5EN306 Aplikované kvantitativní metody I

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "5EN306 Aplikované kvantitativní metody I"

Transkript

1 5EN306 Aplikované kvantitativní metody I Přednáška 5 Zuzana Dlouhá

2 Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam popisných charakteristik 4. Vicenásobná regrese v ekonomické analýze 5. Vicenásobná regrese: DUMMY proměnné a jejich interakce 6. Difference in differences estimator 7. First Differencing a Fixed Effects 8. Instrumentální proměnné, Panelová data 9. Testy robustnosti 10. Úvod do časových řad (zbyde-li čas) témata se prolínají 2

3 Základy ekonometrie vícenásobná regrese kap. 3 vícenásobný lineární regresní model lepší analýza ceteris paribus, protože explicitně umožňuje kontrolovat ostatní faktory, které simultánně ovlivňují vysvětlovanou proměnnou vytvořit lepší model pro predikci vysvětlované proměnné zahrnout obecnější funkční formy lineární regrese lineární v parametrech, ne v proměnných!!! 3

4 Základy ekonometrie vícenásobná regrese MNČ ve vícenásobné regresi: náhodný výběr rezidua (odchylky) regrese minimalizuji sumu čtverců rezidui interpretace ceteris paribus 4

5 Základy ekonometrie vlastnosti MNČ vlastnosti MNČ pro každý výběr odhadnuté (fitované) hodnoty a rezidua algebraické vlastnosti MNČ: suma reziduí je rovna 0 korelace reziduí a vysvětlujících proměnných je rovna 0 výběrové průměry regresorů x a y leží na regresní přímce koeficient determinace 5

6 Základy ekonometrie G-M předpoklady Gauss-Markovy předpoklady 1. Populační model je lineární v parametrech: 2. Výběrový soubor o velikosti n je získán z populace náhodným výběrem: 3. Neexistuje perfektní kolinearita mezi regresory malý výběr: vztahy mezi regresory: 4. Podmíněná střední hodnota náhodné složky je rovna 0: 6

7 Základy ekonometrie G-M předpoklady Endogenní vs. exogenní proměnné předpoklad 4 je splněn, pokud jsou všechny vysvětlující (exogenní) proměnné nezávislé na náhodné složce, v případě závislosti jsou endogenní, endogenita je tedy porušení předpokladu 4 naopak, závislá (endogenní) proměnná modelu je funkcí systematické i náhodné složky pokud jsou splněny předpoklady 1 až 4 je MNČ estimátor nestranný (Theorem 3.1 Unbiasedness of OLS) Irelevantní a chybějící proměnné chyby specifikace modelu (ne)zahrnutí regresorů pokud zahrneme do modelu irelevantní proměnnou (přespecifikujeme model), nemá chyba specifikace žádný efekt na nestrannost estimátorů (očekávaná hodnota příslušného koeficientu je nula) pozor, může mít negativní efekt na rozptyl estimátorů pokud nezahrneme do modelu relevantní proměnnou (model podspecifikujeme), estimátory mohou být vychýlené 7

8 Základy ekonometrie G-M předpoklady Zahrnutí irelevantní proměnné skutečná (populační) regresní funkce: odhadovaná rovnice (v populační regresní funkci platí β 3 = 0): při dohadu MNČ platí pro konkrétní výběr (i = 1, 2,, n) obecně platí β 3 0 je-li výběrová korelace mezi x 3 a ostatními regresory nenulová, pak se rozptyl estimátorů zvýší 8

9 Základy ekonometrie chybějící regresory Chybějící regresory skutečná (populační) regresní funkce: odhadovaná rovnice (vynechám důležitou proměnnou x 2 ): jsou-li x 1 a x 2 korelované, předpokládejme mezi nimi lineární regresní vztah ve formě: odhadnuté koeficienty budou vychýlené (biased) β 1 = β 1 + β 2 δ 1 E β 1 = β 1 + β 2 δ 1 Bias β 1 = E β 1 β 1 = β 2 δ 1 9

10 Základy ekonometrie chybějící regresory odchylka (bias) závisí na znaménku β 2 a na znaménku u korelace mezi regresory δ 1 při stejných znaménkách je odchylka pozitivní, při rozdílných negativní: předpokládejme obecnější model vynecháme x 3 nelze obecně/snadno popsat směr či mechanismus odchylky podobně komplikovaná situace nastane při vynechání více než jedné důležité vysvětlující proměnné 10

