CVIČNÝ TEST 3. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19
|
|
- Dušan Němec
- před 8 lety
- Počet zobrazení:
Transkript
1 CVIČNÝ TEST 3 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19
2 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Jsou dány intervaly A = ( ; 2), B = 1; 3, C = 0; ) Zapište intervalem množinu (A B) C. 1.2 Zapište intervalem množinu B A. 2 V oboru reálných čísel řešte rovnici x 3 = 5 x. VÝCHOZÍ TEXT K ÚLOZE 3 x 2 y 2 Je dán výraz V = 3x2 y x 2y 1. x y Zjednodušte výraz V. 3.2 Určete hodnotu výrazu V pro x = 2, y = 1. max. 3 body VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 4 Body A, B na obrázku představují pozici dvou hokejistů vzhledem k mantinelu m. Hráč A přihraje hráči B puk odrazem o mantinel tak, že odchylka dráhy puku od stěny mantinelu bude po odražení Určete v metrech délku dráhy, kterou puk urazil. 4.2 Určete vzdálenost hráčů A, B. max. 3 body 2 Maturita z matematiky ZD
3 VÝCHOZÍ TEXT K ÚLOZE 5 Mladí manželé využili k nákupu bytu výhodnou hypotéku Kč úročenou jen 4 % p. a. Již dva roky každý měsíc splácejí Kč. Banka úročí dluh a připisuje splátku jednou ročně v den sjednání hypotéky O kolik korun je dluh nižší po první splátce? 5.2 Kolik korun bance dluží po dvou letech splácení? max. 3 body VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 6 8 Společnost provozující síť mobilních telefonů nabízí dva nové programy služeb OPTIMUM a STANDARD. Do reklamního letáku chce vložit graf znázorňující závislost výše měsíční platby na počtu provolaných minut a stručný komentář, který bude obsahovat informace o měsíčním paušálu, počtu volných minut a ceně za jednu provolanou minutu nad rámec volných minut. 6 Určete měsíční paušál programu STANDARD. 1 bod 7 Určete v programu OPTIMUM cenu jedné minuty provolané navíc. 8 Vypočítejte maximální počet provolaných minut za měsíc, při kterém je výhodnější využívat služeb programu STANDARD. VÝCHOZÍ TEXT K ÚLOZE 9 Počítačový program náhodně vytváří přirozená trojciferná čísla. Maturita z matematiky ZD 3
4 9 9.1 Jaká je pravděpodobnost, že vytvořené číslo končí trojkou? 9.2 Jaká je pravděpodobnost, že vytvořené číslo je dělitelné pěti? VÝCHOZÍ TEXT A OBRÁZEK 10 Bazén na obrázku má hloubku h, šířku a, délku b. Svislé vnitřní rohy jsou zakulacené s poloměrem křivosti r. max. 3 body Vyjádřete pomocí délky r, oč by se zmenšil půdorys původně obdélníkového bazénu zakulacením jednoho svislého rohu Určete objem vody v bazénu plném po okraj pomocí délek a, b, h, r. VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 11 Funkce je dána grafem. 11 Kterou dvojici vlastností má funkce na intervalu 3; 3? A) spojitá a rostoucí B) nespojitá a klesající C) spojitá a klesající D) nespojitá a prostá E) nespojitá a lichá 2 body 4 Maturita z matematiky ZD
5 12 Přímka p je určena rovnicí 3x + y 6 = 0. Rozhodněte o každém z následujících tvrzení ( ), zda je pravdivé (ANO), či nikoli (NE): ANO NE 12.1 Přímka p je rovnoběžná s přímkou m: x 3y + 6 = Přímka p je kolmá k přímce n: x 3y + 6 = Přímka p je kolmá k přímce o: x = y Přímka p prochází bodem M [1; 3]. 13 Vrcholy trojúhelníku ABC tvoří body se souřadnicemi A [1; 1], B [2; 1] a C [3; 2]. Jaké vlastnosti trojúhelník ABC má? A) je rovnoramenný, ostroúhlý B) je rovnoramenný, pravoúhlý C) je rovnostranný D) je rovnoramenný, tupoúhlý E) nemá žádnou z uvedených vlastností 2 body VÝCHOZÍ OBRÁZEK K ÚLOZE Maturita z matematiky ZD 5
