METODIKA NÁVRHU OHNIŠTĚ KRBOVÝCH KAMEN
|
|
- Matěj Havlíček
- před 6 lety
- Počet zobrazení:
Transkript
1 METODIKA NÁRHU OHNIŠTĚ KRBOÝCH KAMEN Stanislav aněk, Pavel Janásek, Kamil Krpec, Josef Kohut Metodika konstrukčního návrhu ohniště, založená na spalovacích zkouškách, jenž byly provedeny na ýzkumném energetickém centru, poskytuje jednoduchý postup pro stanovení parametrů ohniště. Klíčová slova: Krbová kamna, ohniště,tepelné zatížení, štíhlost Základem pro stanovení metodiky konstrukčního řešení kamen jsou provedené spalovací zkoušky. Ty sloužily k určení optimálních parametrů ohniště. Stručný popis těchto parametrů je spolu s popisem spalovacích zkoušek součástí této kapitoly. Při návrhu konstrukčního řešení ohniště lze vycházet ze dvou rozhodujících parametrů. Prvním je objem ohniště [m ], který je vymezen dnem s roštem, bočními stěnami a v horní části končí poslední tepelně izolovanou (keramickou) plochou. Objem ohniště souvisí s tepelným výkonem kamen P K vztahem: P K = q [kw] kde q v objemové tepelné zatížení ohniště [kw/m ] Správná volba objemového tepelného zatížení je velmi důležitá, protože vyšší hodnota q vede ke snížení účinnosti spalování a k větší komínové ztrátě (tzn. k nižší účinnosti kamen). Příliš nízké hodnoty q mají za následek nadměrné vychlazování ohniště, což rovněž sníží účinnost spalování. Dalším velmi důležitým parametrem pro návrh ohniště je štíhlost. Zjednodušeně se dá říct, že je to poměr výšky ohniště ku jeho půdorysnému obvodu. Přesněji je však definována následujícím vztahem. J H = [-] d k H p kde H výška ohniště [m] d H hydraulický průměr ohniště [m] k p koeficient průřezu ohniště ( poměr šířky A a hloubky B ) A k p = [-] B Hydraulický průměr ohniště určuje vztah: d H S O = 4 [m] kde S průřez ohniště [m 2 ] O obvod ohniště [m] Takto jsou svázány všechny hlavní rozměry ohniště a je možné je určit volbou štíhlosti. Ing. Stanislav aněk, ŠB-ýzkumné energetické centrum, tř.17. listopadu 15, Stanislav.anek@seznam.cz
2 STANOENÍ OPTIMÁLNÍCH PARAMETRŮ A STRUČNÝ POPIS SPALOACÍCH ZKOUŠEK Pro stanovení těchto parametrů byla provedena řada spalovacích zkoušek s různými typy kamen. Každá kamna měla jiný tvar ohniště, což umožnilo sestrojit grafy znázorňující kvalitu spalovacího procesu na tvaru ohniště. Odlišnost jednotlivých typů kamen však také vedla k tomu, že u každých kamen probíhalo spalovaní s jiným přebytkem vzduchu. Což značně komplikovalo porovnávání jednotlivých kamen mezi sebou. Aby se tomu předešlo, byla série zkoušek rozšířena o zkoušky, při nichž se snížilo množství přiváděného vzduchu přiškrcením regulačních prvků. Tím jsme získali podstatně více provozních údajů, a mohli jsme vytvořit jednotlivé skupiny zkoušek, při nichž byl přebytek spalovacího vzduchu přibližně stejný pro různá kamna. takto vytvořených skupinách bylo možno jednotlivá kamna mezi sebou lépe porovnávat. TEPELNÉ ZATÍŽENÍ OHNIŠTĚ první řadě bylo nutno nalézt nejlepší tepelné zatížení ohniště, od kterého se odvíjí další postup návrhu. Byly použity výsledky měření s různými tvary ohnišť (štíhlostí), a hledaly se kamna s nejvyšší účinností v závislosti na tepelném zatížení. Aby bylo možno porovnávat různá měření mezi sebou, bylo pro vyhodnocení použity dvě skupiny zkoušek a to zkoušky s přebytkem vzduchu v intervalu n = 2,6 a n = -,4. typ kamen jmenovitý výkon štíhlost objem kamen tepelné zatížení [kw] [ - ] [ m ] [kw/m ] účínnost n = 2,6 - n = -,4 blueline 8 1,50 0, ,8-44,5 droka 0 7 2,60 0,04 175,0 50,8 - droka ,65 0,002 21, ,25 edolo 6 0,9 0, ,7 6,175 6,1 opus 8 1,46 0, ,2 - - orfeo 8 2,10 0, ,0 62, 59,5 siena 7 1,76 0, ,1 6,4 62,8 sondrio 7 1,27 0, ,7 47,9 47,9 varese 9 1,4 0, ,4-57,1 Tab. 1 Provozní údaje kamen Pomocí těchto údajů je sestrojen obr 1, z něhož je možné stanovit nejlepší tepelné zatížení kamen. [%] účinnost [%] n = 2,6 - n = -, tepelné zatížení Q t [kw/m ] Obr. 1 Návrh optimálního tepelného zatížení krbových kamen
