcí. Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 12 / 23

13 Lineární regresní model Odhad parametrů v lineárním regresním modelu (1) provedeme opět metodou nejmenších čtverců. Model nejdříve zapíšeme v maticovém tvaru. Označme: y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X = β 2, β =.. x y n e n1 x nk n β k Pak model (1) lze vyjádřit jednoduchým zápisem Y = Xβ + e. Odhad neznámých parametrů pak stanovíme řešením soustavy lineárních rovnic X Xβ = X Y tzv. normální rovnice. Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 13 / 23

14 Lineární regresní model Jejich řešení snadno nalezneme za předpokladu, že matice X X je regulární a tedy existuje inverzní matice (X X) 1. Za tohoto předpokladu říkáme, že model je plné hodnosti. V modelu plné hodnosti lze řešení normálních rovnic zapsat ve tvaru β = ( X X ) 1 X Y. Pro reziduální součet čtverců zapsaný v maticovém tvaru pak dostaneme vyjádření S e = (Y X β) (Y X β) = Y Y β X Y. Dále budeme pracovat jenom s modely plné hodnosti. Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 14 / 23

15 Lineární regresní model regresní parabola Uvedeme nyní dva příklady lineárních regresních modelů: regresní paraboly a modelu se dvěma lineárními regresory. Nejprve budeme uvažovat model, kdy vysvětlovaná proměnná Y je kvadratickou funkcí vysvětlující proměnné X, tvaru: y i = β 1 + β 2x i + β 3x 2 i + e i, i = 1,..., n. Zřejmě jde o speciální případ LRM (lineárního vzhledem k neznámým parametrům β 1, β 2, β 3). V maticovém zápisu tohoto modelu je: 1 x 1 x x 2 x2 2 n n n X =..., xi x i 2 X X = n n xi x 2 n i x i 3 n 1 x n xn 2 x i 2 n x i 3, n x i 4 n X yi Y = n xiy i. n x i 2 y i Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 15 / 23

16 Regresní parabola Lineární regresní model regresní parabola Za předpokladu, že model je plné hodnosti, lze odhad β vektoru β získat řešením rovnic X Xβ = X Y ve tvaru β = (X X) 1 X Y. Potom lze reziduální součet čtverců S e vyjádřit ve tvaru S e = y i β 1 y i β 2 a odhad rozptylu σ 2 je s 2 e = S e/(n 3). x iy i β 3 x 2 i y i Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 16 / 23

17 Regresní parabola Lineární regresní model regresní parabola Příklad. U automobilu Trabant se měřila spotřeba paliva v litrech na 100 km (Y ) v závislosti na jeho rychlosti (X ). Rychlost Spotřeba 6,1 5,8 6,0 6,5 6,8 8,1 10,0 Odhadnutá parabolická regresní funkce má tvar ŷ = 11, ,20726x + 0,001917x 2. Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 17 / 23

18 Regresní parabola Lineární regresní model regresní parabola Obrázek: Regresní parabola závislost spotřeby paliva na rychlosti Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 18 / 23

19 Regresní parabola Lineární regresní model dva lineární regresory Předpokládejme, že vysvětlovaná proměnná Y může záviset na dvou regresorech X a Z (používáme označení X místo X 1 a Z místo X 2, které je v aplikacích tohoto typu časté). K dispozici je n nezávislých pozorování veličiny Y při daných n hodnotách veličin X a Z. Vyjdeme z modelu y i = β 1 + β 2x i + β 3z i + e i, i = 1,..., n, který je speciálním případem obecného lineárního regresního modelu Y = Xβ + e. Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 19 / 23

20 Dva lineární regresory Lineární regresní model dva lineární regresory Matice v modelu mají tvar 1 x 1 z 1 1 x 2 z 2 n n n X =..., xi zi X X = n n xi x 2 n i xizi n n, n 1 x n z zi xizi z i 2 n n X yi Y = n xiy i. n ziyi Pak užitím metody nejmenších čtverců dostaneme odhad β = (X X) 1 X Y. Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 20 / 23

21 Dva lineární regresory Lineární regresní model dva lineární regresory Příklad. Výrobce nealkoholických nápojů má zájem analyzovat potřebný čas k servisu (doplnění lahví případně malý servis zařízení) automatů na výdej lahví s těmito nápoji. Celkovou dobu doplnění lahví je třeba predikovat pomocí dvou dostupných proměnných: počet lahví, které je třeba doplnit do automatu, a vzdálenost, kterou musí údržbář ujít. Vysvětlovanou proměnnou je v tomto případě celkový čas, vysvětlující proměnné jsou počet doplněných lahví a vzdálenost. čas 16,68 11,5 12,03 14,88 13,75 18, ,83 79,24 21,5 počet lahví vzdálenost čas 40, ,5 19, , ,5 35,1 počet lahví vzdálenost čas 17,9 52,32 18,75 19,83 10,75 počet lahví vzdálenost Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 21 / 23