11 Základy ekonometrie chybějící regresory příklad skutečná (populační) regresní funkce platí kladné hodnoty když vynecháme abil: potom odhadnutý efekt vzdělání educ bude nadhodnocený (overestimated) Kdy není estimátor vychýlený při vynechání regresoru? regresory jsou navzájem nekorelované (δ 1 = 0) vynechaná proměnná je irelevantní (nepatří do skutečné (populační) regresní funkce) 11

12 Základy ekonometrie G-M předpoklady 5. Podmíněný rozptyl náhodné složky je konstantní a konečný (homoskedasticita) kde tento předpoklad 5 není pro nestrannost MNČ nutný (nedodržení negativně ovlivňuje rozptyl MNČ estimátorů) 12

13 Základy ekonometrie G-M předpoklady pokud jsou splněny předpoklady 1 až 5, jsou rozptyly estimátorů podmíněně na hodnotách vysvětlujících proměnných v daném výběru dány vztahem (Theorem 3.2 Sampling variances of OLS slope estimators) pomocné regrese x j ostatní regresory. pokud jsou splněny předpoklady 1 až 5, je nestranný estimátor rozptylu náhodné složky dán vztahem standardní chyba odhadu 13

14 Základy ekonometrie G-M předpoklady β j rozptyl každého estimátoru se zvyšuje s rostoucím rozptylem náhodných složek σ 2 a se zvyšující se lineární závislostí mezi x j a 2 ostatními regresory R j rozptyl každého estimátoru se snižuje s výberovým rozptylem příslušné proměnné SST j multikolinearita vysoká korelace mezi dvěma či více vysvětlujícími proměnnými (je vlastností konkrétního výběru) hodnota VIF by neměla přesahovat hodnotu 10 pro případ únosné multikolinearity zařazení irelevantní proměnné zvyšuje rozptyl estimátoru, pokud existuje lineární závislost mezi x j a irelevantním regresorem tj. pokud 2 irelevantní proměnná zvýší R j β j 14

15 Základy ekonometrie G-M předpoklady Vynechání důležité vysvětlující proměnné: odhady jsou zkreslené může dojít ke snížení rozptylu estimátorů pokud jsou splněny předpoklady 1 až 5, tak je nestranný estimátor rozptylu náhodné složky dán vztahem (Theorem Unbiased estimator of the error variance): pokud jsou splněny předpoklady 1 až 5, je MNČ nejlepším lineárním nestranným estimátorem β BLUE Best Linear Unbiased Estimator, kde lineární znamená: libovolná funkce výběrových pozorování všech regresorů a nejlepší - má mezi všemi lineárními nestrannými estimátory nejmenší rozptyl 15

16 Základy ekonometrie statistická indukce kap. 4 v KLRM je pro intervalový odhad k pěti G-M předpokladům přidán předpoklad normality (Theorem 4.1 Normal sampling distributions) náhodné složky jsou normálně rozdělené a nezávislé na předpoklad 6 dubluje G-M předpoklady 2, 4 a 5, navíc přidává normalitu náhodné složky pokud je splněno všech šest předpokladů KLRM, mají MNČ estimátory nejmenší rozptyl ze všech možných nestranných estimátorů pro KLRM předpoklady 1-5 (tj. G-M předpoklady) je MNČ nejlepší jen ze všech lineárních nestranných estimátorů Pokud je splněno všech šest předpokladů KLRM, platí: 1. variabilita y x pochází z náhodné složky 2. je-li náhodná složka normálně rozdělena, řídí se β také N-rozdělením 3. normovaná odchylka odhadnutého parametru od skutečného: 16

17 Základy ekonometrie statistická indukce pokud je splněno všech šest předpokladů KLRM, platí při rostoucích stupních volnosti se t-rozdělení přibližuje normovanému normálnímu rozdělení, pokud je počet stupňů volnosti vyšší než 120, je rozdíl prakticky zanedbatelný pravostranný (right-tail) pro t > t* zamítneme H 0 17

18 Základy ekonometrie statistická indukce levostranný (left-tail) pro t < -t* zamítneme H 0 oboustranný (two-sided / two-tail t-test) pro І t І > t* zamítneme H 0 18