3 Maximálních hodnot dosahují obě charakteristiky účinnosti ve stejném bodě tepelného zatížení a lze tedy usoudit, že pro ideální návrh ohniště bude nejlepší právě tato hodnota. Pro porovnání a ověření platnosti obr 1 je možné použít závislost oxidu uhelnatého přepočteného na referenční podmínky a tepelného zatížení. 0,9 COref [%] 0,8 0,7 0,6 0,5 0,4 0, n = 2,6 - n = -,4 0,2 0, Obr. 2 Závislost CO na tepelném zatížení ohniště tepelné zatížení Q t [kw/m ] Optimální tepelné zatížení v závislosti na účinnosti odečtené z obr 1 je se nepatrně liší od hodnoty odečtené z obr 2, která je Q t opt = 256 kw / m Q t opt = 265 kw / m zvolen průměr, tj. Q t = 260 kw / m, od kterého se dále odvíjí výpočet návrhu ohniště. ŠTÍHLOST OHNIŠTĚ. Tato hodnota. Jako výpočtová hodnota byl Pro ověření vlivu štíhlosti byly z provedených zkoušek sestrojeny grafy udávající závislost účinnosti a koncentrace CO na štíhlosti ohniště. Obr. Závislost koncentrace CO na štíhlosti ohniště
4 Oba grafy dokazují, že lepších výsledků dosahují převážně kamna s větší štíhlostí ohniště. Pro štíhlost ohniště byla zvolená jako výchozí hodnota J = 2,6, která vychází z obou grafů, kde nejvyšší účinnosti kamen a nejnižší koncentrace CO odpovídá právě tato štíhlost účinnost [%] účinnost 5 0 0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 štíhlost [-] Obr. 4 Závislost účinnosti kamen na štíhlosti ohniště METODIKA KONSTRUKČNÍHO NÁRHU OHNIŠTĚ Pro jednoduchý, a rychlý návrh ohniště bylo přistoupeno ke zpracování přehledného konstrukčního návrhu. Konstruktér si vybere jmenovitý výkon kamen a rozměry si určí dle grafů či tabulky. Z nejlepšího tepelného zatížení, byly vypočteny jmenovité výkony pro dané objemy ohnišť. Objemy byly voleny podle uvážení a pokud by potřebný jmenovitý výkon nebyl uveden, lze si jej jednoduše dopočítat dle uvedených vzorců. Pro výpočet hloubky ohniště byl pomocí vzorců pro výpočet štíhlosti odvozen následující vzorec. B = 2 ( B + L) pom 4 2 J L kde J štíhlost ohniště [-] B hloubka ohniště [m] B pom pomocná hloubka ohniště volíme [m] L šířka ohniště [m] střední výška ohniště [m] H o objem ohniště [m ] O o půdorysný obvod ohniště [m] S půdorysná plocha ohniště [m2] Iterací vypočteme hloubku ohniště z předem zvolené šířky, objemu a štíhlosti ohniště. ýška ohniště se dopočítá z určených hodnot
5 Šířka ohniště byla volena, tak aby se půdorys ohniště blížil čtverci, nebo alespoň, aby zde nebyly extrémní výkyvy mezi šířkou a hloubkou (aby nevznikaly úzké a dlouhé ohniště). Příklad výpočtu: Objem ohniště (podle zvoleného výkonu) Q t opt = 256 kw / m = P Q N t = = 0,05 m Hloubka ohniště (zvolena šířka ohniště a pomocná hloubka ohniště) J = 2,6 L = 0,2 m B pom = 0, m B = 2 ( B pom + L) 2 0,05 ( 0, + 0,2) 2 J L 4 = 2 2,6 0,2 4 = 0,1 m Střední výška ohniště H 0,05 = = = 0, m o L B 0,2 0,1 51 Tímto způsobem si může konstruktér vypočítat optimální parametry ohniště, pokud by nebylo možné požít vypočtených parametrů uvedených v níže publikovaných grafech a tabulkách. Grafický postup návrhu ohniště Konstruktér si zvolí jmenovitý výkon kamen dle potřeby a z obr 5. určí objem ohniště potřebný pro další stanovení rozměrů. 0,055 0,05 0,045 objem [m ] 0,04 0,05 0,0 0,025 0,02 = 0,008 * P N 0, výkon P N [kw] Obr. 5 olba objemu ohniště v závislosti na jmenovitém výkonu kamen - 9 -
6 Podle zvoleného výkonu kamen přistupuje k zjištění hlavních rozměrů ohniště z příslušných grafů odpovídajících odečtenému objemu ohniště. hloubka B [m] 0,44 0,42 0,4 0,8 0,6 0,4 0,2 0, 0,28 0,26 0,24 0,22 0,55 0,54 0,5 0,52 0,51 0,49 0,48 0,47 0,2 0,46 0,24 0,26 0,28 0, 0,2 0,4 0,6 0,8 0,4 šířka L [m] 0,5 střední výška H [m] Obr. 6 Příklad určení hlavních parametrů ohniště pro = 0,05 m a šířku l = 0,2 m = 0,0 m = 0,025 m = 0,02 m L B H B H B H [m] [m] [m] [m] [m] [m] [m] 0,4 0,19 0, ,2 0,205 0, , 0,224 0,447 0,194 0, ,28 0,246 0,46 0,21 0,42 0,179 0,99 0,26 0,272 0,424 0,25 0,409 0,197 0,9 0,24 0,05 0,409 0,26 0,96 0,22 0,79 0, ,299 0,81 0,249 0,65 0, ,286 0,5 - objem ohniště [m ] L - šířka ohniště [m] B - hloubka ohniště [m] H - střední výška ohniště [m] Tab. 2 Hlavní parametry ohniště pro objemy = 0,0 0,02 m Podle uvedeného návrhu může konstruktér rychle a jednoduše získat přehled o velikosti optimálního ohniště a dále pokračovat v návrhu designu. Je však nutno podotknout, že pomocí grafu č.18 je možno určit parametry ohniště pouze pro ohniště o objemu = 0,5 m. Grafy pro celou řadu objemů jsou uloženy v archivu EC. Při následujícím návrhu ohniště nesmíme zaměnit střední výšku ohniště za přední či zadní výšku. Stanovení optimálních rozměrů ohniště však není jediným krokem k vytvoření ideálních kamen. Kromě stanovení těchto rozměrů je třeba správně navrhnout přívody pro spalovací vzduch, dobře utěsnit kamna atd
