Praktická dílna. Spalovací motory I. utoexper. Servis Podvozek Organizace práce. Motor Systémy a příslušenství. Automobil od A do Z.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Praktická dílna. Spalovací motory I. utoexper. Servis Podvozek Organizace práce. Motor Systémy a příslušenství. Automobil od A do Z."

Transkript

1 omobil od A do Z Servis Podvozek Organizace práce Motor Systémy a příslušenství Bezpečnost a hygiena práce Geometrie Nářadí a vybavení dílen Paliva a maziva Diagnostika a měření Elektr. zařízení, elektronika Praktická dílna Spalovací motory I. 1

2 spalovací Spalovací motory I. Po poněkud složitější problematice elektronických systémů motorových vozidel, se kterou jste se setkávali na stránkách Praktické dílny ATU až do minulého vydání, se nyní zaměříme opět na ty nejmladší z vás, automechaniků, ale i na studenty odborných učilišť, kteří se na výkon svého budoucího povolání zatím připravují. Opět se podíváme trošku zpátky do vývoje a konstrukce spalovacích motorů a probereme všechny jejich jednotlivé konstrukční části jak po stránce teoretické, tak i po stránce praktické. Osobní, ale i nákladní automobily jsou v současné době ve velké míře poháněny spalovacími motory, které lze podle způsobu zapálení směsi paliva se vzduchem rozdělit do dvou velkých skupin na motory zážehové (benzinové nebo Ottovy, podle jejich vynálezce Nikolause Augusta Otta), u kterých je směs paliva zapálena přeskokem jiskry na zapalovací svíčce, a motory vznětové (naftové nebo Dieselovy podle vynálezce Rudolfa Diesela), u kterých je směs paliva se vzduchem zapalována vznícením vlivem vysoké teploty a tlaku ve spalovacím prostoru. Kromě benzinu a nafty se v celé historii spalovacích motorů využívala a využívají další paliva, souhrnně nazývaná alternativní. Při spalování benzinu, nafty, zemního plynu, zkapalněné směsi propanu s butanem, bionafty (řepkového oleje) nebo vodíku vzniká teplo. Jím vyvolané rozpínání plynných spalin vytváří tlak, který působí na dno pístu ve spalovacím prostoru motoru a pohybuje písty z horní do dolní úvratě. Ve spalovacích motorech se tak potenciální (klidová) chemická energie obsažená v palivu mění nejprve na energii tepelnou, která je následně měněna na energii kinetickou (pohybovou). V závislosti na směru pohybu poháněného pístu se pak spalovací motory rozlišují na pístové motory s přímočarým vratným pohybem pístu a motory s rotačním pohybem pístu, tzv. Wankelovy motory s rotujícím pístem, pojmenované podle jejich vynálezce Ernsta Felixe Wankela. Podle způsobu práce lze pak motory rozdělit na čtyřdobé (pro jeden pracovní cyklus potřebují 4 zdvihy pístu, tj. dvě otáčky klikové hřídele) a dvoudobé (pro jeden pracovní cyklus potřebují pouze 2 zdvihy pístu, tj. jednu otáčku klikové hřídele). Spalovací motory (čtyřtaktní, bez rozdílu typu používaného paliva) se skládají ze čtyř hlavních konstrukčních skupin, které automaticky spolupracují. Jde o klikový mechanismus (píst, ojnice, kliková hřídel), rozvodový mechanismus (ventily a jejich vahadla, vačková hřídel, kola rozvodu, rozvodový řetěz nebo ozubený řemen), skříň motoru (hlava válců, válce, kliková skříň, olejová vana a příslušná víka) a zařízení pro tvorbu směsi (vstřikovací zařízení, sací potrubí). Další samostatnou skupinu pak tvoří pomocná zařízení, mezi něž lze zařadit zapalování, mazací a chladicí soustavu a výfukový systém. Rozdíl mezi zážeho ehovým a vznětovým vým motor orem Zážehový motor se od motoru vznětového liší především odlišným principem zapálení směsi a její tvorbou. Zážehový Obr. 1 Energetická bilance spalovacích motorů (Sankeyův diagram). 2 at

3 Tabulka 1 Rozdílné parametry zážehových a vznětových motorů Parametr/typ motoru Zážehový motor Vznětový motor při vstřikování do sacího potrubí 7 až 11 : 1 přímé vstřikování 15 až 19,5 : 1 při přímém vstřikování 11,5 až 12,5 : 1 nepřímé vstřikování 21 až 23 : 1 Kompresní poměr motor Saab SVC proměnlivý kompresní poměr od 8 : 1 až do 14 : 1 Největší kompresní tlak při spouštěcích otáčkách 0,8 až 1,6 2,5 až 3, 5 a provozní teplotě [MPa] Nejvyšší teplota až 900 při kompresi [ C] Nejvyšší teplota spalování [ C] Nejvyšší tlak 5,5 až 6,0 u vstřikovacích, 7 až 9 u atmosférických motorů při spalování [MPa] příp. přeplňovaných motorů 12 až 16 u přeplňovaných motorů Zbytkový tlak ve válci (krátce před otevřením 0,3 až 0,5 0,7 až 1, 0 výfukového ventilu) [MPa] Střední pracovní tlak [MPa] Teplota výfukových plynů 800 až až 700 při plném zatížení [ C] Účinnost [%] 25 až až 50 Měrná spotřeba 200 až 230 (přímé vstřikování ) 230 až 250 paliva [g/kwh] 240 až 250 (nepřímé vstřikování ) 0,5 až 1,5 % (při volnoběhu ) Obsah CO ve výfukových 0,03 až 0,05 % (při volnoběhu ) 0,2 až 1,0 % (při neúplném zatížení ) plynech (obj. %) 0,05 až 0,25 % (při plném zatížení ) 2,0 až 4,0 % (při plném zatížení ) Teplota vzplanutí paliva [ C] 21 až až 100 Teplota vznícení paliva [ C] 500 až až 350 Točivý moment malý velký při nízkých otáčkách 0,8 až 1,1 (u nepřeplňovaných motorů) 0,9 až 1,2 (u nepřeplňovaných motorů) 1,1 až 1,5 (u přeplňovaných motorů) 1,3 až 2,1 (u přeplňovaných motorů) motor zpravidla nasává rovněž na rozdíl od motoru vznětového již téměř hotovou směs paliva se vzduchem, která se tvoří mimo spalovací prostor. U starších modelů vozidel k této tvorbě sloužil karburátor, u současných vozidel se využívá vstřikování přesné dávky paliva do sacího potrubí, tzv. před ventil. Tato směs paliva se vzduchem se stlačí a krátce před horní úvratí se zapálí jiskrou ze zapalovací svíčky. Zážehový motor tak charakterizuje především vnější tvor orba ba směsi a nevlas vlast- ní zapalování vání. Výjimku zpravidla tvoří zážehové motory s přímým vstřikováním paliva do spalovacího prostoru, jako jsou Mitsubishi GDI, Renault IDE a VW FSI. U vznětového motoru se v průběhu doby sání nasává pouze vzduch, který se v následující době komprese velmi silně stlačí. Protože se tím nasátý vzduch zároveň velmi silně ohřeje, palivo, které je do spalovacího prostoru vstříknuto při poloze klikové skříně několik stupňů před horní úvratí, se samo vznítí. Vznětový motor tak má vnitřní tvor or- bu směsi a vlastní zapalování vání. Zážehový motor se od vznětového liší i v dalších vlastnostech, které demonstruje tabulka 1, přičemž účinnost vznětových motorů může dosahovat až 50 %. Alter ernativní paliva a a pohony Po nastínění základních rozdílů mezi oběma typy motorů a ještě předtím, než se začneme spalovacím motorem zabývat podrobněji, krátce odbočíme k alternativním palivům i možnostem alternativních pohonů motorových vozidel. O obou tématech bylo již psáno hodně i na stránkách praktické dílny, proto se tímto tématem budeme zabývat jen okrajově, ale protože zapadá do celkové koncepce, nelze jej opomenout. Zkapalněné ropné plyny y (LPG) Propan-butan vzniká v rafineriích jako vedlejší produkt při zpracování ropy. Je to lehká plynná frakce, která je zkapalňována chlazením. Vzniká tzv. LPG (Liquified Petroleum Gas), který je možné využít jako palivo v motorových vozidlech. Poměr propanu a butanu se v LPG v zimě a v létě mění, v jednotlivých zemích rovněž existují rozdíly v jeho složení. LPG se jako palivo pro motorová vozidla používá už přes 60 let a ve světě je na něj provozováno přes 5 mil. vozidel. Využívání LPG je ve spalovacích motorech z technického hlediska bezproblémové a léty prověřené. Ve vznětových motorech jsou nezbytné úpravy spojeny se zabudováním zapalovací soustavy. Existují ovšem i vozidla, která využívají tzv. duální systém, kde se malé množství vznícené nafty využívá k zapálení směsi LPG a vzduchu. Nevýhodou používání tohoto paliva je, že manipulace s LPG si vynucuje určitá bezpečnostní opatření, např. zákaz vjezdu do podzemních garáží. Existující infrastruktura a skutečnost, že běžná vozidla mohou být pro pohon na LPG upravena v průběhu jediného dne, činí v krátkodobém hledisku z tohoto paliva velmi atraktivní alternativu k běžným palivům. Na druhé straně jeho použitelnosti ovšem 3