19 Testy hypotéz v KLRM alternativní t-testy Oboustranný (two-sided / two-tail t-test) H 0 : β 1 = 0 H 0 : β 1 = 0,3 H 0 : β 1 = 0,3 H 1 : β 1 0 H 1 : β 1 0,3 H 1 : β 1 0,3 t = 0, ,0357 = 14,24 t = 0,5091 0,3 0,0357 = 5,86 t = t* = 2,306 (α = 0,05, d.f. = 8), v tabulkách two-tailed 0,5091 ( 0,3) 0,0357 = 22,66 19

20 Testy hypotéz v KLRM alternativní t-testy Jednostranný (one-sided / one-tail t-test) pravostranný (right-tail) H 0 : β 1 0,3 H 1 : β 1 > 0,3 t = 0,5091 0,3 0,0357 = 5,86 t* = 1,860 (α = 0,05, d.f. = 8), v tabulkách one-tailed t > t* zamítám H 0 levostranný (left-tail) H 0 : β 1 0,3 H 1 : β 1 < 0,3 t = 0,5091 0,3 0,0357 = 5,86 t * = 1,860 (α = 0,05, d.f. = 8), v tabulkách one-tailed t > t * nezamítám H 0 20

21 Testy hypotéz v KLRM alternativní t-testy Jednostranný (one-sided / one-tail t-test) pravostranný (right-tail) H 0 : β 1 0,3 H 1 : β 1 > 0,3 t = 0,5091 ( 0,3) 0,0357 = 22,66 t* = 1,860 (α = 0,05, d.f. = 8), v tabulkách one-tailed t > t* zamítám H 0 levostranný (left-tail) H 0 : β 1 0,3 H 1 : β 1 < 0,3 t = 0,5091 ( 0,3) 0,0357 = 22,66 t * = 1,860 (α = 0,05, d.f. = 8), v tabulkách one-tailed t > t * nezamítám H 0 21

22 Testy hypotéz v KLRM alternativní t-testy 22

23 Testy hypotéz v KLRM dílčí F-test pro libovolnou podmnožinu regresorů zpravidla pro skupinu souvisejících proměnných (např. dummies) k včetně úrovňové konstanty neomezený (unrestricted) model omezený (restricted) model 23

24 Funkční tvar v LRM obecně nás zajímá, jaký efekt závislé proměnné vyvolá marginální změna j-té vysvětlující proměnné level-level FoodExp i = 94, ,437TotalExp i zvýšení celkových výdajů o 1 rupii vyvolá v průměru zvýšení výdajů na jídlo o 0,437 rupie level-log FoodExp i = 1283, ,270 ln TotalExp i zvýšení celkových výdajů o 1 % vyvolá v průměru zvýšení výdajů na jídlo o 2,573 rupie (dělím 100) log-level ln expservices t = 7, ,007time výdaje na služby rostli čtvrtletně v průměru o 0,7 % (násobím 100) log-log ln expdur t = 9, ,906 ln pcexp t elasticita zvýšení celkových výdajů o 1 % vyvolá v průměru zvýšení výdajů na předměty dlouhodobé spotřeby o 1,91 % 24

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 6 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. vorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 10 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základ ekonometrie Odhad klasického lineárního regresního modelu I Cvičení 2 Zuzana Dlouhá Metodologický postup tvor EM 1. Specifikace modelu určení proměnných určení vzájemných vaze mezi proměnnými

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Matematické modelování Náhled do ekonometrie. Lukáš Frýd

Matematické modelování Náhled do ekonometrie. Lukáš Frýd Matematické modelování Náhled do ekonometrie Lukáš Frýd Výnos akcie vs. Výnos celého trhu - CAPM model r it = r ft + β 1. (r mt r ft ) r it r ft = α 0 + β 1. (r mt r ft ) + ε it Ekonomický (finanční model)

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

odpovídá jedna a jen jedna hodnota jiných

odpovídá jedna a jen jedna hodnota jiných 8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 4 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 6 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 10: Heteroskedasticita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Heteroskedasticita - teorie Druhý

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 3 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

AVDAT Klasický lineární model, metoda nejmenších

AVDAT Klasický lineární model, metoda nejmenších AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

AVDAT Geometrie metody nejmenších čtverců

AVDAT Geometrie metody nejmenších čtverců AVDAT Geometrie metody nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model klasický lineární regresní model odhad parametrů MNČ y = Xβ + ε, ε

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 12 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných)

Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných) Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných) 1. SPECIFIKACE (12 bodů): (1) Graf průběhu proměnných (1) Obě řady se chovají stejně, lze předpokládat jejich lineární vztah

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 1 Zuzana Dlouhá Úvod do předmětu obecné informace Konzultační hodiny: úterý 16:00 18:00, místnost 433 NB e-mail: figlova@vse.cz // zuzana.dlouha@vse.cz

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) . Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika

Více

Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely )

Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Úloha M608 Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Zadání : Při kvantitativní analýze lidského krevního séra ovlivňují hodnotu obsahu vysokohustotního

Více

Přepoklady KLM a Gauss Markov teorém. Blue odhad - GM. KLM Klasický lineární model. 1) Lineární v parametrech. 2) E ε = 0

Přepoklady KLM a Gauss Markov teorém. Blue odhad - GM. KLM Klasický lineární model. 1) Lineární v parametrech. 2) E ε = 0 Heteroskedasticita Přepoklady KLM a Gauss Markov teorém KLM Klasický lineární model 1) Lineární v parametrech ) E ε = 0 Blue odhad - GM Nezkreslený odhad 1) Lineární v parametrech ) E ε = 0 3) E( ȁ ε X)=

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz

PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23

Více

Regresní analýza. Eva Jarošová

Regresní analýza. Eva Jarošová Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Statistika II. Jiří Neubauer

Statistika II. Jiří Neubauer Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Časová řada konečná posloupnost reálných hodnot určitého sledovaného ukazatele měřeného v určitých

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2014/15 Cvičení 5: Vícenásobná regrese, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Jednoduchá

Více

Cvičící Kuba Kubina Kubinčák Body u závěrečného testu

Cvičící Kuba Kubina Kubinčák Body u závěrečného testu 1. Příklad U 12 studentů jsme sledovali počet dosažených bodů na závěrečném testu (od 0 do 60). Vždy 4 z těchto studentů chodili k jednomu ze 3 cvičících panu Kubovi, panu Kubinovi, nebo panu Kubinčákovi.

Více

Praktikum z ekonometrie Panelová data

Praktikum z ekonometrie Panelová data Praktikum z ekonometrie Panelová data Jan Zouhar Katedra ekonometrie, FIS VŠE v Praze, zouharj@vse.cz 9. května 2014 1 Terminologie a značení Sledujeme-li pro všechny průřezové jednotky stejná časová období,

Více

Ekonometrie. Jiří Neubauer

Ekonometrie. Jiří Neubauer Úvod do analýzy časových řad Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Úvod do analýzy

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

Regrese. používáme tehdy, jestliže je vysvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA

Regrese. používáme tehdy, jestliže je vysvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA Regrese používáme tehd, jestliže je vsvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA Specifikace modelu = a + bx a závisle proměnná b x vsvětlující proměnná Cíl analýz Odhadnout hodnot

Více

Základy ekonometrie. II. Netechnický úvod do regrese. Základy ekonometrie (ZAEK) II. Netechnický úvod do regrese Podzim / 67

Základy ekonometrie. II. Netechnický úvod do regrese. Základy ekonometrie (ZAEK) II. Netechnický úvod do regrese Podzim / 67 Základy ekonometrie II. Netechnický úvod do regrese Základy ekonometrie (ZAEK) II. Netechnický úvod do regrese Podzim 2015 1 / 67 Obsah tématu 1 Regrese Úvod do regrese Příklady 2 Jednoduchý regresní model

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Logistická křivka Umělé proměnné Cvičení 11 Zuzana Dlouhá Logistická křivka log-lineární model patří mezi poptávkové funkce, ty dělíme na: a) klasické D = f (příjem, cenový index,

Více

TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD

TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD Umělé (dummy) proměnné se používají, pokud chceme do modelu zahrnout proměnné, které mají kvalitativní či diskrétní charakter,

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Smíšené regresní modely a možnosti jejich využití. Karel Drápela

Smíšené regresní modely a možnosti jejich využití. Karel Drápela Smíšené regresní modely a možnosti jejich využití Karel Drápela Regresní modely Základní úloha regresní analýzy nalezení vhodného modelu studované závislosti vyjádření reálného tvaru závislosti minimalizace

Více

Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead

Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead PSY117/454 Statistická analýza dat v psychologii Přednáška 8 Statistické usuzování, odhady Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead Barevná srdíčka kolegyně

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 6: Multikolinearita, umělé proměnné LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Otevřete si data z