HODNOCENÍ ROZDÍLNÝCH REŽIMŮ PŘI PROCESU SPALOVÁNÍ
HODNOCENÍ ROZDÍLNÝCH REŽIMŮ PŘI PROCESU SPALOVÁNÍ Radim Paluska, Miroslav Kyjovský V tomto příspěvku jsou uvedeny poznatky vyplývající ze zkoušek provedených za účelem vyhodnocení rozdílných režimů při
VíceTEPELNÁ BILANCE EXPERIMENTÁLNÍCH KAMEN
TEPELNÁ BILANCE EXPERIMENTÁLNÍCH KAMEN Ing. Stanislav VANĚK, Ing. Kamil KRPEC Příspěvek se zabývá stanovením tepelné bilance krbových kamen. Konkrétně pak množstvím tepla vyzářeným prosklenými dvířky kamen
VíceMĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU
MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU. Cíl práce: Roštový kotel o jmenovitém výkonu 00 kw, vybavený automatickým podáváním paliva, je určen pro spalování dřevní štěpky. Teplo z topného okruhu je předáváno
VíceAUTOMATICKÝ KOTEL SE ZÁSOBNÍKEM NA SPALOVÁNÍ BIOMASY O VÝKONU 100 KW Rok vzniku: 2010 Umístěno na: ATOMA tepelná technika, Sladkovského 8, Brno
AUTOMATICKÝ KOTEL SE ZÁSOBNÍKEM NA SPALOVÁNÍ BIOMASY O VÝKONU 100 KW Rok vzniku: 2010 Umístěno na: ATOMA tepelná technika, Sladkovského 8, 612 00 Brno Popis Prototyp automatického kotle o výkonu 100 kw
VíceSpalovací vzduch a větrání pro plynové spotřebiče typu B
Spalovací vzduch a větrání pro plynové spotřebiče typu B Datum: 1.2.2010 Autor: Ing. Vladimír Valenta Recenzent: Doc. Ing. Karel Papež, CSc. U plynových spotřebičů, což jsou většinou teplovodní kotle a
VíceNávrh a výroba prototypu zásobníku paliva. biomasy, dlouhé štěpky a fytomasy s rozrušovačem klenby pro kotel o výkonu 150 kw
AUTOMATICKÝ KOTEL SE ZÁSOBNÍKEM NA SPALOVÁNÍ BIOMASY O VÝKONU 150 KW Rok vzniku: 2011 Umístěno na: ATOMA tepelná technika, Sladkovského 8, 612 00 Brno 1. POPIS Prototyp automatického kotle o výkonu 150
VíceVÝPOČET TEPELNÝCH ZTRÁT
VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota
VíceVÝPOČET TEPELNÝCH ZTRÁT
VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota
VíceLineární činitel prostupu tepla
Lineární činitel prostupu tepla Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2018 především s ohledem na změny v normách. Lineární činitel
VíceČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Ing. Tomáš Matuška,
VícePokyny pro řešení příkladů z předmětu Mechanika v dopravě pro obor. Pozemní doprava AR 2006/2007
Pokyny pro řešení příkladů z předmětu Mechanika v dopravě pro obor Pozemní doprava AR 2006/2007 Tyto příklady slouží k procvičení základních problematik probíraných na přednáškách tohoto předmětu. Jednotlivé
VíceTesto Tipy & triky. Efektivní a bezpečné provádění měření na otopných zařízeních.
Testo Tipy & triky Efektivní a bezpečné provádění měření na otopných zařízeních. www.testo.cz Obsah 1. Zkouška funkčnosti a seřizování plynových spalovacích zařízení 3 1.1. Kontrola připojovacího tlaku
VíceNedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO
Nedokonalé spalování palivo v kotli nikdy nevyhoří dokonale nedokonalost spalování je příčinou ztrát hořlavinou ve spalinách hořlavinou v tuhých zbytcích nedokonalost spalování tuhých a kapalných paliv
VíceNedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO
Nedokonalé spalování palivo v kotli nikdy nevyhoří dokonale nedokonalost spalování je příčinou ztrát hořlavinou ve spalinách hořlavinou v tuhých zbytcích nedokonalost spalování tuhých a kapalných paliv
VíceVýpočet potřeby tepla na vytápění
Výpočet potřeby tepla na vytápění Výpočty a posouzení byly provedeny při respektování zásad CSN 73 05 40-2:2011, CSN EN ISO 13789, CSN EN ISO 13790 a okrajových podmínek dle TNI 73 029, TNI 73 030. Vytvořeno
VíceVliv zateplení objektů na vytápěcí soustavu, nové provozní stavy a topné křivky
Vliv zateplení objektů na vytápěcí soustavu, nové provozní stavy a topné křivky V současnosti se u řady stávajících bytových objektů provádí zvyšování tepelných odporů obvodového pláště, neboli zateplování
VíceProjekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - Z.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: eometrie radovaný řetězec úloh Téma: Komolý jehlan utor: Kubešová Naděžda Klíčové pojmy: Komolý