4 stojí omezené výrobní kapacity současných rafinerií, které by uspokojovaly jen 15 % všech současně provozovaných vozidel. Větší výroba je principiálně možná, avšak vyžadovalo by to úpravy v rafineriích, a tedy i vyšší náklady. Z hlediska vlivu na životní prostředí se vozidla na LPG vyznačují nižšími emisemi oxidu uhelnatého, oxidů dusíku, tuhých částic i organických látek. Velmi čisté spalování paliva v tomto případě znamená, že takováto vozidla lze využívat i v uzavřených a slabě větraných prostorách, čehož se využívá především při pohonu vysokozdvižných vozíků. Další výhodou je snížení hlučnosti chodu motoru. Spotřeba LPG je přibližně o % vyšší, než je tomu v případě spalování benzinu. Současně dochází k asi 3% poklesu výkonu motoru u systémů, které využívají vstřikování plynné fáze LPG. U nových systémů používajících přímý vstřik kapalné fáze LPG naopak dochází u stejného motoru k mírnému zvýšení jeho výkonu. Zemní plyn (CNG,, LNG) Výhodou zemního plynu jako alternativního paliva je, že jeho světové zásoby jsou větší než zásoby ropy, a navíc jsou rovnoměrněji rozděleny. Zemní plyn se skládá z 88 a více procent metanu, např. ruský plyn jej obsahuje až 99 %, z malého množství alkanů, propanu a butanu. Zemní plyn je palivem s vysokým oktanovým číslem (130) a je vhodný jako náhrada za klasická paliva pro motorová vozidla. V mnoha zemích se takto využívá přes 50 let. Ve světě se objevilo velké množství autobusů (ale i jiných automobilů) jezdících na tento plyn hlavně po 2. světové válce, kdy se projevil výrazný nedostatek ropy. Zemní plyn lze použít přímo bez nutnosti jakékoliv úpravy, na rozdíl od ropy, kterou je třeba v rafineriích upravit na benzin, resp. naftu. V motorovém vozidle si (podobně jako v případě LPG) použití zemního plynu vyžaduje upravený zapalovací systém s výhodami a nevýhodami stejnými jako pro LPG. Zapalování směsi vzduch/plyn je řízeno pomocí signálu lambda-sondy. Zemní plyn se skladuje v nádrži, a to buď v plynné stlačené (CNG, Compressed Natural Gas) nebo kapalné formě (LNG, Liquified Natural Gas). Nevýhodou je, že na zkapalnění je nutné snížení teploty plynu na 162 C. Výhodou však je, že v této formě má až třikrát vyšší hustotu energie než CNG. Na dosažení stejného dojezdu proto postačuje menší palivová nádrž, která musí být vzhledem k udržování velmi nízké teploty izolovaná podobně jako např. termoska. Ze zkušeností se ukazuje, že tam, kde neexistuje distribuční sít s LNG, není ekonomicky výhodné jeho používání. Ale všude tam, kde je přístup k zemnímu plynu, je možné jeho použití ve stlačené podobě, ve které se využívá ve většině zemí. Souvisí to i s tím, že výdej energie na přípravu stlačeného plynu je menší než na jeho zkapalnění. Přestavba vozidla na CNG je zpravidla nákladnější než v případě LPG. Vyšší náklady způsobuje především tlaková nádrž. Potřebný je i speciální směšovač, protože klasický karburátor způsobuje pokles tlaku v důsledku nasávání směsi. Přestavba vozidla vychází ve světě na 1500 až 2000 USD a ve většině zemí je legislativou požadována autorizovaná montáž. V České republice se cena přestavby vozidla s využitím centrálního směšování pohybuje kolem 40 tisíc Kč, při využití vícebodového vstřikování je cena ještě o 20 tisíc Kč vyšší. Sériovou výrobu CNG dodávkových a nákladních automobilů zahájily společnosti Mercedes-Benz, Ford, Toyota, Nissan, Mitsubishi, Citroën, Fiat a další. Rovněž oblast autobusové dopravy nezůstala bez povšimnutí a CNG autobusy nabízí všichni významní výrobci, např. Mercedes-Benz, Iveco, MAN, Volvo, Neoplan, Nissan, Isuzu, Renault, Van Hool, Scania. Ani česká Karosa nezůstala pozadu a jako CNG variantu nabízí vůz Agora. Vozidla na CNG vyžadují jiný systém zásobování a pání pohonných hmot, protože tlak plynu v nádrži je vyšší než tlak v běžných plynových potrubích. Čerpání paliva se proto uskutečňuje v kompresních stanicích, které umožňují rychlé nebo pomalé pání. Rychlé pání trvá přibližně 10 až 15 minut, v případě pomalého pání celý proces zabere 6 až 8 hodin. Vozidla upravená pro jízdu na CNG by v budoucnosti mohla jezdit i na plyn vyrobený z uhlí (ného i hnědého). Zplynování uhlí je totiž velmi perspektivní technologie, v současnosti už ověřená i výrobou elektrické energie. V oblasti dopravy by používání takovéhoto paliva mohlo přispět ke snižování emisí v sektoru dopravy. Rozhodující výhodou uhlí jako vstupní suroviny je, že jeho světové zásoby jsou mnohem větší než zásoby ropy nebo zemního plynu. Na základě analýzy British Petroleum dosahuje život- 4 at

5 nost ekonomicky využitelných rezerv uhlí 224 let. Z hlediska vlivu na životní prostředí se vozidla na zemní plyn vyznačují nižšími emisemi oxidu uhelnatého, tuhých částic a organických látek. Souvisí to s tím, že zemní plyn nereaguje se vzduchem, a proto nezpůsobuje problémy se svou oxidační stálostí při skladování, jako je tomu u jiných paliv. Zemní plyn je v plynném a stlačeném stavu na některých místech ČR také celkem dobře k dostání. Na toto palivo jsou provozovány jak osobní, tak i nákladní automobily, zejména pak autobusy. Jejich největší koncentrace na našem území je především v Praze (vozy společnosti Pražská plynárenská) a v Ústí nad Labem (autobusy dopravního podniku). Zajímavější alternativou je zkapalněný zemní plyn, protože v důsledku jeho vysokého energetického potenciálu lze jízdní dosah vozidla zdvojnásobit. V místech, kde je zemní plyn snadno dosažitelný, nabízí provoz vozidel na toto palivo následující výhody: levnější provoz, než umožňuje benzin i nafta, snadné spouštění studeného motoru, tichý chod, čisté spalování a delší životnost motoru, který se nezanáší karbonovými usazeninami. Zkapalněný zemní plyn se tankuje pod tlakem 2,0 MPa, stlačený pod tlakem 20,0 MPa. Hrdla nádrží jsou konstruována tak, aby při tankování nemohlo dojít k záměně s tankovací pistolí na LPG i pistolemi na zkapalněný či stlačený zemní plyn. energetický potenciál J. To je téměř desetkrát více, než činí roční objem kompletní světové produkce ropy a plynu celkem. V ČR je možné k čistě energetickým účelům využít až 8 mil. tun biomasy. Přestože biomasa nemůže zcela nahradit klasické fosilní zdroje, odhaduje se, že tímto zdrojem může být v naší republice pokryto % spotřeby všech paliv. Biomasa byla zdrojem energie ještě dřív, než se začal používat benzin. Výroba alkoholů (metanolu a etanolu) pro technické účely z biomasy je známá mnohem déle. Už od třicátých let 20. století se užívalo alkoholu jako motorového paliva. V současnosti jsou nejdůležitějšími palivy vyráběnými z biomasy metanol, etanol a bionafta. Do pozadí ustoupilo používání bioplynu a dřevoplynu, jež bylo populární hlavně v období 2. světové války. Z celosvětového hlediska jsou nejrozšířenější tzv. alkoholová paliva etanol a metanol, která se vyrábějí z obilí, kukuřice a cukrové třtiny. Jednou z výhod těchto biopaliv je, že při jejich spalování se tvoří méně škodlivin. Souvisí to s tím, že mají jednodušší strukturu než benzin nebo nafta, lépe hoří a celý proces vede k menší tvorbě nespálených zbytků. Z tohoto pohledu je metanol o něco lepším palivem než etanol. Hybridní pohon Hybridní pohon představuje kombinaci spalovacího motoru a elektromotoru. Sériově tento typ pohonu poprvé nabídla automobilka Toyota v osobním automobilu Prius. Hybridní systém Toyota (THS) se skládá ze zážehového motoru a synchronního elektromotoru. K nim se řadí generátor, který přejímá funkci světelného dynama a spouštěče, speciální akumulátor s články Ni-hydrid kovu, který nevyžaduje údržbu, invertor (měnič pohonu) a řídicí jednotka. Generátor vyrábí elektrickou energii k pohonu elektromotoru a pro nabíjení Ni-MeH akumulátoru. Protože se k nabíjení akumulátoru využívá i pohybová energie z brzdění nebo nevyužitá energie při jízdě s uvolněným Biopaliva Palivo pro motorové vozidlo, které je možné vypěstovat, je snem mnoha lidí. Alkohol nebo rostlinné oleje, které lze získat z biomasy, jsou v našem podnebném pásu právě takovými palivy. Mezi všemi recentními (stále obnovitelnými) zdroji energie má biomasa jedinečné postavení, protože na rozdíl od jiných zdrojů představuje akumulovanou sluneční energii. Její obrovský energetický potenciál několikrát převyšuje současnou spotřebu základní energie. Celosvětový roční růst je odhadován na t/rok tomu odpovídá 5

6 pedálem akcelerátoru, nepotřebuje tento automobil žádnou vnější zásuvku pro připojení do občanské elektrické sítě. Invertor převádí střídavý proud z generátoru na stejnosměrný proud pro Ni-MeH akumulátor, ale také naopak jeho stejnosměrný proud na střídavý proud pro pohon generátoru. Kromě toho transformuje napětí o velikosti 274 V z akumulátoru složeného ze sady modulů na napájecí palubní napětí 12 V. Hybridní systém Toyota (THS) pracuje následujícím způsobem: Při rozjíždění a při velmi pomalých rychlostech je automobil poháněn pouze elektromotorem. Od určité střední rychlosti se automaticky připojuje spalovací motor, takže při běžném provozu pohánějí automobil oba motory společně. Tohoto zvýšení výkonu se využívá i při plné akceleraci nebo jízdě do kopce. Při zastavení se spalovací motor automaticky vypne. Hybridní systém tak snižuje hlučnost motoru, spotřebu paliva (chod spalovacího motoru v ustálených režimech) a emise ve výfukových plynech. Elektrický pohon Největší problém elektromobilů tkví v hmotnosti nezbytných akumulátorů a v krátkém dojezdu, který je v současnosti prodloužen až přes hranici 200 km na jedno nabití akumulátoru. Lze dokonce i tvrdit, že automobily s elektrickým pohonem, navíc ještě i se speciálními a drahými akumulátory, nepředstavují žádnou alternativu ke spalovacím motorům, protože i proud, odebíraný při nabíjení ze zásuvky, pochází většinou z fosilních paliv nebo z jaderné energie. Jiný případ nastává, pokud potřebný elektrický proud dodávají palivové články, kdy se navíc zmenšuje hmotnost vozu a prodlužuje dojezd. Zde jsou zapotřebí jen malé akumulátory, aby bylo možno ukládat přebytečný proud, vyrobený při brzdění. Vodík jako palivo budoucnosti Zápalná teplota vodíku je 560 C, bod varu 253 C a výhřevnost 120,33 MJ/kg. Rychlost plamene při jeho hoření je velmi vysoká i při použití velmi chudých směsí. Neexistují emise CO, CH. Spalováním vznikají jen nízké emise NO x a především značné množství vodní páry. Díky těmto svým vlastnostem se vodík jeví jako vynikající palivo budoucnosti. Jeho masové rozšíření ovšem naráží na řadu problémů. Problémy spočívají v tankování a skladování vodíku. Při dodržení bezpečnostních norem by bylo zapotřebí příliš těžkých tlakových nádrží. Dalším problémem je utěsnění přívodních potrubí, neboť molekula vodíku je tak malá, že při stávajícím tlaku v tlakové nádobě 22 MPa proniká i při použití speciálních dotěsňujících kroužků. Tím vzniká nebezpečí výbuchu, protože vodík se vzduchem tvoří třaskavou směs. Toto nebezpečí je ještě vyšší v krytých garážích. Jedinou nadějí je absorpce vodíku ve formě hydridu železa nebo titanu. Vodík z něj lze potom jednoduše uvolňovat zahříváním. V roce 1999 byla na mnichovském mezinárodním letišti Franze Josefa Strausse oficiálně uvedena do provozu veřejná vodíková plnicí stanice. Plnicí stanice je součástí vodíkového projektu, který v praxi demonstruje úplný technologický řetězec, počínaje výrobou vodíku pomocí elektrolýzy, jeho uskladňováním, automatizovaným plněním vozidel až po konečné využití v autech a letištních autobusech. Vodík je na letišti vyráběn elektrolýzou pomocí moderního vysokotlakého elektrolyzéru. Potřebná elektřina je získávána z distribuční sítě v době mimo energetické špičky. Po čištění a sušení je vodík uskladňován v metalhydridních zásobnících, které pojmou až 2000 m 3 vodíku. Vodík z metalhydridních zásobníků je dvoustupňovým vysokotlakým kompresorem stlačován až na 35 MPa a poté uskladňován v soustavě pěti tlakových zásobníků. Na neveřejné plnicí stanici (uvnitř areálu letiště) je stlačený vodík plněn do nízkopodlažních kloubových letištních autobusů na provozní tlak 25 MPa. Doba naplnění jednoho autobusu se pohybuje okolo 10 minut. Dojezd na jedno naplnění je přibližně 150 km, což plně postačuje pro jeden den provozu. Osobní i nákladní automobily mohou v prostoru mnichovského letiště pat také kapalný vodík. Ten je dopravován trajlery z nedaleké zkapalňovací stanice společnosti Linde v Ingolstadtu. Kapalný vodík je na letišti uskladňován v kryogenních nádržích při 253 C, z nich je přepáván jednak do plnicí stanice kapalného vodíku, jednak do odpařovače (přeměna na GH 2, který dále putuje do tlakových zásobníků). Veřejná plnicí stanice kapalného vodíku na mnichovském letišti je plně automatická, vlastní plnění vozidla kapalným vodíkem obstarává prostřednictvím speciálního výdejního stojanu robot. Tento způsob zajišťuje nejen vysoký komfort, ale také 100% bezpečnost, 6 at