6 max. 4 body 14 Přiřaďte grafu každé goniometrické funkce na obrázcích nejvhodnější funkční předpis z možností A F: A) y = sin x B) y = 2 cos x C) y = sin x D) y = tg x E) y = cotg x F) y = cos x 15 Je dána nerovnice x + 1 x body Nerovnici vyhovují právě všechna reálná čísla x, pro která platí: A) x 1; ) B) x 1; 1 C) x 1; 1) D) x ( ; 1) E) x ( ; 1) KONEC TESTU 6 Maturita z matematiky ZD
7 II. AUTORSKÉ ŘEŠENÍ VÝCHOZÍ TEXT K ÚLOZE 1 Jsou dány intervaly A = ( ; 2), B = 1; 3, C = 0; ) Zapište intervalem množinu (A B) C. Čísla, která patří množině A nebo patří množině B, jsou čísla ( ; 3. Čísla, která patří množině A B a zároveň patří množině C, jsou čísla 0; 3. Množiny A, B můžeme případně znázornit na reálné ose a řešit úlohu nejprve graficky. Řešení: (A B) C = 0; Zapište intervalem množinu B A. Čísla, která patří množině B a nepatří množině A, jsou čísla <2; 3>. Množiny A, B můžeme případně znázornit na reálné ose a řešit úlohu nejprve graficky. Řešení: B A = 2; 3 2 V oboru reálných čísel řešte rovnici x 3 = 5 x. Absolutní hodnotu odstraníme podle definice. Pro všechna x 3 je x 3 = x 3 a rovnice bude mít tvar x 3 = 5 x. Jejím řešením je číslo x = 4, které podmínku x 3 splňuje. Pro všechna x < 3 je x 3 = x + 3 a rovnice bude mít tvar x + 3 = 5 x. Tato rovnice nemá řešení. Řešení: x = 4 Maturita z matematiky ZD 7
8 VÝCHOZÍ TEXT K ÚLOZE 3 x 2 y 2 Je dán výraz V = 3x2 y x 2y 1. x y Zjednodušte výraz V. max. 3 body Sečteme zlomky ve jmenovateli a dělení zlomků převedeme na násobení. Po rozkladu čitatele prvního zlomku krátíme: x 2 y 2 V = 3x2 y x 2y 1 = x y = x 2 y 2 3x2 y 2 = x2 y2 y + x xy (x y) (x + y) xy x y = 3x 2 y 2 y + x 3xy 3x2 y xy = 2 x + y x y Řešení: V = 3xy 3.2 Určete hodnotu výrazu V pro x = 2, y = 1. Výpočet hodnoty výrazu pro x = 2, y = 1 lze provést dosazením do zadaného nebo zjednodušeného výrazu. Řešení: V = 1 6 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 4 Body A, B na obrázku představují pozici dvou hokejistů vzhledem k mantinelu m. Hráč A přihraje hráči B puk odrazem o mantinel tak, že odchylka dráhy puku od stěny mantinelu bude po odražení Maturita z matematiky ZD
9 4 4.1 Určete v metrech délku dráhy, kterou puk urazil. max. 3 body Pro odraz puku od mantinelu platí, že úhel odrazu je stejný jako úhel dopadu. Protože úhel AOA 0 je 45, je úhel BOB 0 také 45. Pravoúhlé trojúhelníky AA 0 O, BB 0 O jsou rovnoramenné a jejich přepony mají délky 3 2 m, 2 2 m. Řešení: 5 2 m 4.2 Určete vzdálenost hráčů A, B. Trojúhelník AOB je pravoúhlý. Jeho vnitřní úhel AOB je součtem úhlu dopadu 45 a úhlu odrazu 45. Vzdálenost hráčů AB vypočteme podle Pythagorovy věty jako délku přepony AB trojúhelníku s délkami odvěsen 3 2 m, 2 2 m. Řešení: 26 m VÝCHOZÍ TEXT K ÚLOZE 5 Mladí manželé využili k nákupu bytu výhodnou hypotéku Kč úročenou jen 4 % p. a. Již dva roky každý měsíc splácejí Kč. Banka úročí dluh a připisuje splátku jednou ročně v den sjednání hypotéky O kolik korun je dluh nižší po první splátce? max. 3 body Dluh se zvýší o čtyřprocentní úrok Kč a zmenší se o roční splátku Kč. Řešení: Kč Maturita z matematiky ZD 9