VíceSTANOVENÍ KONCENTRACE PLYNNÝCH ŠKODLIVIN NA VÝSTUPU ZE SPALOVACÍCH ZAŘÍZENÍ
STANOVENÍ KONCENTRACE PLYNNÝCH ŠKODLIVIN NA VÝSTUPU ZE SPALOVACÍCH ZAŘÍZENÍ 1. ÚVOD V dnešní době, kdy stále narůstá množství energií a počet technologií potřebných k udržení životního standardu současné
VíceZpráva č. 66/13. Měření teplotního pole ve spalovací komoře kotle HK102
Vysoká škola báňská Technická univerzita Ostrava Výzkumné energetické centrum 17. listopadu 15/2172 708 33 OstravaPoruba Zpráva č. 66/13 Měření teplotního pole ve spalovací komoře kotle HK102 Ředitel VEC:
VíceČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Kolektor: SK 218 Objednatel:
VíceVIESMANN VITOCROSSAL 300 Plynové kondenzační kotle 26 až 60 kw
VIESMANN VITOCROSSAL 300 Plynové kondenzační kotle 26 až 60 kw List technických údajů Obj. č. a ceny: viz ceník VITOCROSSAL 300 Typ CU3A Plynový kondenzační kotel na zemní plyn a zkapalněný plyn (26 a
VíceProjekční podklady. Dimenzování a návrh spalinové cesty kaskádových kotelen s kotli Logamax plus GB112-24/29/43/60
Projekční podklady Dimenzování a návrh spalinové cesty kaskádových kotelen s kotli Logamax plus GB112-24/29/43/60 Vydání 07/2003 Úvod 1. Úvod do kondenzační techniky Kondenzační kotle použité jako zdroje
VíceČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Ing. Tomáš Matuška,
VíceFunkční vzorek průmyslového motoru pro provoz na rostlinný olej
Funkční vzorek průmyslového motoru pro provoz na rostlinný olej V laboratořích Katedry vozidel a motorů Technické univerzity v Liberci byl vyvinut motor pro pohon kogenerační jednotky spalující rostlinný
VíceTHERM 20, 28 CXE.AA, LXZE.A
TŘÍDA NOx THERM 0, CXE.AA, LXZE.A THERM 0, CXE.AA, LXZE.A Kotle jsou určeny pro vytápění objektů s tepelnou ztrátou do 0 kw popř. kw. Ohřev teplé vody (TV) je řešen variantně průtokovým způsobem či ohřevem
Více133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A12. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A12 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Navrhování zděných konstrukcí na účinky
VíceTHERM PRO 14 KX.A, XZ.A
TŘÍDA NOx Kotle jsou určeny pro vytápění objektů s tepelnou ztrátou do kw. Ohřev teplé vody (TV) je řešen variantně v zabudovaném či v externím zásobníku. Ideální pro vytápění a ohřev TV v bytech. Univerzální
VícePROJEKTOVÁ DOKUMENTACE
PROJEKTOVÁ DOKUMENTACE STUPEŇ PROJEKTU DOKUMENTACE PRO VYDÁNÍ STAVEBNÍHO POVOLENÍ (ve smyslu přílohy č. 5 vyhlášky č. 499/2006 Sb. v platném znění, 110 odst. 2 písm. b) stavebního zákona) STAVBA INVESTOR
VíceSmlouva o DÍLO na realizaci akce
ZADAVATEL: Místo stavby: TAMERO Kralupy nad Vltavou Zakázka Část A Příloha č. 9 Smlouva o DÍLO na realizaci akce Garantované parametry 1. GARANTOVANÉ PARAMETRY Kotel musí splňovat níže uvedené jmenovité
VíceMěření průvzdušnosti Blower-Door test Zkušební protokol č SeV/01
Měření průvzdušnosti Blower-Door test Rodinný dům parc. č. 636/24 k.ú. Osek nad Bečvou akreditovaná Českým institutem pro akreditaci, o.p.s. pod číslem L 1565 Zpracováno v období: květen 2015. Strana 1
VíceUPRAVENÁ EMISNÍ BILANCE VYTÁPĚNÍ BYTŮ MALÝMI ZDROJI OD ROKU 2006
Č ESKÝ HYDROMETEOROLOGICKÝ ÚSTAV ODDĚ LENÍ EMISÍ A ZDROJŮ PRACOVIŠTĚ MILEVSKO UPRAVENÁ EMISNÍ BILANCE VYTÁPĚNÍ BYTŮ MALÝMI ZDROJI OD ROKU 2006 ING. PAVEL MACHÁLEK RNDR. JIŘÍ MACHART, CSC. Milevsko 2007
VíceMěření průvzdušnosti Blower-Door test Zkušební protokol č. 2015-005866-SeV/01
Měření průvzdušnosti Blower-Door test Rodinný dům parc. č. 377/2 783 16 Dolany Véska akreditovaná Českým institutem pro akreditaci, o.p.s. pod číslem L 1565 Zpracováno v období: duben 2015. Strana 1 (celkem
VícePokyny pro řešení příkladů z předmětu Mechanika v dopravě pro obor. Dopravní prostředky. ak. rok. 2006/07
Pokyny pro řešení příkladů z předmětu Mechanika v dopravě pro obor Dopravní prostředky ak. rok. 26/7 Tyto příklady slouží k procvičení základních problematik probíraných na přednáškách tohoto předmětu.
VíceNovela nařízení vlády č. 352/2002 Sb. Kurt Dědič, odbor ochrany ovzduší MŽP
Novela nařízení vlády č. 352/2002 Sb. Kurt Dědič, odbor ochrany ovzduší MŽP Právní základ ČR» zákon o ochraně ovzduší č. 86/2002 Sb. ve znění zákonů č. 521/2002 Sb., č. 92/2004 Sb., č. 186/2004 Sb., č.