7 protože špatná manipulace při plnění je takto vyloučena. Naplnění osobního vozidla trvá 6 minut. Osobní automobily BMW, které dnes využívají kapalný vodík jako pohonnou hmotu, disponují 120litrovou kryogenní nádrží, umístěnou v zavazadlovém prostoru. Dojezd automobilu se pohybuje mezi km. Vozidla jsou dvoupalivová, tzn. že mohou využívat nejen vodík, ale i klasické palivo benzin. Paliv alivový vý článek Palivové články, které jsou považovány za nejčistší pohon, jsou již v automobilovém průmyslu úspěšně zkoušeny. Představují alternativu ke spalovacím motorům zatěžujícím životní prostředí a mohou je v dohledné době alespoň částečně nahradit. V tomto směru je třeba dosáhnout jejich potřebné spolehlivosti a realizovat potřebnou infrastrukturu, zajišťující snadnou a pohodlnou použitelnost vozidel s tímto druhem pohonu. Základním podnětem pro vývoj palivových článků je vypatelnost ropných paliv a výrazné změny atmosféry spojené s oxidem uhličitým, který se vytváří při spalování běžných paliv. Snahou je zachovat mobilitu lidí pomocí nějaké alternativy k benzinu nebo naftě a jako palivo budoucnosti se stále více nabízí vodík. Vodíku lze využívat pro výrobu elektrického proudu v palivových článcích nebo jako palivo pro spalovací motory. Palivový článek vyrábí elektrický proud pro pohon automobilu a potřebuje k tomu pouze vodík a kyslík. Vodík je možné vyrábět externě elektrolýzou vody a pak ho dodávat ve stlačené nebo zkapalněné formě. To se však vyplatí jen v případě, že k elektrolýze potřebný elektrický proud se získává z energie větru, slunce nebo vody z obnovitelných zdrojů energie. Pokud se vodík využívá v čisté formě, udržuje se při teplotě 253 C v kapalném stavu v silně izolované nádrži. Kvůli malé dostupnosti čistého vodíku se ovšem nerýsuje jiná cesta než výroba vodíku v samotném automobilu. V tomto případě se pomocí reformeru využívajícího platiny jako katalyzátoru rozkládá metanol na vodík a uhlík. Tento rozklad je ekonomicky i ekologicky výhodný jen tehdy, když se používá metanol získaný z rostoucích surovin (biomasy) a ne vyrobený z fosilních surovin. Elektrický proud se začíná vyrábět sešlápnutím pedálu akcelerátoru, při kterém se v palivovém článku začne vodík slučovat s kyslíkem. Je to obrácený proces elektrolýzy. Palivový článek tak může elektrický proud vyrábět z vodíku, metanolu, benzinu i nafty. Základní pojm jmy Pro usnadnění komunikace mezi lidmi, kteří se pohybují v oblasti konstrukce, výroby, ale i oprav spalovacích motorů, se postupně zavedly obecné základní pojmy, které je třeba si osvojit, protože i v dalším textu je budeme hojně využívat. Vrtání Průměr válce D se nazývá vrtání a zpravidla se udává v milimetrech (obr. 2). Zdvih Zdvih z je dráha, kterou píst ve válci proběhne mezi dolní a horní úvratí. Horní a dolní úvrať Úvratě jsou koncové body pohybu pístu, ve kterých se obrací směr jeho pohybu zdola nahoru a shora dolu. Podle okamžité polohy pístu ve válci se tak rozlišuje jeho horní poloha jako horní úvrať (HÚ) a spodní poloha jako dolní úvrať (DÚ). V horní úvrati má pracovní prostor (válce) nejmenší a v dolní úvrati největší objem (obr. 2). Zdvihový vý objem válce Zdvihovým objemem válce motoru V Z rozumíme prostor, který obsáhne píst během svého zdvihu. Jinak vyjádřeno, je to objem válce mezi polohami horní a dolní úvrati pístu (obr. 2). 3,14. D 2. z V Z = S P. z = 4 kde S P je plocha dna pístu, z zdvih a D vrtání válce. Celkový objem válců Celkový objem válců motoru V M je zdvihový objem všech válců motoru. Udává se v základních jednotkách SI v dm 3, někdy se používá označení v litrech a ve starší a zahraniční literatuře lze najít označení objemu válců v cm 3 (ccm). Obr. 2 Pojmy a základní rozměry spalovacích motorů. 7

8 Obr. 3 Kompresní poměr. Kom ompr presní pros ostor or Kompresní prostor V C je prostor, který se nachází nad pístem, jenž je v horní úvrati (obr. 2). Kom ompr presní poměr Kompresní poměr ε je poměr součtu zdvihového objemu a kompresního prostoru k objemu kompresního prostoru (obr. 3). zdvihový objem + kompresní prostor ε = = kompresní prostor V Z + V C = V C Poměr zdvih/vrtání Pomocí poměru zdvih/vrtání (z/d) lze dále rozdělit konstrukci spalovacího motoru na motory s dlouhým nebo krátkým zdvihem (obr. 4). U motoru s dlouhým zdvihem je zdvih větší než vrtání válce, u motoru s krátkým zdvihem je zdvih menší nebo stejný jako vrtání válce. Motory, u kterých jsou zdvih a vrtání stejně velké, se přiřazují k motorům s krátkým zdvihem a někdy se takové motory označují také jako čtvercové motory, protože podélný řez jejich pracovním prostorem je čtverec. U motorů s dlouhým zdvihem je poměr zdvih/vrtání větší než 1, proto se takové motory označují také jako nadčtvercové. A konečně je-li vrtání větší než zdvih, je poměr zdvih/vrtání menší než 1 a takové motory se analogicky nazývají též jako podčtvercové. Ojniční poměr Ojniční poměr λ [lambda] označuje poměr délky ojnice l k poloměru kliky r (obr. 5). Platí tedy: l λ = r Obecně ojniční poměr λ nabývá hodnoty 3,0 až 4,5. Čím je ojniční poměr větší, tím menší boční síly působí na stěny válců. Nevýhodou velkého ojničního poměru je ovšem naproti sníženému namáhání stěny válce větší konstrukční výška motoru. Z tohoto důvodu nejsou řadové motory v osobních automobilech většinou uloženy svisle, nýbrž šikmo, takže velký ojniční poměr může být zachován. Stř třední rychlos chlost t pístu I přes stálost otáček motoru se píst v horní a dolní úvrati na krátkou dobu zastavuje. Na jeho dráze mezi horní a dolní úvratí i naopak se jeho rychlost zvyšuje. Po dosažení maximální hodnoty se rychlost pístu opět snižuje. Kvůli této neustále se měnící rychlosti pístu (zrychlování a zpožďování) se v konstrukčních úlohách a technických výpočtech počítá se střední rychlostí pístu, to znamená teoreticky konstantní rychlostí (průměrnou rychlostí) pístu. Výpočet střední rychlosti pístu se provádí podle vzorce: v z. n m = 30 kde v m je střední rychlost pístu v m.s -1, z je zdvih pístu v metrech a n jsou otáčky motoru v min -1. Hodnoty střední rychlosti pístu při jmenovitých otáčkách jsou: pro motory středního výkonu osobních automobilů 10 až 14 m.s -1 ; pro motory s vysokým výkonem pro osobní automobily 14 až 19,5 m.s -1 ; pro motory závodních vozidel až 25 m.s -1 ; pro vznětové motory nákladních automobilů 10 až 12 m.s -1. Střední rychlost pístu je tak zároveň ukazatelem míry mechanického zatížení motoru. Maximální rychlos chlost t pístu Píst dosahuje své maximální rychlosti v okamžiku, kdy je ojnice tečnou kružnice, opisované klikou (obr. 6). Pak tvoří ojnice a poloměr kliky pravý úhel. Maximální rychlost pístu bývá zpravidla asi 1,6krát větší než jeho střední rychlost. Obr. 4 Poměr zdvih/vrtání. a) motor s dlouhým zdvihem: z > D; b) motor s krátkým zdvihem: z = D; c) motor s krátkým zdvihem: z < D. Otáčky motor oru Otáčky motoru jsou otáčky klikové hřídele za jednotku času (minuta). Rozlišují se otáčky: 8 at

9 Obr. 5 Ojniční poměr. Obr. 7 Konstrukce motorů podle polohy os válců. Obr. 6 Klikový mechanismus v okamžiku maximální rychlosti pístu. maximální otáčky, tj. maximální dovolený počet otáček, zaručující ochranu motoru proti mechanickému poškození. Základy kons onstr truk ukce pístových spalo palovacích acích motor orů Podle polohy os jednotlivých válců se rozlišují: motory uložené nastojato; motory uložené naležato (obr. 7). Šikmo uložené motory se řadí k motorům uspořádaným nastojato. Motory naležato se většinou umísťují pod podlahu vozidla (autobusy). Podle uložení válců lze motory rozdělit na jednoválcové a řadové motory (obr. 8). U motorů uspořádaných do tvaru písmene V a u řadových motorů do V (obr. 9) jsou válce, resp. řady válců postaveny většinou pod vzájemným úhlem 60 až 90. Rozdíl mezi motorem do V s úhlem 180 a motorem typu boxer spočívá v uspořádání ojničních čepů klikové hřídele. U řadových motorů a řadových motorů typu boxer (obr. 10) jsou válce i ojniční čepy uspořádány přesně proti sobě. Toto uspořádání existuje např. u vozidel Porsche, Alfa-Romeo, Lancia a Subaru. Poč očet t válců a úhel válců Je známo, že se výkon a klidný chod motoru mohou velmi jednoduše zlepšit zvýšením počtu válců. To je však u řadových motorů v důsledku omezené konstrukční délky možné jen do určité míry. S délkou klikové hřídele se navíc zvětšuje i její torzní kmitání. Tomu se proto u víceválcových motorů zabraňuje uspořádáním válců do tvaru písmene V, resp. konstrukcí typu boxer. K uvedenému přistupuje i skutečnost, že např. motor V6 vystačí pouze se čtyřmi hlavními ložisky, zatímco řadový šestiválec zpravidla potřebuje sedm hlavních ložisek. Tím se zmenšují jak ztráty třením, tak i výrobní náklady. Z hlediska vyvážení hmot, které mají vliv na klidný chod motoru, je pak spouštěcí, tj. nejmenší otáčky, které jsou zapotřebí k bezpečnému naskočení motoru; otáčky při volnoběhu, tj. otáčky, kdy spuštěný motor zůstává sám dále v chodu; jmenovité otáčky, tj. otáčky, při kterých motor dosahuje svého maximálního výkonu; Obr. 8 Jednoválcový motor, řadový motor. Obr. 9 Motor do V, řadový motor do V. 9