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ V následujícím textu se podíváme na to, co dělat, když jsou porušeny některé GM předpoklady. Nejprve si připomeňme, o jaké předpoklady

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

AVDAT Nelineární regresní model

AVDAT Nelineární regresní model AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných

Více

Ilustrační příklad odhadu SM v SW Gretl

Ilustrační příklad odhadu SM v SW Gretl Ilustrační příklad odhadu SM v SW Gretl Odhad simultánního modelu (SM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná studijní pomůcka MM2011 Úvodní obrazovka Gretlu

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Aproximace binomického rozdělení normálním

Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné

Více

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme,

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme, Úloha 1: V naší studii se zabýváme poptávkovou funkcí životního pojištění, vycházíme z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové

Více

Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou

Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................

Více

Jemný úvod do statistických metod v netržním oceňování

Jemný úvod do statistických metod v netržním oceňování Jemný úvod do statistických metod v netržním oceňování Ing. Jan Brůha PhD. Karlova univerzita Struktura prezentací První prezentace Cíle, možnosti a omezení Nástroje: metodologie a software CVM (open ended)

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

Časové řady, typy trendových funkcí a odhady trendů

Časové řady, typy trendových funkcí a odhady trendů Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces

Více

REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD

REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD Politická ekonomie 45: (2), str. 281-289, VŠE Praha, 1997. ISSN 0032-3233. (Rukopis) REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD Josef ARLT, Vysoká škola ekonomická, Praha 1. Úvod Pro modelování

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2014/15 Cvičení 6: Dummy proměnné, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Pokračování z minula:

Více

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D. Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Diagnostika regrese pomocí grafu 7krát jinak

Diagnostika regrese pomocí grafu 7krát jinak StatSoft Diagnostika regrese pomocí grafu 7krát jinak V tomto článečku si uděláme exkurzi do teorie regresní analýzy a detailně se podíváme na jeden jediný diagnostický graf. Jedná se o graf Předpovědi

Více

Sever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty

Sever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty Neparametrické testy (motto: Hypotézy jsou lešením, které se staví před budovu a pak se strhává, je-li budova postavena. Jsou nutné pro vědeckou práci, avšak skutečný vědec nepokládá hypotézy za předmětnou

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 7 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

Ing. Michael Rost, Ph.D.

Ing. Michael Rost, Ph.D. Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení

Více

PROGNÓZOVÁNÍ POMOCÍ EKONOMETRICKÝCH MODELŮ. ÚLOHA OČEKÁVÁNÍ V EKONOMII.

PROGNÓZOVÁNÍ POMOCÍ EKONOMETRICKÝCH MODELŮ. ÚLOHA OČEKÁVÁNÍ V EKONOMII. PROGNÓZOVÁNÍ POMOCÍ EKONOMETRICKÝCH MODELŮ. ÚLOHA OČEKÁVÁNÍ V EKONOMII. Tento text věnuje prognózování, tedy predikci hodnot vysvětlovaných proměnných. Typy kvantitativních prognostických postupů můžeme

Více

Lineární regrese. Komentované řešení pomocí MS Excel

Lineární regrese. Komentované řešení pomocí MS Excel Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních

Více

ELLENBERGOVY INDIKAČNÍ HODNOTY. David Zelený Zpracování dat v ekologii společenstev

ELLENBERGOVY INDIKAČNÍ HODNOTY. David Zelený Zpracování dat v ekologii společenstev 3 2 6 6 5 2 ELLENBERGOVY INDIKAČNÍ HODNOTY ELLENBERGOVY INDIKAČNÍ HODNOTY (EIH) optima druhů rostlin na gradientu ţivin, vlhkosti, půdní reakce, kontinentality, teploty, světla a salinity (salinita se

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Vícenásobná regresní a korelační analýza 1 1 Tto materiál bl vtvořen za pomoci grantu FRVŠ číslo 1145/2004. O vícenásobné závislosti mluvíme tehd, jestliže je závisle proměnná závislá na více nezávislých

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Příloha A: Empirická příloha

Příloha A: Empirická příloha Příloha A: Empirická příloha Tato empirická příloha Metodiky pro detekci rizikových zakázek nabízí kvantitativní analýzu kritérií rizikovosti při zadávání veřejných zakázek a doplňuje samostatné akademické

Více

Úvod do problematiky měření

Úvod do problematiky měření 1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz. Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost

Více