VícePopisná statistika kvantitativní veličiny
StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali
VíceOblast podpory A Snižování energetické náročnosti stávajících bytových domů
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro podprogram Nová zelená úsporám - BYTOVÉ DOMY v rámci 1. Výzvy k podávání žádostí Oblast podpory A Snižování energetické náročnosti
VíceMoje přednáška má jen stručně poukázat na rozdíl mezi Energetickým štítkem obálky budovy a Průkazem energetické náročnosti budovy a to podle
Moje přednáška má jen stručně poukázat na rozdíl mezi Energetickým štítkem obálky budovy a Průkazem energetické náročnosti budovy a to podle vyhl.148/2007 Sb. a vyhl.78/2013 Sb. Na prvním obrázku vidíte
VícePEVNÁ PALIVA. Základní dělení: Složení paliva: Fosilní-jedná se o nerostnou surovinu u našich výrobků se týká jen hnědouhelné brikety
PEVNÁ PALIVA Základní dělení: Fosilní-jedná se o nerostnou surovinu u našich výrobků se týká jen hnědouhelné brikety Biomasa obnovitelný zdroj energie u našich výrobků se týká dřeva a dřevních briket Složení
VíceZPRACOVÁNÍ DOKUMENTACE MĚŘENÍ VYPOUŠTĚNÝCH LÁTEK VE SPALINÁCHA VYHODNOCENÍ ÚČINNOSTI SPALOVÁNÍ
PROGRAM DALŠÍHO VZDĚLÁVÁNÍ KOMINÍK MĚŘENÍ SPALIN (36-023-H) OBOR KOMINÍK (36-56-H/01) STUDIJNÍ TEXT K VZDĚLÁVACÍMU MODULU ZPRACOVÁNÍ DOKUMENTACE MĚŘENÍ VYPOUŠTĚNÝCH LÁTEK VE SPALINÁCHA VYHODNOCENÍ ÚČINNOSTI
VíceEKODESIGN ROSTOUCÍ POŽADAVKY NA ÚČINNOST ZDROJŮ TEPLA
EKODESIGN ROSTOUCÍ POŽADAVKY NA ÚČINNOST ZDROJŮ TEPLA OBSAH Přehled legislativy Nařízení o ekodesignu č. 813/2013 Předmět nařízení Požadavky na účinnost Stanovení sezonní účinnosti ƞ s SPER pro palivová
VíceTechnická dokumentace. Manta. Manta. Technická dokumentace. Krbová kamna f
Technická dokumentace Manta Manta Technická dokumentace Krbová kamna 0434215091400f Úvod Srdečně děkujeme za zakoupení našeho výrobku! Popis topidla Vás podrobně seznámí s konstrukcí, technickou specifikací
VíceCo je nového 2019 R2
Co je nového 2019 R2 Obsah AKTUALIZACE... 4 NOVÁ VERZE ITALSKÉ NORMY NTC 2018... 4 Změna koeficientů zatížení pro ostatní stálé zatížení... 4 Doplnění nových tříd betonu... 5 Nové a aktualizované odkazy
Více13 Plynové spotřebiče
13 Plynové spotřebiče Roman Vavřička ČVUT v Praze, Fakulta strojní Ústav techniky prostředí 1/26 http://utp.fs.cvut.cz Roman.Vavricka@fs.cvut.cz Rozdělení plynových spotřebičů Plynový spotřebič je zařízení
VíceTHERM 28 KD.A, KDZ.A, KDC.A, KDZ5.A, KDZ10.A
TŘÍDA NOx THERM KD.A, KDZ.A, KDC.A, KDZ.A, KDZ0.A THERM KD.A, KDZ.A, KDC.A, KDZ.A, KDZ0.A sešit Kotle jsou určeny pro vytápění objektů s tepelnou ztrátou do kw. Díky široké modulaci výkonu se optimálně
VíceNový VRF systém. Výběr jednotek. Divize technické podpory
Nový VRF systém Výběr jednotek Divize technické podpory 2014 ABV KLIMA S.R.O., ODERSKÁ 333/5, 196 00 PRAHA 9 - ČAKOVICE Nový VRF systém venkovní jednotka 1 Obsah 1. Postup při výběru 2. Příklad výběru
VíceF.1.4 TECHNIKA PROSTŘEDÍ STAVEB
F.1.4 TECHNIKA PROSTŘEDÍ STAVEB F.1.4.a.1 TECHNICKÁ ZPRÁVA F.1.4.a.2 VÝKRESY ÚSTŘEDNÍHO VYTÁPĚNÍ ÚT 1 1. P.P. - ústřední vytápění ÚT 2 1. N.P. - ústřední vytápění ÚT 3 2.N.P. - ústřední vytápění ÚT 4 3.N.P.
VíceBUDOVY PRO BYDLENÍ A UBYTOVÁNÍ ROZDĚLENÍ DO SKUPIN
Ústav územního rozvoje, Jakubské nám. 3, 2 00 Brno Tel.: +420542423111, www.uur.cz, e-mail: sekretariat@uur.cz LIMITY VYUŽITÍ ÚZEMÍ Dostupnost: http://www.uur.cz/default.asp?id=2591 4.5.301 BUDOVY PRO
VícePrůměrný součinitel prostupu tepla budovy
Průměrný součinitel prostupu tepla budovy Zbyněk Svoboda, FSv ČVUT Praha Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2014 především s ohledem na změny v normách.