10 šestiválcový řadový motor, jehož dynamické setrvačné síly se vyrovnávají samy, v jednoznačné výhodě. Stejně jako v běžném životě jsou i v konstrukci motorů zapotřebí určité kompromisy. Řadové šestiválcové motory a šestiválce typu boxer (Porsche) nemají žádné rušivé setrvačné síly a vyznačují se proto velmi klidným chodem. U motoru Mercedes V6 se rušivé setrvačné síly navíc kompenzují pomocí speciální vyvažovací hřídele. Volkswagen se svým motorem VR6 (úhel válců 15 ), kombinací vytvořené z řadového motoru a motoru do V, zahájil éru motorů s velkým počtem válců a značnou úsporou zástavbového prostoru. V konstrukci spalovacích motorů s uspořádáním do V existuje několik různých, nejčastěji používaných úhlů postavení válců, které se v těchto motorech nejvíce prosadily: motory V6 54 (Opel), 60 (Ford a Alfa Romeo), 90 (Audi a Mercedes); motory V8 75 (Mercedes); motory V12 60 (BMW, Mercedes, Maybach), 72 (VW, Audi motor do W). Úhel válců má vliv na interval zapalování a tím i na celkový klid chodu motoru, přinejmenším za nízkých otáček a hlavně za studena. Pro dosažení rovnoměrného intervalu zapalování a tím i klidného chodu se u současných Obr. 10 Motor typu boxer, řadový motor typu boxer. Obr. 12 Označení směru otáčení a pořadí jednotlivých válců u řadového motoru do V. motorů V6 s úhlem válců 90 využívají klikové hřídele s kolíky, tzv. split-pin hřídele. Určení směru otáč táčení Pravotočivý motor je motor, jehož kliková hřídel se při pohledu na stranu proti straně umístění spojky otáčí ve směru pohybu hodinových ručiček, tzn. doprava. Levotočivý motor je motor, jehož kliková hřídel se při stejném směru Obr. 11 Označení směru otáčení a pořadí jednotlivých válců u řadového motoru. Obr. 13 Označení směru otá čení a pořadí jednotlivých válců u řadového motoru typu boxer. pohledu otáčí proti směru pohybu hodinových ručiček, tzn. doleva. Poř ořadí zapalování válců Hledí-li pozorovatel na motor, stejně jako při určování směru otáčení, pak u řadového motoru stojí přímo před prvním válcem. Pak už stačí jen počítat válce ve směru ke straně spojky (obr. 11). U motorů s více řadami válců je to v zásadě stejné, přičemž se nejprve počítá první a pak druhá, resp. i třetí řada válců. První řada válců leží z pohledu pozorovatele o 90 vlevo, tzn. v myšlené poloze 9 hodin (obr. 12 a 13) nebo v následující rovině určené hodinovou ručičkou. Na druhou, resp. třetí řadu válců se automaticky narazí při dalším sledování otáčení pomyslné hodinové ručičky (obr. 14). Pořadí počítání válců u motoru Volkswagen VR6 (zkrácený řadový motor) ukazuje obr. 15. To se týká i motoru Volkswagen W12 (obr. 16). Obr. 14 Označení směru otáčení a pořadí jednotlivých válců u řadového motoru. a) u řadového čtyřválce; b) u osmiválce do V; c) u dvanáctiválcového motoru do W. Poř ořadí a inter ervaly zapalování Pořadí zapalování je pořadí, ve kterém se válce motoru po sobě zapalují dochází buď k přeskoku jiskry na zapa- 10 at

11 Obr. 15 Pořadí válců u motoru VR6. Obr. 16 Motor Volkswagen W12, kombinace dvou motorů VR6 v uspořádání do V. U čtyřtaktních motorů se nejčastěji používají následující schémata zapalování: Řadové motory: čtyřválec nebo ; pětiválec ; šestiválec ; šestiválec VR6 (VW) Motory do V: čtyřválec (Ford) ; Obr. 17 Označení jednotli vých válců u VW a Porsche. lovací svíčce, nebo ke vstřiku a vznícení nafty. Výrobce sám určuje nejvýhodnější pořadí zapalování pro své motory a dosahuje tak u nich optimálního a kultivovaného chodu. Obr. 18 až 21 ukazují standardní pořadí zapalování u různých motorů. Aby se mohl některý válec vůbec zapálit, musí být příslušný píst v poloze vhodné pro zapalování, tj. v horní, resp. několik stupňů před horní úvratí, což znamená, že příslušné ventily (sací i výfukový) musí být zavřené. To je možné jen tehdy, když kliková a vačková hřídel mají správné vzájemné postavení podle značení. Z konstrukčního hlediska je pořadí zapalování jednotlivých válců motoru určeno: klikovou hřídelí přesazení čepu klikové hřídele, vačkovou hřídelí přesazení vaček. Obr. 18 Zobrazení pořadí za palování u šestivál cového motoru do V (Ford). Obr. 20 Zobrazení pořadí za palování u čtyřválcové ho motoru typu boxer. Obr. 19 Zobrazení pořadí zapalování u osmiválcového motoru do V. Obr. 21 Zobrazení pořadí zapa lování u šestiválcové ho motoru typu boxer (Porsche). 11

12 Obr. 22 Kliková hřídel dvouválce s přesazením ojničních čepů 180. Interval zapalování je nerovnoměrný, průběžně se střídají hodnoty 180 a 540. Obr. 23 Kliková hřídel dvojitého motoru. Protože se ojniční čepy nacházejí ve stejné výšce, je interval zapalování rovnoměrný (360 ). šestiválec (Ford) ; šestiválec (Audi) ; šestiválec (Nissan) (pořadí počítání válců střídavě vpravo, vlevo); osmiválec (Audi, BMW, Mercedes) ; osmiválec (Porsche) ; desetiválec (VW) ; dvanáctiválec (BMW) ; dvanáctiválec (Mercedes, VW, Audi, Jaguar) Motory typu Boxer: čtyřválec (VW) ; šestiválec (Porsche) Interval zapalování je úhel otočení klikové hřídele mezi dvěma po sobě jdoucími zápaly. Během pracovního cyklu zapaluje každý válec jednou. Pracovní cyklus sání, komprese, expanze, výfuk trvá u čtyřtaktního motoru dvě otáčky klikové hřídele, což se rovná úhlu otočení 720. Rovnoměrně rozdělený interval zapalování se při všech otáčkách stará o rovnoměrný chod motoru. Tento interval zapalování je možné vypočítat takto: Interval zapalování = 720 /počet válců Čím větší je počet válců, tím menší je interval zapalování. Čím menší je interval zapalování, tím je chod motoru rovnoměrnější a klidnější. Obr. 22 ukazuje, že intervaly zapalování mohou být i nerovnoměrné. K těmto výjimkám patří: dvouválcové čtyřtaktní motory s přesazením ojničních čepů na klikové hřídeli o 180 ; většina víceválcových motocyklových motorů; motory do V, které mají normální klikovou hřídel a u kterých násobek počtu válců a úhlu válců nedává 720, např. 6 x 90 = 540. Klikový mechanismus Klikový mechanismus pístového spalovacího motoru se skládá z: klikové hřídele a ložisek; ojnice a pístních čepů; pístů a pístních kroužků; setrvačníku a řemenice. Klikové hřídele Klikové hřídele převádějí přímočarý pohyb pístů na pohyb otáčivý. Typy konstrukce klikových hřídelí jsou určovány těmito faktory: počtem válců; vzájemnou polohou os válců; pořadím zapalování motoru. Podle použití v určitém typu motoru se rozlišují: klikové hřídele pro řadové motory; klikové hřídele pro motory do V; klikové hřídele pro motory typu boxer. Klikové hřídele pro dvouv ouválce Kliková hřídel pro dvouválcový motor má určitá specifika. Vesměs se používají dva konstrukční typy kliková hřídel s přesazením ojničních čepů a tzv. motor twin. U klikové hřídele s přesazením ojničních čepů (obr. 22) jsou oba ojniční čepy vzájemně přesazeny o 180, kliková hřídel bývá většinou uložena ve dvou ložiscích. Výhodou tohoto konstrukčního uspořádání je snadnější vyvažování hmot v porovnání s dvojmotory (motor Obr. 24 Rovnoměrný interval zapalování (360 ) u dvouválcového motoru typu boxer. Obr. 25 Kliková hřídel čtyřválcového řadového motoru s uložením ve třech ložiscích. 12 at

13 twin), protože nevyžaduje žádná velká a těžká protizávaží. Jeho nevýhodou je však nerovnoměrný interval zapalování, který je jednou 180, pak 540 atd. Tímto typem klikové hřídele bývají vybaveny motory s pomalým chodem (stacionární motory). Velmi velké a těžké setrvačníky v nich i přes nerovnoměrné intervaly zapalování udržují rovnoměrnost jejich otáčivého pohybu v přijatelných mezích. Motor twin (dvojmotor nebo dvojitý motor) je čtyřtaktní řadový motor, u něho jsou oba ojniční čepy klikové hřídele uloženy ve stejné výšce. Tato kliková hřídel může být uložena ve třech, ale i ve dvou ložiscích. Výhodou tohoto typu konstrukce je rovnoměrný interval zapalování (obr. 23). Jeho nevýhoda spočívá v tom, že pro dosažení potřebného vyvážení hmot na klikové hřídeli jsou zapotřebí velká a těžká protizávaží. Dvouv ouválco álcový čtyřt yřtaktní motor or typu boxer Obr. 26 Kliková hřídel čtyřválcového řadového motoru. Obr. 27 Kliková hřídel pětiválcového řadového motoru s uložením v šesti ložiscích. Tento typ konstrukce využívá automobilka BMW už od začátku výroby motocyklů. Spojuje v sobě výhody dvojitého motoru stejný interval zapalování a přednosti pomaloběžných vznětových motorů dobré vyvážení hmot. Ojniční čepy jsou vzájemně přesazeny o 180, kliková hřídel je krátká (malá citlivost na torzní kmitání, obr. 24). Jako v každé oblasti i zde ovšem existují výjimky, protože např. moderní dvouválcové čtyřtaktní motory s velmi vysokými otáčkami (8000 až min -1 ) jsou rovněž vybaveny klikovými hřídelemi, u nichž jsou ojniční čepy přesazeny o 180. Tím je u těchto vysokootáčkových motorů dosaženo lepšího vyvážení hmot. Nerovnoměrný interval zapalování už není u vysokých otáček tohoto typu pozorovatelný. Naproti tomu jsou moderní rychloběžné vznětové motory konstruovány jako dvojité. Vynikající klidnosti chodu motoru se dosahuje přidáním vyvažovacích hřídelí poháněných pomocí ozubených kol. Klikové hřídele čtyř yřválco álcových řado adových motor orů Ojniční čepy klikových hřídelí čtyřválcových řadových motorů jsou přesazeny o 180, přičemž čepy pro válce 1 a 4 a pro válce 2 a 3 jsou vždy ve stejné výšce (obr. 25). Tímto uspořádáním je dosaženo následujícího stavu: Je-li píst 1 v horní úvrati a v tomto válci dochází k zapálení směsi, pak se píst 4 nachází těsně za horní úvratí a obráceně. Stejně je tomu u pístů 2 a 3. Je-li píst 3 v horní úvrati před zapálením, píst 2 se nachází těsně za horní úvratí a naopak. Podle počtu hlavních ložisek lze rozlišovat: klikové hřídele uložené ve třech místech pro motory s malým a středním výkonem (obr. 25), 13