22 Dva lineární regresory Lineární regresní model dva lineární regresory Metodou nejmenších čtverců získáme odhad regresní funkce ŷ = 2, ,616x + 0,014z. Obrázek: Regrese se dvěma lineárními regresory závislost času potřebného na servis na počtu případů doplňování automatu a vzdálenosti, kterou musí údržbář ujít Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 22 / 23

23 Dva lineární regresory Volba regresní funkce Některé typy lineárních regresních funkcí: přímková regrese Y = β 1 + β 2X, hyperbolická regrese Y = β 1 + β 2 X, logaritmická regrese Y = β 1 + β 2 ln X, parabolická regrese Y = β 1 + β 2X + β 3X 2 polynomická regrese Y = β 1 + β 2X + + β px p Některé typy nelineárních regresních funkcí: exponenciální regrese Y = β 1β X 2, mocninná regrese Y = β 1X β 2. Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 23 / 23

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e

Více

Regresní analýza. Statistika II. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Regresní analýza. Statistika II. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Statistika II Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu) této závislosti pomocí vhodné funkce

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

odpovídá jedna a jen jedna hodnota jiných

odpovídá jedna a jen jedna hodnota jiných 8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

AVDAT Nelineární regresní model

AVDAT Nelineární regresní model AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných

Více

Časové řady, typy trendových funkcí a odhady trendů

Časové řady, typy trendových funkcí a odhady trendů Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Základy teorie odhadu parametrů bodový odhad

Základy teorie odhadu parametrů bodový odhad Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru

Více

Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012

Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Matematicko-statistická metoda používaná zejména při zpracování nepřesných dat (typicky experimentálních empirických

Více

Ekonometrie. Jiří Neubauer

Ekonometrie. Jiří Neubauer Úvod do analýzy časových řad Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Úvod do analýzy

Více

AVDAT Klasický lineární model, metoda nejmenších

AVDAT Klasický lineární model, metoda nejmenších AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

Matematické modelování Náhled do ekonometrie. Lukáš Frýd

Matematické modelování Náhled do ekonometrie. Lukáš Frýd Matematické modelování Náhled do ekonometrie Lukáš Frýd Výnos akcie vs. Výnos celého trhu - CAPM model r it = r ft + β 1. (r mt r ft ) r it r ft = α 0 + β 1. (r mt r ft ) + ε it Ekonomický (finanční model)

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Statistika II. Jiří Neubauer

Statistika II. Jiří Neubauer Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Časová řada konečná posloupnost reálných hodnot určitého sledovaného ukazatele měřeného v určitých

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

AVDAT Geometrie metody nejmenších čtverců

AVDAT Geometrie metody nejmenších čtverců AVDAT Geometrie metody nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model klasický lineární regresní model odhad parametrů MNČ y = Xβ + ε, ε

Více

Interpolace, aproximace

Interpolace, aproximace 11 Interpolace, aproximace Metoda nejmenších čtverců 11.1 Interpolace Mějme body [x i,y i ], i =0, 1,...,n 1. Cílem interpolace je najít funkci f(x), jejíž graf prochází všemi těmito body, tj. f(x i )=y

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Vícenásobná regresní a korelační analýza 1 1 Tto materiál bl vtvořen za pomoci grantu FRVŠ číslo 1145/2004. O vícenásobné závislosti mluvíme tehd, jestliže je závisle proměnná závislá na více nezávislých

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Kapitola 4: Extrémy funkcí dvou proměnných 1/5

Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Lokální extrémy Definice: Necht f : M R 2 R a (x 0, y 0 ) M. Říkáme, že fce f má v bodě (x 0, y 0 ) lokální maximum (resp. lokální minimum) jestliže existuje

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách

13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách 13 Regrese 13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách znaku X. Přitom je třeba vyřešit jednak volbu funkcí k vystižení dané závislosti a dále stanovení konkrétních

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Testování předpokladů pro metodu chain-ladder. Seminář z aktuárských věd Petra Španihelová

Testování předpokladů pro metodu chain-ladder. Seminář z aktuárských věd Petra Španihelová Testování předpokladů pro metodu chain-ladder Seminář z aktuárských věd 4. 11. 2016 Petra Španihelová Obsah Datová struktura Posouzení dat Předpoklady metody chain-ladder dle T. Macka Běžná lineární regrese

Více

Úvod do analýzy časových řad

Úvod do analýzy časových řad Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2... } se nazývá stochastický

Více

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou 1 Vlastní (charakteristická) čísla a vlastní (charakteristické) vektory matice Pro zadanou čtvercovou matici A budeme řešit maticovou rovnici A x = λ x, kde x je neznámá matice o jednom sloupci (sloupcový