VíceÚSPORY ENERGIE PŘI CHLAZENÍ VENKOVNÍHO VZDUCHU
2. Konference Klimatizace a větrání 212 OS 1 Klimatizace a větrání STP 212 ÚSPORY ENERGIE PŘI CHLAZENÍ VENKOVNÍHO VZDUCHU Vladimír Zmrhal ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut.cz
Více12. Příloha - Minimální spotřeba lepenek při výrobě kartonáží
MINIMÁLNÍ SPOTŘEA LEPENEK PŘI ÝROĚ KARTONÁŽÍ 47. Příloha - Minimální spotřeba lepenek při výrobě kartonáží Potřebnou plochu lepenky na výrobu krabice ovlivňuje jednak typ krabice, jednak její rozměry,
VíceVýpočet skořepiny tlakové nádoby.
Václav Slaný BS design Bystřice nad Pernštejnem 1 Výpočet skořepiny tlakové nádoby. Úvod Indukční průtokoměry mají ve své podstatě svařovanou konstrukci základního tělesa. Její pevnost se musí posuzovat
VíceVysoká škola báňská Technická univerzita Ostrava Výzkumné energetické centrum 17. listopadu 15/2172 708 33 Ostrava Poruba
R Vysoká škola báňská Technická univerzita Ostrava Výzkumné energetické centrum 17. listopadu 15/2172 708 33 Ostrava Poruba Zpráva č. 34/14 Výpočet emisních faktorů znečišťujících látek pro léta 2001 až
VíceBETA. Automatické kotle. na pelety
Výrobce: EKOGALVA s.r.o. Santiniho 17 Žďár nad Sázavou tel: 73 7 89 731 6 1 info@ekoscroll.cz www.ekoscroll.cz Automatické kotle BETA na pelety Automatický kotel BETA na dřevní pelety s ocelovým výměníkem.
VícePrezentace: Martin Varga SEMINÁŘE DEKSOFT 2016 ČINITELÉ TEPLOTNÍ REDUKCE
Prezentace: Martin Varga www.stavebni-fyzika.cz SEMINÁŘE DEKSOFT 2016 ČINITELÉ TEPLOTNÍ REDUKCE Co to je činitel teplotní redukce b? Činitel teplotní redukce b je bezrozměrná hodnota, pomocí které se zohledňuje
VíceZákladní analýza energetického monitoru
1 Vážený pane Zákazníku, příloha obsahuje automaticky vygenerovanou základní analýzu zkoumané otopné soustavy provedenou měřící soupravou Energetický monitor Testo v kombinaci s manuálním sběrem dat. Součástí
VíceDopravní technika technologie
Pokyny pro řešení příkladů z předmětu Mechanika pohybu vozidel pro obor Dopravní technika technologie AR 2012/2013 Tyto příklady slouží k procvičení základních problematik probíraných na přednáškách tohoto
VíceKONTINUÁLNÍ MĚŘENÍ VLHKOSTI BIOMASY
KONTINUÁLNÍ MĚŘENÍ VLHKOSTI BIOMASY Pavel Janásek Existují přístroje a zařízení, které umožňují poměrně spolehlivě měřit vlhkost různých materiálů. Na druhou stranu kontinuální měření vlhkosti v biomase
Více14 Komíny a kouřovody
14 Komíny a kouřovody Roman Vavřička ČVUT v Praze, Fakulta strojní Ústav techniky prostředí 1/34 http://utp.fs.cvut.cz Roman.Vavricka@fs.cvut.cz Názvosloví komínů Komín jednovrstvá nebo vícevrstvá konstrukce
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných
VíceBUDOVY DLE VYHLÁŠKY 78/2013 SB.
PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY DLE VYHLÁŠKY 78/2013 SB. Název akce: Zadavatel: Rodinný dům Pavel Hrych Zpracovatel: Ing. Lada Kotláříková Sídlo firmy: Na Staré vinici 299/31, 140 00 Praha 4 IČ:68854463,
VíceVývoj topidel spalování dřeva
Vývoj topidel spalování dřeva Podmínky spalování 1. Hořlavý materiál 2. Zápalná teplota 3. Přístup vzduchu kyslík ( 0₂ ) 1. Hořlavý materiál Je palivo, které při hoření uvolňuje teplo Pro klasická topidla
Více14 Komíny a kouřovody
14 Komíny a kouřovody Roman Vavřička ČVUT v Praze, Fakulta strojní Ústav techniky prostředí 1/34 http://utp.fs.cvut.cz Roman.Vavricka@fs.cvut.cz Názvosloví komínů Komín jednovrstvá nebo vícevrstvá konstrukce
VíceMODEL TVÁŘECÍHO PROCESU
MODEL TVÁŘECÍHO PROCESU Zkouška tlakem na válcových vzorcích 2 Vyhodnocení tlakové zkoušky Síla F způsobí změnu výšky H a průměru D válce. V každém okamžiku při stlačování je přetvárný odpor definován
VíceVysoká škola báňská-technická univerzita Ostrava VÝZKUMNÉ ENERGETICKÉ CENTRUM
Vysoká škola báňská-technická univerzita Ostrava VÝZKUMNÉ ENERGETICKÉ CENTRUM Vysoká škola báňská-technická univerzita Ostrava VÝZKUMNÉ ENERGETICKÉ CENTRUM SPOLEČNÝ PROJEKT OVĚŘENÍ PROVOZNÍCH PARAMETRŮ
VíceTrojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy
5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,
VíceCVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM
CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez
VíceCtislav Fiala: Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb
16 Optimální hodnoty svázaných energií stropních konstrukcí (Graf. 6) zde je rozdíl materiálových konstant, tedy svázaných energií v 1 kg materiálu vložek nejmarkantnější, u polystyrénu je téměř 40krát
VíceProjekční podklady. Teplovodní kotle Logano S825L a S825L LN a plynové kondenzační kotle Logano plus SB825L a SB825L LN. Teplo je náš živel
Projekční podklady Vybrané technické parametry Projekční podklady Vydání 06/2005 Teplovodní kotle Logano S825L a S825L LN a plynové kondenzační kotle Logano plus SB825L a SB825L LN Teplo je náš živel Obsah