14 klikové hřídele uložené v pěti místech pro moderní výkonné motory (obr. 26). Kliková hřídel pětiválco álcového řado adového motor oru Na klikové hřídeli pětiválcového řadového motoru jsou ojniční čepy navzájem přesazeny o 72 (360 : 5 = 72). Na rozdíl od dosud popisovaných klikových hřídelí řadových motorů neleží vždy dva a dva ojniční čepy v jedné rovině (obr. 27). Klikové hřídele šestiv tiválco álcových řado adových motor orů Obr. 28 Kliková hřídel šestiválcového řadového motoru se sedmi násobným uložením (schéma). Přesazení ojničních čepů je 120. U šestiválcových řadových motorů jsou ojniční čepy na klikové hřídeli přesazeny o 120, takže vždy v jedné rovině leží ojniční čepy válců 1 a 6, 2 a 5, jakož i 3 a 4 (obr. 28). Nachází-li se píst 1 v horní úvrati v poloze zapalování, je píst 6 těsně za horní úvratí a naopak. Stejně je tomu u pístů 2 a 5 i 3 a 4. Šestiválcové motory mají zpravidla sedm hlavních ložisek (zážehové motory vyššího výkonu i vznětové motory). Počet potřebných hlavních ložisek závisí na výkonu motoru, protože s vyšším výkonem související větší tlaky více namáhají klikovou hřídel v ohybu. To pak ovlivňuje její kmitání, opotřebení a také životnost. Klikové hřídele motor orů do V U klikových hřídelí motorů do V mohou mít dvě ojnice buď společný ojniční čep (pravé motory do V) nebo má každá ojnice svůj vlastní čep (nepravé motory do V). Přesazení ojničních čepů je u pravých motorů do V rovnoměrné, u nepravých nerovnoměrné, avšak ojniční čepy nejsou postaveny přesně proti sobě jako u motorů typu boxer. Kliková hřídel čtyřválcového motoru do V (obr. 29) je uložena ve třech místech (tři hlavní ložiska). Ojnice každého ze čtyř válců má svůj vlastní čep. Protože osy obou řad válců svírají úhel 60, jsou ojniční čepy válců 1 a 4 a ojniční čepy válců 2 a 3 navzájem přesazeny o 60. Úhel mezi čepy 1 a 2, jakož i 3 a 4, činí 120. Tím se dosahuje rovnoměrného intervalu zapalování rozděleného po 180, i když úhel mezi řadami válců je 60. Kliková hřídel šestiválcového motoru do V (obr. 30) má čtyřnásobné uložení (čtyři hlavní ložiska). Po dvou ojničních čepech přichází vždy jedno ložisko. Všechny ojniční čepy jsou rovnoměrně rozděleny po plném úhlu (360 ), takže po každých 60 je umístěn jeden čep. Při úhlu os válců at

15 intervalu zapalování (válec 1 a 4, 2 a 5, 3 a 6). Obr. 29 Kliková hřídel čtyřválcového motoru do V (schéma), pořadí zapalování Obr. 30 Kliková hřídel šestiválcového motoru do V (schéma), pořadí zapalování Kliková hřídel s děleným ojničním čepem (split-pin) U této klikové hřídele jsou ojniční čepy dělené, tzn. že sousední ojnice mají vždy svůj vlastní čep, vzájemně přesazený o 30 (obr. 32). Tím se dosahuje rovnoměrného intervalu zapalování rozděleného po 120. Optimalizuje se tak klidný chod motoru i při malých otáčkách. Kliková hřídel osmiválco álcového motor oru do V Na klikové hřídeli osmiválcového motoru do V jsou čtyři ojniční čepy navzájem přesazeny o 90. S ohledem na dobré vyvážení hmot klidný chod motoru ve všech oblastech otáček byly první a poslední ojniční čep stejně jako druhý a třetí uspořádány proti sobě (180 ). Na každém ojničním čepu jsou nasazeny dvě ojnice za sebou. Čtyři přední ojnice vedou k jedné řadě válců, obvykle (při pohledu ve směru Obr. 31 Ojniční čepy klikové hřídele, vlevo nedělené, takže dvě ojnice mají společný čep; vpravo dělené (split pin), takže každá ojnice má svůj vlastní čep. se tak dosahuje intervalu zapalování 120. Řady válců u motorů s šesti válci svírají obvykle úhel 90 a mají tři ojniční čepy, které jsou navzájem přesazeny o 120. Tyto ojniční čepy mohou být nedělené nebo dělené (obr. 31). Nedělené čepy nesou vždy dvě ojnice, takže ty mají společnou osu. To má však nevýhodu v nerovnoměrném 15

16 jízdy) pravé, čtyři zadní ojnice k druhé řadě, levé. V tomto uspořádání jsou obě řady válců navzájem posunuty o šířku oka ojnice. Obr. 33 znázorňuje schematické zobrazení této hřídele. Klikové hřídele pro motor ory typu boxer U klikových hřídelí pro motory boxer má každá ojnice svůj vlastní čep, přičemž tyto čepy jsou usazeny přesně proti sobě. Je možné říci, že písty proti sobě doslova boxují. Kliková hřídel čtyřválcového motoru typu boxer (obr. 34) vypadá podobně jako kliková hřídel pro čtyřválcový řadový motor. V důsledku konstrukce motoru boxer je však kratší. Tím se mimo jiné dosahuje: velké pevnosti v krutu; velké odolnosti proti torznímu kmitání, vyvolávanému nerovnoměrnostmi otáčivého pohybu klikové hřídele. Díky protilehlému uspořádání válců není nutné u motorů středního výkonu a otáček na rozdíl od klikové hřídele pro řadový motor přidávat protizávaží (např. VW Brouk). Obr. 32 Účinek zalomení (dělení) ojničních čepů na klikové hřídeli (motor Audi V6). Obr. 34 Kliková hřídel čtyřválcového motoru typu boxer (schéma). Obr. 33 Kliková hřídel osmiválcového motoru do V (schéma). Kliková hřídel šestiválcového motoru typu boxer se podobá klikové hřídeli pro šestiválcový řadový motor. I u této hřídele platí vše, co bylo řečeno o klikové hřídeli pro čtyřválcový motor boxer. Protože šestiválcový motor Porsche 911 je konstruován pro vyšší otáčky a výkon, je jeho kliková hřídel pro dosažení co nejlepšího vyvážení hmot opatřena protizávažím. Pokračování příště ZPRACOVÁNO PODLE ZAHRANIČNÍCH MATERIÁLŮ JIŘÍ ČUMPELÍK 16 at

CNG zemní plyn. Alternativní palivo v dopravě

CNG zemní plyn. Alternativní palivo v dopravě CNG zemní plyn Alternativní palivo v dopravě CNG (compressed natural gas) stlačený zemní plyn Hlavní výhody zemního plynu CNG levný Ekonomické efekty jsou nejvíce patrné u vozidel s vyšším počtem ujetých

Více

ZEMNÍ PLYN A ELEKTŘINA V DOPRAVĚ DEJTE ZELENOU JÍZDĚ NA ZEMNÍ PLYN ČI ELEKTŘINU

ZEMNÍ PLYN A ELEKTŘINA V DOPRAVĚ DEJTE ZELENOU JÍZDĚ NA ZEMNÍ PLYN ČI ELEKTŘINU ZEMNÍ PLYN A ELEKTŘINA V DOPRAVĚ DEJTE ZELENOU JÍZDĚ NA ZEMNÍ PLYN ČI ELEKTŘINU 2 PŘESVĚDČTE SE, PROČ SE VYPLATÍ JEZDIT NA STLAČENÝ ZEMNÍ PLYN NEBO ELEKTŘINU. STLAČENÝ ZEMNÍ PLYN (CNG) JE PALIVEM BUDOUCNOSTI

Více

Zemní plyn v dopravě. Ing. Markéta Schauhuberová, Česká plynárenská unie. 15.9.2011, Den s fleetem

Zemní plyn v dopravě. Ing. Markéta Schauhuberová, Česká plynárenská unie. 15.9.2011, Den s fleetem Zemní plyn v dopravě Ing. Markéta Schauhuberová, Česká plynárenská unie 15.9.2011, Den s fleetem Česká plynárenská unie POSLÁNÍ: Soustavné zlepšování podmínek pro podnikání v plynárenském oboru v České

Více

Řada motorů Euro 6 od společnosti Scania: Osvědčená technologie a řešení pro každou potřebu

Řada motorů Euro 6 od společnosti Scania: Osvědčená technologie a řešení pro každou potřebu 18. listopadu 2013 Řada motorů Euro 6 od společnosti Scania: Osvědčená technologie a řešení pro každou potřebu Scania nyní nabízí jedenáct motorů Euro 6, od 250 hp do 730 hp. Zákazníci z celé Evropy, kteří

Více

Zemní plyn v dopravě. Ing. Oldřich Petržilka prezident, Česká plynárenská unie. 8.6.2010, Autotec, Brno

Zemní plyn v dopravě. Ing. Oldřich Petržilka prezident, Česká plynárenská unie. 8.6.2010, Autotec, Brno Zemní plyn v dopravě Ing. Oldřich Petržilka prezident, Česká plynárenská unie 8.6.2010, Autotec, Brno Česká plynárenská unie POSLÁNÍ: Soustavné zlepšování podmínek pro podnikání v plynárenském oboru v

Více

3. České energetické a ekologické fórum 10.11.2011 Praha

3. České energetické a ekologické fórum 10.11.2011 Praha CNG a biometanv bo dopravě ě 3. České energetické a ekologické fórum 10.11.2011 Praha Ing. Zdeněk Prokopec předseda sdružení zprokopec@ngva.cz Definice pojmů teorie Problémy dopravy Bílá kniha dopravní

Více

Strojírenství a doprava. CNG v dopravě

Strojírenství a doprava. CNG v dopravě Strojírenství a doprava CNG v dopravě CNG jako palivo v dopravě Ekologické palivo (výrazné omezení vypouštěných zplodin přispívá k ochraně ovzduší) CNG vozidla neprodukují prachové částice, výrazně nižší

Více

VY_32_INOVACE_C 08 14

VY_32_INOVACE_C 08 14 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

Využití CNG pro vysokozdvižné vozíky Mgr. Martin Řehák

Využití CNG pro vysokozdvižné vozíky Mgr. Martin Řehák Využití CNG pro vysokozdvižné vozíky Mgr. Martin Řehák Linde Material Handling ČR Produktový trenér CNG obecně CNG = Compressed Natural Gas = stlačený zemní plyn Dosahuje běžně úspory cca 50 % v porovnání

Více

Zavádění dopravy na zkapalněný zemní plyn (LNG) Ing. Václav Chrz, CSc Chart Ferox, Děčín,

Zavádění dopravy na zkapalněný zemní plyn (LNG) Ing. Václav Chrz, CSc Chart Ferox, Děčín, 2. mezinárodní konference Trendy Evropské Dopravy Praha,6. 6. 2013 Zavádění dopravy na zkapalněný zemní plyn (LNG) Ing. Václav Chrz, CSc Chart Ferox, Děčín, www.chartindustries.com IGU, Mezinárodní Plynárenská

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_E.3.13 Integrovaná střední

Více

Náhrada ropy v dopravě ALTERNATIVNÍ ENERGIE 2/2002 Ing. Jan Žákovec

Náhrada ropy v dopravě ALTERNATIVNÍ ENERGIE 2/2002 Ing. Jan Žákovec Náhrada ropy v dopravě ALTERNATIVNÍ ENERGIE 2/2002 Ing. Jan Žákovec V prosinci 2001 Evropská komise (European Commision - EC) přijalo akční plán a 2 návrhy směrnic zabývajících se využitím alternativních

Více

Biopowers E-motion. Návod k obsluze zařízení pro provoz vozidla na E85

Biopowers E-motion. Návod k obsluze zařízení pro provoz vozidla na E85 Biopowers E-motion Návod k obsluze zařízení pro provoz vozidla na E85 MONTÁŽ ZAŘÍZENÍ BIOPOWERS E-MOTION SMÍ PROVÁDĚT POUZE AUTORIZOVANÉ MONTÁŽNÍ STŘEDISKO. OBSAH 1. Informace o obsluze vozidla a popis

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice Životní prostředí a doprava Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

4IS10F8 spalovací motory.notebook. Registrační číslo projektu: CZ.1.07/1.4.00/21.3075. Šablona: III/2. Sada: VY_32_INOVACE_4IS Pořadové číslo: 10

4IS10F8 spalovací motory.notebook. Registrační číslo projektu: CZ.1.07/1.4.00/21.3075. Šablona: III/2. Sada: VY_32_INOVACE_4IS Pořadové číslo: 10 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_4IS Pořadové číslo: 10 Ověření ve výuce Třída: 8.A Datum: 27.2.2013 1 Spalovací motory Předmět: Fyzika Ročník: 8. ročník

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

PLYNOVÉ KOGENERAČNÍ JEDNOTKY

PLYNOVÉ KOGENERAČNÍ JEDNOTKY PLYNOVÉ KOGENERAČNÍ JEDNOTKY Záleží nám na prostředí, ve kterém žijeme. Mnoho lidí, organizací a státních institucí nám předkládá modely ekologického chování, které mají chránit životní prostředí, zvláště

Více

15.10 Zkrácený klikový mechanismus

15.10 Zkrácený klikový mechanismus Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín

Více

Nepřímé vstřikování benzínu Mono-Motronic

Nepřímé vstřikování benzínu Mono-Motronic Předmět: Ročník: Vytvořil: Datum: Silniční vozidla třetí NĚMEC V. 18.12.2013 Název zpracovaného celku: Nepřímé vstřikování benzínu Mono-Motronic Vstřikováním paliva dosáhneme kvalitnější přípravu směsi

Více

Volkswagen Passat TSI, Touran TSI a Caddy EcoFuel

Volkswagen Passat TSI, Touran TSI a Caddy EcoFuel Volkswagen Passat TSI, Touran TSI a Caddy EcoFuel Caddy EcoFuel Caddy EcoFuel - motor Konstrukce: Objem válců: Vrtání: Zdvih: Počet ventilů na válec: Kompresní poměr: Max.výkon: 4válcový benzínový motor.