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 10 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 10.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěma, případně

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer Přednáška MATEMATIKA č. 3 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 21. 10. 2010 Uvažujme neprázdnou množinu přirozených čísel M = {1, 2,..., n}. Z kombinatoriky

Více

EKONOMICKÁ APLIKACE KOMPOZIČNÍHO REGRESNÍHO MODELU

EKONOMICKÁ APLIKACE KOMPOZIČNÍHO REGRESNÍHO MODELU EKONOMICKÁ APLIKACE KOMPOZIČNÍHO REGRESNÍHO MODELU Klára Hrůzová 1,2, Karel Hron 1,2 1 Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, Univerzita Palackého v Olomouci 2 Katedra

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

Matematika pro chemické inženýry

Matematika pro chemické inženýry Matematika pro chemické inženýry Drahoslava Janovská Lineární a nelineární regrese Přednášky ZS 2016-2017 Sponzorováno grantem VŠCHT Praha, PIGA 413-17-6642, 2016 Povinná látka. Bude v písemkách a bude

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

MODEL TVÁŘECÍHO PROCESU

MODEL TVÁŘECÍHO PROCESU MODEL TVÁŘECÍHO PROCESU Zkouška tlakem na válcových vzorcích 2 Vyhodnocení tlakové zkoušky Síla F způsobí změnu výšky H a průměru D válce. V každém okamžiku při stlačování je přetvárný odpor definován

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 Regresní analýza 1. Byla zjištěna výška otců a výška jejich nejstarších synů [v cm]. otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 c) Odhadněte

Více

Regresní analýza. Eva Jarošová

Regresní analýza. Eva Jarošová Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina. Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme

Více

VĚTY Z LINEÁRNÍ ALGEBRY

VĚTY Z LINEÁRNÍ ALGEBRY VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru

Více

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

3 Lineární kombinace vektorů. Lineární závislost a nezávislost 3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární

Více

AVDAT Mnohorozměrné metody, metody klasifikace

AVDAT Mnohorozměrné metody, metody klasifikace AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 5 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

Sever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty

Sever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty Neparametrické testy (motto: Hypotézy jsou lešením, které se staví před budovu a pak se strhává, je-li budova postavena. Jsou nutné pro vědeckou práci, avšak skutečný vědec nepokládá hypotézy za předmětnou

Více

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany

Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany 3 Metoda nejmenších čtverců 3 Metoda nejmenších čtverců Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany 73-80. Jedná se o třetí možnou metodu aproximace,

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

STATISTICKÁ VAZBA. 1.1 Statistická vazba Charakteristiky statistické vazby dvou náhodných veličin Literatura 9

STATISTICKÁ VAZBA. 1.1 Statistická vazba Charakteristiky statistické vazby dvou náhodných veličin Literatura 9 STATISTICKÁ VAZBA Obsah 1 Korelační analýza 1 1.1 Statistická vazba.................................... 1 1.2 Motivační příklady................................... 1 1.3 Sdružená distribuční funkce a nezávislost

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnáván

Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnáván Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnávání Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Periodicita v časových

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Zadání Máme data hdp.wf1, která najdete zde: Bodová předpověď: Intervalová předpověď:

Zadání Máme data hdp.wf1, která najdete zde:  Bodová předpověď: Intervalová předpověď: Predikce Text o predikci pro upřesnění pro ty, které zajímá, kde se v EViews všechna ta čísla berou. Ruční výpočty u průběžného testu nebudou potřeba. Co bude v závěrečném testu, to nevím. Ale přečíst

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné

Více

Modely stacionárních časových řad

Modely stacionárních časových řad Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Proces bílého šumu Proces {ɛ t} nazveme bílým šumem s nulovou střední hodnotou a rozptylem σ 2 a

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základ ekonometrie Odhad klasického lineárního regresního modelu I Cvičení 2 Zuzana Dlouhá Metodologický postup tvor EM 1. Specifikace modelu určení proměnných určení vzájemných vaze mezi proměnnými

Více

Univerzita Pardubice. Fakulta ekonomicko-správní

Univerzita Pardubice. Fakulta ekonomicko-správní Univerzita Pardubice Fakulta ekonomicko-správní Aplikace regrese a korelace v ekonomii Zbyněk Černovský Bakalářská práce 2013 PROHLÁŠENÍ Prohlašuji, že jsem tuto práci vypracoval samostatně. Veškeré

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

Lineární regrese. Komentované řešení pomocí MS Excel

Lineární regrese. Komentované řešení pomocí MS Excel Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé. 1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu. 6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

Soustava m lineárních rovnic o n neznámých je systém

Soustava m lineárních rovnic o n neznámých je systém 1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více