VíceTHERM PRO 14 KX.A, X.A, XZ.A THERM PRO 14 TKX.A, TX.A, TXZ.A
TŘÍDA NOx PRO KX.A, X.A, XZ.A, TKX.A, TX.A, TXZ.A PRO KX.A, X.A, XZ.A PRO TKX.A, TX.A, TXZ.A Kotle jsou určeny pro vytápění objektů s tepelnou ztrátou do kw. Ohřev teplé vody (TV) je řešen variantně v
VíceVýkonový poměr. Obsah. Faktor kvality FV systému
Výkonový poměr Faktor kvality FV systému Obsah Výkonový poměr (Performance Ratio) je jedna z nejdůležitějších veličin pro hodnocení účinnosti FV systému. Konkrétně výkonový poměr představuje poměr skutečného
VíceUčivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh
Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe
VíceTHERM 24 KDN, KDZN, KDCN
TŘÍDA NOx THERM KDN, KDZN, KDCN THERM KDN, KDZN, KDCN Kotle jsou určeny pro vytápění objektů s tepelnou ztrátou do kw. Díky široké modulaci výkonu se optimálně přizpůsobují aktuální tepelné potřebě objektu
VíceVýfukové plyny pístových spalovacích motorů
Výfukové plyny pístových spalovacích motorů Hlavními složkami výfukových plynů při spalování směsi uhlovodíkových paliv a vzduchu jsou dusík, oxid uhličitý, vodní pára a zbytkový kyslík. Jejich obvyklá
VíceKrbová sestava Canto - výrobce KAGO
1 Krbová sestava Canto - výrobce KAGO - Krbová vložka Garanta 602 - Výkon - 8 kw - Průměr kouřovodu 160 mm - Rozměry vložky: šířka 660 mm, výška 660 mm, hloubka 390 mm - Váha 145 kg PRODEJ: 85.000,- Kč
VíceMetodický pokyn MŽP odboru ochrany ovzduší
Ministerstvo životního prostředí Metodický pokyn MŽP odboru ochrany ovzduší ke sčítání a zařazování stacionárních zdrojů znečišťování ovzduší Hlavním účelem tohoto metodického pokynu je poskytnout příslušným
VíceOblast podpory A Snižování energetické náročnosti stávajících rodinných domů. Oblast podpory C.2 Efektivní využití zdrojů energie, výměna zdrojů tepla
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro podprogram Nová zelená úsporám - RODINNÉ DOMY v rámci 2. Výzvy k podávání žádostí Oblast podpory A Snižování energetické náročnosti
VíceCvičení 11 Větrání kotelny a orientační návrh komína
Cvičení 11 ětrání otelny a orientační návrh omína BT0 otelně jsou instalovány nízoteplotní plynové otle o výonu 90 W a 1 otel s výonem 50 W v provedení B s atmosféricým hořáem. Kotelna je v 1.NP budovy,
VíceCVIČNÝ TEST 3. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 3 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Jsou dány intervaly A = ( ; 2), B = 1; 3, C = 0;
VíceMatematické modelování dopravního proudu
Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení
VíceETAG 001. KOVOVÉ KOTVY DO BETONU (Metal anchors for use in concrete)
Evropská organizace pro technická schválení ETAG 001 Vydání 1997 ŘÍDICÍ POKYN PRO EVROPSKÁ TECHNICKÁ SCHVÁLENÍ KOVOVÉ KOTVY DO BETONU (Metal anchors for use in concrete) Příloha B: ZKOUŠKY PRO URČENÁ POUŽITÍ
VíceČESKÁ TECHNICKÁ NORMA
ČESKÁ TECHNICKÁ NORMA ICS 97.100.30 Prosinec 2013 ČSN 73 4231 Kamna Individuálně stavěná kamna Stoves Tiled ranges bulit to order Nahrazení předchozích norem Touto normou se nahrazuje ČSN 73 4231 z listopadu
VíceNovinky v legislativě pro autorizované měření emisí novela 452/2017 Sb.
Seminář KONEKO 16. 1. 2018 Novinky v legislativě pro autorizované měření emisí novela 452/2017 Sb. Ing. Robert Kičmer oddělení spalovacích zdrojů a paliv odbor ochrany ovzduší MŽP Obsah přednášky: Důvody
VíceStanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN
Stanovení požární odolnosti NAVRHOVÁNÍ OCELOVÝCH KONSTRUKCÍ NA ÚČINKY POŽÁRU ČSN EN 1993-1-2 Ing. Jiří Jirků Ing. Zdeněk Sokol, Ph.D. Prof. Ing. František Wald, CSc. 1 2 Přestup tepla do konstrukce v ČSN
Vícewww.ekoscroll.cz, info@ekoscroll.cz, tel.: 734 574 589, 731 654 124
www.ekoscroll.cz, info@ekoscroll.cz, tel.: 7 7 89, 71 6 12 Automatický kotel nové generace na tuhá paliva V 7 PUS s ocelovým výměníkem na spalování hnědého uhlí ořech 2 a pelet. V kotli je možné spalovat
Více21 851,39 Kč ,00 Kč bez DPH
Profikrby s.r.o. Blansko 2506 67801 Blansko obchod@profikrby.cz +420 516 410 252 Krb - Krbová kamna GRENOBLE černý/bílý odstavec - keramik vínově červená - bordó 2 ks skladem Krb - Krbová kamna GRENOBLE
VíceHYDROTECHNICKÝ VÝPOČET
Výstavba PZS Chrást u Plzně - Stupno v km 17,588, 17,904 a 18,397 SO 5.01.2 Rekonstrukce přejezdová konstrukce v km 17,904 Část objektu: Propustek v km 17,902 Hydrotechnický výpočet HYDROTECHNICKÝ VÝPOČET
VíceJmenovitý výkon. Regulovatelný výkon. Průměr kouřovodu. Průměr centrálního přívodu vzduchu (CPV) Účinnost. Výška. Šířka. Hloubka
KACHLOVÉ KRBY Jmenovitý výkon Regulovatelný výkon Průměr kouřovodu Průměr centrálního přívodu vzduchu (CPV) Účinnost Výška Šířka Hloubka Hmotnost kachlového krbu K A C H L O V É K R B Y CUBE DESIGN HEIN
VíceObr. 19.: Směry zkoušení vlastností dřeva.