Více

Ch - Uhlovodíky VARIACE

Ch - Uhlovodíky VARIACE Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukových materiálů je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE Tento dokument byl kompletně vytvořen, sestaven a vytištěn

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_E.3.18 Integrovaná střední

Více

Volkswagen Passat TSI, Touran TSI a Caddy EcoFuel

Volkswagen Passat TSI, Touran TSI a Caddy EcoFuel Volkswagen Passat TSI, Touran TSI a Caddy EcoFuel Caddy EcoFuel Caddy EcoFuel - motor Konstrukce: 4válcový benzínový motor. Objem válců: 1984 cm 3. Vrtání: 82,5 mm. Zdvih: 92,8 mm. Počet ventilů na válec:

Více

Význam CNG a biometanu pro mobilitu ve městech

Význam CNG a biometanu pro mobilitu ve městech ZEMNÍ PLYN A BIOMETHAN V DOPRAVĚ Význam CNG a biometanu pro mobilitu ve městech Kontakty: Kontaktní osoby: Asociace NGV o. s. Kněžskodvorská 2277/26, CZ 370 04 České Budějovice www.ngva.cz Ing. Zdeněk

Více

Měření výkonu motorů

Měření výkonu motorů 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních zařízení

Více

Město Tábor. Zkušenosti s využitím pohonu na CNG ve městě Tábor. XVII. Celostátní konference NSZM, Praha, 2.12. 2010

Město Tábor. Zkušenosti s využitím pohonu na CNG ve městě Tábor. XVII. Celostátní konference NSZM, Praha, 2.12. 2010 Město Tábor Zkušenosti s využitím pohonu na CNG ve městě Tábor XVII. Celostátní konference NSZM, Praha, 2.12. 2010 Obsah prezentace Co je CNG? Jak to v Táboře začalo Využití CNG v autobusové dopravě Využití

Více

CNG V DOPRAVĚ. Jan Jiřík. Střední odborné učiliště plynárenské Pardubice Poděbradská 93, Pardubice

CNG V DOPRAVĚ. Jan Jiřík. Střední odborné učiliště plynárenské Pardubice Poděbradská 93, Pardubice Středoškolská technika 2014 Setkání a prezentace prací středoškolských studentů na ČVUT CNG V DOPRAVĚ Jan Jiřík Střední odborné učiliště plynárenské Pardubice Poděbradská 93, Pardubice OBSAH Charakteristika

Více

Palivová soustava zážehového motoru Tvorba směsi v karburátoru

Palivová soustava zážehového motoru Tvorba směsi v karburátoru Předmět: Ročník: Vytvořil: Datum: Silniční vozidla třetí NĚMEC V. 28.11.2013 Název zpracovaného celku: Palivová soustava zážehového motoru Tvorba směsi v karburátoru Úkolem palivové soustavy je dopravit

Více

DOPRAVNÍ A ZDVIHACÍ STROJE

DOPRAVNÍ A ZDVIHACÍ STROJE OBSAH 1 DOPRAVNÍ A ZDVIHACÍ STROJE (V. Kemka).............. 9 1.1 Zdvihadla a jeřáby....................................... 11 1.1.1 Rozdělení a charakteristika zdvihadel......................... 11 1.1.2

Více

Průmyslově vyráběná paliva

Průmyslově vyráběná paliva Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního

Více

Záruční doklady, které obdržíte při uzavření prodloužené záruky CarGarantie, mají skutečné výhody:

Záruční doklady, které obdržíte při uzavření prodloužené záruky CarGarantie, mají skutečné výhody: BEZSTAROSTNÁ JÍZDA Profitujte z dlouhodobé záruky. Váš prodejce Opel Vám nabízí optimální jistotu. Díky prodloužené záruce pro nové vozy Opel budete jezdit i po uplynutí dvouleté výrobní záruky i nadále

Více

Přírodní zdroje uhlovodíků

Přírodní zdroje uhlovodíků Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje Říjen 2010 Mgr. Alena Jirčáková Zemní plyn - vznik: Výskyt často spolu s ropou (naftový zemní plyn) nebo

Více

W = p. V. 1) a) PRÁCE PLYNU b) F = p. S W = p.s. h. Práce, kterou může vykonat plyn (W), je přímo úměrná jeho tlaku (p) a změně jeho objemu ( V).

W = p. V. 1) a) PRÁCE PLYNU b) F = p. S W = p.s. h. Práce, kterou může vykonat plyn (W), je přímo úměrná jeho tlaku (p) a změně jeho objemu ( V). 1) a) Tepelné jevy v životě zmenšení objemu => zvětšení tlaku => PRÁCE PLYNU b) V 1 > V 2 p 1 < p 2 p = F S W = F. s S h F = p. S W = p.s. h W = p. V 3) W = p. V Práce, kterou může vykonat plyn (W), je

Více

THE ALTERNATIVE FUELS FOR VEHICLES ALTERNATIVNÍ PALIVA PRO MOTOROVÁ VOZIDLA

THE ALTERNATIVE FUELS FOR VEHICLES ALTERNATIVNÍ PALIVA PRO MOTOROVÁ VOZIDLA THE ALTERNATIVE FUELS FOR VEHICLES ALTERNATIVNÍ PALIVA PRO MOTOROVÁ VOZIDLA Čupera J. Ústav základů techniky a automobilové dopravy, Agronomická fakulta, Mendelova zemědělská a lesnická univerzita v Brně,

Více

ZKAPALNĚNÝ ZEMNÍ PLYN JAKO MOTOROVÉ PALIVO Doc. Ing. Josef Laurin, CSc. Technická univerzita v Liberci

ZKAPALNĚNÝ ZEMNÍ PLYN JAKO MOTOROVÉ PALIVO Doc. Ing. Josef Laurin, CSc. Technická univerzita v Liberci ZKAPALNĚNÝ ZEMNÍ PLYN JAKO MOTOROVÉ PALIVO Doc. Ing. Josef Laurin, CSc. Technická univerzita v Liberci Úvod Z alternativních paliv nacházejí nejčastější použití pro vozidlové spalovací motory tekuté rafinérské

Více

CNG stlačený zemní plyn Alternativní palivo v dopravě

CNG stlačený zemní plyn Alternativní palivo v dopravě Dobrý partner dává více než energii Řešení pro mobilitu CNG stlačený zemní plyn Alternativní palivo v dopravě eon.energieplus.cz/ekologicka-doprava www.eon.cz/cng CNG (compressed natural gas) stlačený

Více

Stlačený zemní plyn (CNG) je perspektivní pohonná hmota ANO NE???

Stlačený zemní plyn (CNG) je perspektivní pohonná hmota ANO NE??? Stlačený zemní plyn (CNG) je perspektivní pohonná hmota ANO NE??? 16.5.2012 Den s FLEETEM - Kuřim Lubomír Kolman, RWE Plynoprojekt, s.r.o. RWE Transgas str. 1 Stávající alternativy Automobilový průmysl

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

Moderní pohonné hmoty pro pohon motorových vozidel

Moderní pohonné hmoty pro pohon motorových vozidel Moderní pohonné hmoty pro pohon motorových vozidel Ing.. Václav Pražák ČAPPO Česká rafinérská, a.s. CHEMTEC PRAHA 2002 Motorová paliva Nejdůležitější motorová paliva Automobilové benziny Motorové nafty

Více

VY_32_INOVACE_FY.14 SPALOVACÍ MOTORY

VY_32_INOVACE_FY.14 SPALOVACÍ MOTORY VY_32_INOVACE_FY.14 SPALOVACÍ MOTORY Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Spalovací motor je mechanický tepelný

Více

Produkt- Titan Fuel Plus. Multifunkční zušlechťující přísada do motorové nafty zlepšující její provozní vlastnosti. Popis. Výhody.

Produkt- Titan Fuel Plus. Multifunkční zušlechťující přísada do motorové nafty zlepšující její provozní vlastnosti. Popis. Výhody. Titan Fuel Plus Multifunkční zušlechťující přísada do motorové nafty zlepšující její provozní vlastnosti Popis Multifunkční zušlechťující přísada do motorové nafty pro přeplňované i nepřeplňované vznětové

Více

NOVÁ ENERGIE ABYCHOM ZŮSTALI V POHYBU

NOVÁ ENERGIE ABYCHOM ZŮSTALI V POHYBU iveco 7557.qxd 23.1.2008 12:41 StrÆnka 1 Iveco S.p.A. Via Puglia, 35 10156 Torino Itálie www.iveco.com Vydání: IST.071008 říjen 2007 Údaje uvedené v této publikaci jsou pouze informativní a nezávazné.

Více

PŘÍSPĚVEK PLYNOFIKOVANÉ AUTOBUSOVÉ DOPRAVY K OZDRAVĚNÍ OVZDUŠÍ VE MĚSTECH MOST A LITVÍNOV

PŘÍSPĚVEK PLYNOFIKOVANÉ AUTOBUSOVÉ DOPRAVY K OZDRAVĚNÍ OVZDUŠÍ VE MĚSTECH MOST A LITVÍNOV PŘÍSPĚVEK PLYNOFIKOVANÉ AUTOBUSOVÉ DOPRAVY K OZDRAVĚNÍ OVZDUŠÍ VE MĚSTECH MOST A LITVÍNOV Beroun Stanislav 1), Scholz Celestýn 1), Tuček Gerhard 2) 1) Katedra strojů průmyslové dopravy, Fakulta strojní,

Více

Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu

Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326 PROJEKT

Více

Efektivně s energií na všech cestách. Vzduchové kompresory

Efektivně s energií na všech cestách. Vzduchové kompresory Efektivně s energií na všech cestách. Vzduchové kompresory 3 Enertgetická účinnost na cestách. Vzduchové kompresory Voith V místě s historií výroby vozidel Zschopau, Sasko, vyvíjí a vyrábí firma Voith

Více

Spalovací motor má při výrobě kinetické energie účinnost jen 35 %, zatímco elektromotor více než 90 %."

Spalovací motor má při výrobě kinetické energie účinnost jen 35 %, zatímco elektromotor více než 90 %. Vyplatí se jezdit na elektřinu? Uvažujete o tom, jak se pohodlně přepravit po městě či na výlet? Stále oblíbenějším dopravním prostředkem nejen pro tyto účely se stávají skútry. Kromě klasických skútrů

Více

ZDROJE ELEKTRICKÉ ENERGIE MOTOROVÝCH VOZIDEL

ZDROJE ELEKTRICKÉ ENERGIE MOTOROVÝCH VOZIDEL ZDROJE ELEKTRICKÉ ENERGIE MOTOROVÝCH VOZIDEL Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Zdeněk Vala. Dostupné z Metodického portálu www.rvp.cz; ISSN 1802-4785, financovaného z

Více

PROFESIONÁLNÍ CHEMIE BG PRO ÚDRŽBU AUTOMATICKÉ PŘEVODOVKY A MOTORU!!!

PROFESIONÁLNÍ CHEMIE BG PRO ÚDRŽBU AUTOMATICKÉ PŘEVODOVKY A MOTORU!!! Page 1 of 5 PROFESIONÁLNÍ CHEMIE BG PRO ÚDRŽBU AUTOMATICKÉ PŘEVODOVKY A MOTORU!!! BG 106 Rychlé čištění automatické převodovky BG 106-149,- Rychlé čištění automatické převodovky - výplach pro automatické

Více

Opel Vectra B Chybové kódy řídící jednotky (ECU)

Opel Vectra B Chybové kódy řídící jednotky (ECU) Opel Vectra B Chybové kódy řídící jednotky (ECU) 0100 Chybný signál od váhy vzduchu 0101 Chybný signál od váhy vzduchu 0102 Signál od váhy vzduchu nízký 0103 Signál od váhy vzduchu za vysoký 0104 Chybný

Více

Jawa 50 typ 550. rok výroby 1955-1958

Jawa 50 typ 550. rok výroby 1955-1958 Jawa 50 typ 550. rok výroby 1955-1958 1 Motor ležatý dvoudobý jednoválec Chlazení vzduchem Ø 38 mm 44 mm ový objem 49,8 cm 3 Kompresní poměr 6,6 : 1 Největší výkon 1,5k (1,1 kw)/5000 ot/min. Rozvod pístem

Více

CO JE TO PLYN - ČÍM TOPÍME, NA ČEM VAŘÍME

CO JE TO PLYN - ČÍM TOPÍME, NA ČEM VAŘÍME PLYNOVOD CO JE TO PLYN - ČÍM TOPÍME, NA ČEM VAŘÍME Co je zemní plyn Zemní plyn je přírodní směs plynných uhlovodíků s převaţujícím podílem metanu CH 4 a proměnlivým mnoţstvím neuhlovodíkových plynů (zejména

Více

... technika v souladu s přírodou

... technika v souladu s přírodou ... technika v souladu s přírodou filozofie Všechny oblasti podnikání společnosti TEDOM spojuje společná filozofie - efektivní a ekologické využití energetických palivových zdrojů. Tuto filozofii naplňujeme

Více

Využití CNG pro vysokozdvižné vozíky

Využití CNG pro vysokozdvižné vozíky Využití CNG pro vysokozdvižné vozíky Ing. Jiří Klenk Linde Material Handling ČR Zástupce obchodního ředitele Mgr. Martin Řehák Linde Material Handling ČR Produktový trenér CNG palivo pro manipulační techniku

Více

FInformace o systémech. FPokyny k montáži a. Produktová informace. Elektrická palivová čerpadla Přehled produktů pro univerzální použití PI 0034 4 1/8

FInformace o systémech. FPokyny k montáži a. Produktová informace. Elektrická palivová čerpadla Přehled produktů pro univerzální použití PI 0034 4 1/8 roduktová informace OUZ RO TCHNCKÉ RACOVNÍKY! /8 MS Motor Service nternational GmbH 69 CZ lektrická palivová čerpadla řehled produktů pro univerzální použití Vozidlo/použití: Výrobek: lektrické palivové

Více

SHELL HELIX MOTOROVÉ OLEJE

SHELL HELIX MOTOROVÉ OLEJE SHELL HELIX MOTOROVÉ OLEJE SHELL HELIX ULTRA NOVÝ POHLED NA SYNTETICKÉ MOTOROVÉ OLEJE Motorové oleje Shell Helix Ultra představují řadu motorových olejů nejvyšší kvality vyvinuté za použití unikátní technologie

Více

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - ovzduší V této kapitole se dozvíte: Co je to ovzduší. Jaké plyny jsou v atmosféře. Jaké složky znečišťují

Více

SPRINKLEROVÁ CERPADLA s certifikátem VdS 2100

SPRINKLEROVÁ CERPADLA s certifikátem VdS 2100 SPRINKLEROVÁ CERPADLA s certifikátem VdS 2100 Datum vydání: 2009 Řada: U a LT SPECK provedení s elektromotorem provedení s dieselmotorem R 0 Popis : Odstředivá čerpadla Speck pro sprinklerová zařízení,

Více

Schémata elektrických obvodů

Schémata elektrických obvodů Schémata elektrických obvodů Schémata elektrických obvodů Číslo linie napájení Elektrický obvod 30 Propojení s kladným pólem akumulátorové baterie 31 Kostra 15, 15a Propojení s kladným pólem akumulátorové

Více

Service 80. Vznětové motory 1,2; 1,6 l a 2,0 l. Dílenská učební pomůcka. se systémem vstřikování common rail

Service 80. Vznětové motory 1,2; 1,6 l a 2,0 l. Dílenská učební pomůcka. se systémem vstřikování common rail Service 80 Vznětové motory 1,2; 1,6 l a 2,0 l se systémem vstřikování common rail Dílenská učební pomůcka Obsah Stručný popis motorů 4 Mechanická část motoru 6 7 9 11 12 14 17 19 25 29 Systém řízení motoru

Více

Zdroje energie. Leonardo da Vinci Projekt. Udržitelný rozvoj v průmyslových prádelnách. Kapitola 1. Modul 5 Energie v prádelnách.

Zdroje energie. Leonardo da Vinci Projekt. Udržitelný rozvoj v průmyslových prádelnách. Kapitola 1. Modul 5 Energie v prádelnách. Leonardo da Vinci Projekt Udržitelný rozvoj v průmyslových prádelnách Modul 5 Energie v prádelnách Kapitola 1 Zdroje energie Dodavatel energie Modul 5 Energie v prádelnách Kapitola 1 Zdroje energie 1 Obsah

Více

SVĚTOVÝ VÝHLED ENERGETICKÝCH TECHNOLOGIÍ DO ROKU 2050 (WETO-H2)

SVĚTOVÝ VÝHLED ENERGETICKÝCH TECHNOLOGIÍ DO ROKU 2050 (WETO-H2) SVĚTOVÝ VÝHLED ENERGETICKÝCH TECHNOLOGIÍ DO ROKU 2050 (WETO-H2) KLÍČOVÁ SDĚLENÍ Studie WETO-H2 rozvinula referenční projekci světového energetického systému a dvouvariantní scénáře, případ omezení uhlíku

Více

Technická data Platná pro modelový rok 2016. Nová California

Technická data Platná pro modelový rok 2016. Nová California Technická data Platná pro modelový rok 2016 Nová California Motory splňující emisní normu Euro 6 Typ motoru/počet ventilů na válec Vstřikování/přeplňování Zdvihový objem (cm 3 ) Max. výkon (kw) při otáčkách

Více

KONTROLA NASTAVENÍ ROZVODU

KONTROLA NASTAVENÍ ROZVODU KONTROLA NASTAVENÍ ROZVODU Nářadí [1] Tyčka na zajištění setrvačníku (dvojitý setrvačník) : (-).0198.A [2] Přípravek pro vystředění krytu pohonu rozvodu : (-).0198.G [3] Tyčka na zajištění ozub. kola vačkového

Více

KOGENERACE PLYNOVÉ MOTORY

KOGENERACE PLYNOVÉ MOTORY KOGENERACE PLYNOVÉ MOTORY SPOLEHLIVOST ŽIVOTNOST ZÁRUKY BIOPLYNOVÉ STANICE ČISTÍRNY ODPADNÍCH VOD SKLÁDKY PRŮMYSL KOMFORT FLEXIBILITA APLIKACE VÝKONY MOTORY KONTAKTY SLYŠELI JSTE, ŽE KOGENERACE JE JEDNODUCHÁ.

Více

průmyslu a obchodu Ing. Václav Loula, vedoucí pracovní skupiny pro rozvoj petrolejářského průmyslu Ing. Miloš Podrazil, generální sekretář

průmyslu a obchodu Ing. Václav Loula, vedoucí pracovní skupiny pro rozvoj petrolejářského průmyslu Ing. Miloš Podrazil, generální sekretář Zkušenosti s uplatněním biopaliv a další vývoj jejich použití v dopravě Ing. Václav Loula, vedoucí pracovní skupiny pro rozvoj petrolejář průmyslu Ing. Miloš Podrazil, generální sekretář Česká asociace

Více

OPEL CARE DELŠÍ BEZSTAROSTNÁ JÍZDA

OPEL CARE DELŠÍ BEZSTAROSTNÁ JÍZDA OPEL CARE DELŠÍ BEZSTAROSTNÁ JÍZDA Opel Service Od pondělí do pátku od 8 do 17 hodin: www.cargarantie.com 105807.2 06/2012 TAKTO OMEZÍTE NÁKLADY NA OPRAVY V případě záruční opravy hradí CarGarantie plné

Více

Scania uplatňuje aktivní politiku a zdokonalování výrobků. Z tohoto důvodu si společnost vyhrazuje právo změny výrobků, specifikací výrobků a čísel

Scania uplatňuje aktivní politiku a zdokonalování výrobků. Z tohoto důvodu si společnost vyhrazuje právo změny výrobků, specifikací výrobků a čísel SCANIA KOMUNÁLNÍ VOZIDLA A VOZIDLA PRO SPECIÁLNÍ ÚČELY Scania uplatňuje aktivní politiku a zdokonalování výrobků. Z tohoto důvodu si společnost vyhrazuje právo změny výrobků, specifikací výrobků a čísel

Více

Ing. Markéta Schauhuberová manager, Česká plynárenská unie. 10.11.2011, 3. ČEEF, Praha

Ing. Markéta Schauhuberová manager, Česká plynárenská unie. 10.11.2011, 3. ČEEF, Praha Bio(plyn) v dopravě Ing. Markéta Schauhuberová manager, Česká plynárenská unie 10.11.2011, 3. ČEEF, Praha (Bio)plyn v dopravě bioplyn X CNG nebo bioplyn + CNG!lze využít dohromady! CNG vozidla statistika

Více

Pravidelné technické prohlídky

Pravidelné technické prohlídky Pravidelné technické prohlídky ANOTACE 1. Pravidelné technické prohlídky silničních vozidel 2. Autor Mgr. Vladimír Blažej 3. Období tvorby prosinec 2012 a leden 2013 4. Obor středního vzdělání odborné

Více

Diesel Exhaust Gas Recirculation 3 čistič vzduchového sání Diesel Power 3 & High Pressure 3 ošetření paliva v nádrži

Diesel Exhaust Gas Recirculation 3 čistič vzduchového sání Diesel Power 3 & High Pressure 3 ošetření paliva v nádrži Top Oil Services, k. s. Horšovský Týn tel.: 379 422 580 topoil@top-oil.cz www.wynns.cz Diesel Exhaust Gas Recirculation 3 čistič vzduchového sání Diesel Power 3 & High Pressure 3 ošetření paliva v nádrži

Více

JAK EFEKTIVNĚ CNG V DOPRAVĚ VE NSKÉM M KRAJI. Zlín n 3. 6. 2009 úška Project manager Bonett Gas Investment, a. s.