8 ZKOUŠENÍ DŘEVA Zkoušky přírodního (rostlého) dřeva se provádí na rozměrově přesně určených vzorcích bez suků, smolnatosti, dřeně a jiných vad. Z výsledků těchto zkoušek usuzujeme na vlastnosti dřeva
VíceSmlouva o DÍLO na realizaci akce
ZADAVATEL: Místo stavby: TAMERO Kralupy nad Vltavou Zakázka Část A Příloha č. 9 Smlouva o DÍLO na realizaci akce Garantované parametry 1. GARANTOVANÉ PARAMETRY Kotel musí splňovat níže uvedené jmenovité
VícePorovnání emisních parametrů při spalování hnědého uhlí a dřeva v lokálním topeništi
Konference Ochrana ovzduší ve státní správě teorie a praxe VII Porovnání emisních parametrů při spalování hnědého uhlí a dřeva v lokálním topeništi Vladimír Bureš, Jan Velíšek TESO Praha a.s. Prezentace
VíceIDENTIFIKAČNÍ ÚDAJE ZAKÁZKY ZHOTOVITEL: Thákurova 7, Praha 6, IČO: , DIČ:
ČVUT v Praze, Fakulta stavební, Katedra technických zařízení budov 09/2013 IDENTIFIKAČNÍ ÚDAJE ZAKÁZKY ZHOTOVITEL: ČVUT v Praze, Fakulta stavební, Katedra technických zařízení budov, Thákurova 7,166 29
VíceTHERM 17 KD.A, KDZ.A, KDZ5.A, KDZ10.A
TŘÍDA NOx THERM KD.A, KDZ.A, KDZ.A, KDZ0.A THERM KD.A, KDZ.A, KDZ.A, KDZ0.A sešit Kotle THERM KD.A, KDZ.A, KDZ.A a KDZ0.A jsou uzpůsobeny pro využití v objektech s malou tepelnou ztrátou, např. nízkoenergetických
VíceChemie - cvičení 2 - příklady
Cheie - cvičení 2 - příklady Stavové chování 2/1 Zásobník o objeu 50 obsahuje plynný propan C H 8 při teplotě 20 o C a přetlaku 0,5 MPa. Baroetrický tlak je 770 torr. Kolik kg propanu je v zásobníku? Jaká
VíceVyužití tabulkového procesoru MS Excel
Semestrální práce Licenční studium Galileo srpen, 2015 Využití tabulkového procesoru MS Excel Ing Marek Bilko Třinecké železárny, a.s. Stránka 1 z 10 OBSAH 1. ÚVOD... 2 2. DATOVÝ SOUBOR... 2 3. APLIKACE...
VíceKalibrace analytických metod
Kalibrace analytických metod Petr Breinek BC_Kalibrace_2010 Měřící zařízení (zjednodušeně přístroje) pro měření fyzikálních veličin musí být výrobci kalibrovaná Objem: pipety Teplota (+37 C definovaná
VícePopis softwaru VISI Flow
Popis softwaru VISI Flow Software VISI Flow představuje samostatný CAE software pro komplexní analýzu celého vstřikovacího procesu (plnohodnotná 3D analýza celého vstřikovacího cyklu včetně chlazení a
VíceIndexy, analýza HDP, neaditivnost
Indexy, analýza HDP, neaditivnost 1.) ŘETĚZOVÉ A BAZICKÉ INDEXY 1999 2000 2001 2002 Objem vkladů (mld. Kč) 80,8 83,7 91,5 79,4 a) určete bazické indexy objemu vkladů (1999=100) Rok 1999=100 báze. Pro rok
VícePostup pro stanovení výše příspěvku na výkon státní správy jednotlivým obcím a hlavnímu městu Praze
Příloha č. 8 k zákonu č. /2012 Sb. Postup pro stanovení výše příspěvku na výkon státní správy jednotlivým obcím a hlavnímu městu Praze 1. Postup pro stanovení výše příspěvku na výkon státní správy jednotlivým
VícePostup řešení: Výkon na hnacích kolech se stanoví podle vztahu: = [W] (SV1.1)
říklad S1 Stanovte potřebný výkon spalovacího motoru siničního vozidla pro jízdu do stoupání 0 % rychlostí 50 km.h -1 za bezvětří. arametry silničního vozidla jsou: Tab S1.1: arametry zadání: G 9,8. 10
VíceL Oj [km] R j [m] l j [m] 1 0, , , , , , , , , ,0 600
Projektový příklad PP1 Pomocí postupů početní metody stanovení parametrů jízdy vlaku s rychlostním krokem stanovte průběhy rychlosti na dráze (tachogram jízdy), doby jízdy a spotřeby elektrické energie
Více