JAK EFEKTIVNĚ CNG V DOPRAVĚ VE NSKÉM M KRAJI. Zlín n 3. 6. 2009 úška Project manager Bonett Gas Investment, a. s. Jak efektivně využít potenciál CNG v dopravě? JAK EFEKTIVNĚ VYUŽÍT T POTENCIÁL CNG V DOPRAVĚ VE ZLÍNSK NSKÉM M KRAJI Zlín n 3. 6. 2009 Dušan Matúš úška Project manager Bonett Gas Investment, a. s. PROČ

Více

HLAVA I SILNIČNÍ VOZIDLO V PROVOZU 36

HLAVA I SILNIČNÍ VOZIDLO V PROVOZU 36 HLAVA I SILNIČNÍ VOZIDLO V PROVOZU 36 (1) Na pozemních komunikacích lze provozovat pouze takové silniční vozidlo, které je technicky způsobilé k provozu na pozemních komunikacích podle tohoto zákona. (2)

Více

Taxation of gas fuels by excise tax and ecological tax

Taxation of gas fuels by excise tax and ecological tax Zdanění plynných paliv spotřební a ekologickou daní Taxation of gas fuels by excise tax and ecological tax Ing. Josef BŘEZINA, CSc Anotace: Příspěvek je zaměřen na zdanění plynných paliv spotřební daní

Více

Technologie zplyňování biomasy

Technologie zplyňování biomasy Technologie zplyňování biomasy Obsah prezentace Profil společnosti Proces zplyňování Zplyňovací technologie Generátorový plyn Rozdělení technologií Typy zplyňovacích jednotek Čištění plynu Systém GB Gasifired

Více

Alternativní pohony vozidel

Alternativní pohony vozidel Alternativní pohony vozidel FLEET Management 2011, TOP Hotel Praha, 28.4.2011 Lubomír Kolman, RWE Plynoprojekt, s.r.o. RWE Transgas str. 1 Proč alternativní pohony automobilů? Původní cíl EU: do r. 2020

Více

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Registrační číslo: CZ.1.07/1. 5.00/34.0084 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada:

Více

Energetické zdroje budoucnosti

Energetické zdroje budoucnosti Energetické zdroje budoucnosti Energie a společnost Jakýkoliv živý organismus potřebuje dodávku energie (potrava) Lidská společnost dále potřebuje značné množství energie k zabezpečení svých aktivit Doprava

Více

Nano a mikrotechnologie v chemickém inženýrství. Energie VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÉHO INŽENÝRSTVÍ

Nano a mikrotechnologie v chemickém inženýrství. Energie VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÉHO INŽENÝRSTVÍ Nano a mikrotechnologie v chemickém inženýrství Energie VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÉHO INŽENÝRSTVÍ Energie Nano a mikro technologie v chemickém inženýrství vyvíjí: Úložiště

Více

Pro každý úkol jsou zde jednotky Vector.

Pro každý úkol jsou zde jednotky Vector. Pro každý úkol jsou zde jednotky Vector. LEHKÉ A JEDNODUCHÉ Je vašim cílem udržení stálé teploty na dlouhé vzdálenosti s maximálním užitečným zatížením a minimálním prostojem? Jednotka Vector 1350 v sobě

Více

Základní technický popis...10. Homologace a identifikace vozidla...12 Identifikace podle čísla motoru...13

Základní technický popis...10. Homologace a identifikace vozidla...12 Identifikace podle čísla motoru...13 Obsah Úvodem...9 Základní technický popis...10 Škoda Felicia se představuje...10 Homologace a identifikace vozidla...12 Identifikace podle čísla motoru...13 Údržba a kontrola technického stavu...14 Pravidelná

Více

Název práce: Znečištění ovzduší, zlepšení situace využitím alternativních pohonů, pohony LPG.

Název práce: Znečištění ovzduší, zlepšení situace využitím alternativních pohonů, pohony LPG. Univerzita Pardubice Dopravní fakulta Jana Pernera šk. rok 2003/2004, letní semestr I. ročník (obor DI-DC) - kombinované studium Roman Růžek 26.4.2004 Název práce: Znečištění ovzduší, zlepšení situace

Více

SCANIA MOTORY EURO 6, EURO 5 A EEV. Síla, výkon, spolehlivost

SCANIA MOTORY EURO 6, EURO 5 A EEV. Síla, výkon, spolehlivost SCANIA MOTORY EURO 6, EURO 5 A EEV Síla, výkon, spolehlivost scania MOTORY EURO 5 A EEV 2-3 Máme řešení pro vaše individuální potřeby Svoboda volby. U značky Scania to znamená, že si můžete vybrat řešení

Více

Strana 1 ze 6 Zapsána v OR u KS v Brně oddíl C, vložka 4412. IČO 44119054, DIČ CZ44119054 Bankovní spojení: ČSOB Zlín 130 358 502 / 0300

Strana 1 ze 6 Zapsána v OR u KS v Brně oddíl C, vložka 4412. IČO 44119054, DIČ CZ44119054 Bankovní spojení: ČSOB Zlín 130 358 502 / 0300 Strana 1 ze 6 Zapsána v OR u KS v Brně oddíl C, vložka 4412. IČO 44119054, DIČ CZ44119054 Bankovní spojení: ČSOB Zlín 130 358 502 / 0300 Úspěch původního výrobce zařízení Již v roce 1990 si divize Delphi

Více

Chceš být IN? Tankuj zemní plyn!

Chceš být IN? Tankuj zemní plyn! CNG Company s. r. o. Hředle 81 267 51 Zdice IČ: 256 73 386 DIČ: CZ 256 73 386 č. ú: 19-6496590207/0100 info@cngcompany.cz Chceš být IN? Tankuj zemní plyn! Proč právě zemní plyn? LEVNĚJŠÍ PROVOZ CNG umožňuje

Více

Elektřina a magnetizmus rozvod elektrické energie

Elektřina a magnetizmus rozvod elektrické energie DUM Základy přírodních věd DUM III/2-T3-19 Téma: rozvod elektrické energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník VÝKLAD Elektřina a magnetizmus rozvod

Více

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára)

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) SKUPENSTVÍ 1) Skupenství fáze, forma, stav 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) 3) Pevné látky nemění tvar, objem částice blízko sebe, pohybují se kolem urč.

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

ŠKODA Octavia Combi RS

ŠKODA Octavia Combi RS zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč vznětový, přeplňovaný turbodmychadlem s nastavitelnou geometrií lopatek, řadový, chlazený kapalinou, 2 OHC,

Více

STUDIE POHONU MOBILNÍHO PROSTŘEDKU S PALIVOVÝM ČLÁNKEM

STUDIE POHONU MOBILNÍHO PROSTŘEDKU S PALIVOVÝM ČLÁNKEM VŠB TECHNICKÁ UNIVERZITA OSTRAVA Fakulta elektrotechniky a informatiky ČESKÁ ENERGETICKÁ AGENTURA STUDIE POHONU MOBILNÍHO PROSTŘEDKU S PALIVOVÝM ČLÁNKEM Ing. Bohumil HORÁK, Ph.D. Ing. Jiří KOZIOREK, Ph.D.

Více

Funkční součásti, které jsou shodné s již známými motory, najdete

Funkční součásti, které jsou shodné s již známými motory, najdete 1,9 l/50 kw SDI 1,9 l/81 kw TDI SP22-23 Dva nové vznětové motory doplňují osvědčenou řadu koncernových motorů pro vozy ŠKODA. Tento sešit Vás seznámí s novými technickými detaily motorů, s funkcí a konstrukcí

Více

ů k opník mezi crossovery, první model Subaru s m otorem Boxer Diesel, prv ní model s a utomatickou převodovkou Lineartronic s dieslem Poprv

ů k opník mezi crossovery, první model Subaru s m otorem Boxer Diesel, prv ní model s a utomatickou převodovkou Lineartronic s dieslem Poprv Průkopník mezi crossovery, první model Subaru s motorem Boxer Diesel, první model s automatickou převodovkou Lineartronic s dieslem 1) Outback stál u zrodu populární kategorie crossoverů. Model Outback

Více

Výsledky testů prestižní německé zkušebny TÜV NORD Mobilität (srpen 2011)

Výsledky testů prestižní německé zkušebny TÜV NORD Mobilität (srpen 2011) Výsledky testů prestižní německé zkušebny TÜV NORD Mobilität (srpen ) Závěrečná zpráva TÜV NORD Mobilität z testování aditiva Flashlube Valve Saver Fluid Český překlad je doplněn o aktuální odkazy a vysvětlivky

Více

TÉMA 4. Projekt: Téma: Ročník: 3. Zpracoval(a): Pavel Urbánek

TÉMA 4. Projekt: Téma: Ročník: 3. Zpracoval(a): Pavel Urbánek Projekt: Téma: TÉMA 4 Montáž základních druhů rozebíratelných spojení, montáž šroubovitých a kolíkových spojů, montáž mechanismů a potrubí Obor: Zámečník Ročník: 3. Zpracoval(a): Pavel Urbánek Střední

Více

TECHNOLOGIE PLNĚNÍ CNG

TECHNOLOGIE PLNĚNÍ CNG TECHNOLOGIE PLNĚNÍ CNG Král Václav Ing. Manažer prodeje CNG MOTOR JIKOV Strojírenská, a. s. SÍŤ VEŘEJNÝCH ČERPACÍCH STANIC 61 stanic v ČR výhody Flexibilita a rychlost výstavby Dostupnost CNG i v místech,

Více

KATALOGOVÝ LIST. VENTILÁTORY RADIÁLNÍ VYSOKOTLAKÉ RVM 1600 až 2500 jednostranně sací s osovou regulací

KATALOGOVÝ LIST. VENTILÁTORY RADIÁLNÍ VYSOKOTLAKÉ RVM 1600 až 2500 jednostranně sací s osovou regulací KATALOGOVÝ LIST VENTILÁTORY RADIÁLNÍ VYSOKOTLAKÉ RVM 1600 až 2500 jednostranně sací s osovou regulací KM 12 3336 Vydání: 12/10 Strana: 1 Stran: 7 Ventilátory radiální vysokotlaké RVM 1600 až 2500 jednostranně

Více

KDE VZÍT PLYNY? Václav Piskač, Brno 2014

KDE VZÍT PLYNY? Václav Piskač, Brno 2014 KDE VZÍT PLYNY? Václav Piskač, Brno 2014 Tento článek se zabývá možnostmi, jak pro školní experimenty s plyny získat něco jiného než vzduch. V dalším budu předpokládat, že nemáte kamarády ve výzkumném

Více

MALÝ LETECKÝ MOTOR Jakým způsobem byl motor vyvíjen

MALÝ LETECKÝ MOTOR Jakým způsobem byl motor vyvíjen MALÝ LETECKÝ MOTOR AICTA Design Work (ADW) je tradiční vývojář dieselových motorů, má zkušenosti z Avie a ČKD Hradec Králové. Její tým vyvíjí motory již desítky let. Firma AICTA Design Work se pustila

Více

Práce na vozidlech s plynovým motorem. Obecné informace o vozidlech s plynovým motorem. Automobilový plyn

Práce na vozidlech s plynovým motorem. Obecné informace o vozidlech s plynovým motorem. Automobilový plyn Obecné informace o vozidlech s plynovým motorem Obecné informace o vozidlech s plynovým motorem Vozidla s plynovým motorem je souhrnný název pro vozidla poháněná automobilovým plynem. Automobilový plyn

Více

Alternativní pohony vozidel. Den s Fleetem, Kunětická hora, Golf resort, 15.9. 2011 Lubomír Kolman, RWE Plynoprojekt, s.r.o.

Alternativní pohony vozidel. Den s Fleetem, Kunětická hora, Golf resort, 15.9. 2011 Lubomír Kolman, RWE Plynoprojekt, s.r.o. Alternativní pohony vozidel Den s Fleetem, Kunětická hora, Golf resort, 15.9. 2011 Lubomír Kolman, RWE Plynoprojekt, s.r.o. str. 1 Proč alternativní pohony automobilů? Původní cíl EU: do r. 2020 náhrada

Více

Historie elektromobil ekonal jako první v z na sv v roce 1899 hranici 100 km/h

Historie elektromobil ekonal jako první v z na sv v roce 1899 hranici 100 km/h Elektromobily Historie Za nejstarší elektromobil je uváděn elektrický vozík Skota Roberta Andersona sestrojený mezi lety 1832-1839. Vznik opravdové tržní nabídky se však např. v USA datuje až k roku 1893,

Více