10 5.2 Kolik korun bance dluží po dvou letech splácení? Úlohu lze řešit užitím vhodného vztahu z finanční matematiky nebo si vztah odvodit postupným vyjádřením dlužné částky nejprve na konci prvního a pak druhého roku. Je možné řešit úlohu jen numericky nebo nejprve obecně a po zjednodušení dosadit. Řešení: I 2 = Kč VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 6 8 Společnost provozující síť mobilních telefonů nabízí dva nové programy služeb OPTIMUM a STANDARD. Do reklamního letáku chce vložit graf znázorňující závislost výše měsíční platby na počtu provolaných minut a stručný komentář, který bude obsahovat informace o měsíčním paušálu, počtu volných minut a ceně za jednu provolanou minutu nad rámec volných minut. 6 Určete měsíční paušál programu STANDARD. 1 bod Volné jsou minuty, které lze provolat bez navýšení měsíčního paušálu. Jejich maximální počet je evidentní z grafu. Řešení: 200 Kč 7 Určete v programu OPTIMUM cenu jedné minuty provolané navíc. Odečtením souřadnic dvou vyznačených bodů na grafu lze vypočítat cenu jedné minuty provolané nad limit volných minut. Řešení: 5 Kč 10 Maturita z matematiky ZD
11 8 Vypočítejte maximální počet provolaných minut za měsíc, při kterém je výhodnější využívat služeb programu STANDARD. Výpočet lze provést určením rovnice funkce pro rostoucí část grafu popisujícího program STANDARD. Ten je pro volání výhodnější, pokud je vyjádřená funkční hodnota menší než 400. Rostoucí část grafu programu STANDARD prochází body [30; 200], [80; 500] a je lineární. Dosazením do obecné rovnice lineární funkce y = ax + b odvodíme rovnici y = 6x Řešením nerovnice 6x + 20 < 400 vypočteme maximální počet provolaných minut za měsíc, kdy je ještě program STANDARD výhodnější než OPTIMUM. Řešení: 63 minut VÝCHOZÍ TEXT K ÚLOZE 9 Počítačový program náhodně vytváří přirozená trojciferná čísla Jaká je pravděpodobnost, že vytvořené číslo končí trojkou? Počet všech trojciferných čísel je 900. Počet trojciferných čísel s trojkou na místě jednotek je 90. Pravděpodobnost náhodného výběru trojciferného čísla s trojkou na místě jednotek je podílem počtu trojciferných čísel požadované vlastnosti a počtu všech trojciferných čísel. Řešení: Pravděpodobnost je 0, Jaká je pravděpodobnost, že vytvořené číslo je dělitelné pěti? Počet všech trojciferných čísel je 900. Počet trojciferných čísel dělitelných pěti je 180 (každé páté je dělitelné pěti). Pravděpodobnost náhodného výběru trojciferného čísla dělitelného pěti je podílem počtu trojciferných čísel požadované vlastnosti a počtu všech trojciferných čísel. Řešení: Pravděpodobnost je 0,2. Maturita z matematiky ZD 11
12 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 10 Bazén na obrázku má hloubku h, šířku a, délku b. Svislé vnitřní rohy jsou zakulacené s poloměrem křivosti r. max. 3 body Vyjádři pomocí délky r, oč by se zmenšil půdorys původně obdélníkového bazénu zakulacením jednoho svislého rohu. Zmenšení půdorysu bazénu zaoblením jednoho svislého rohu můžeme vyjádřit jako rozdíl obsahu čtverce o straně r a čtvrtkruhu s poloměrem r. Řešení: r πr Určete objem vody v bazénu plném po okraj pomocí délek a, b, h, r. Bez zaoblení vnitřních rohů by byl objem vyjádřen jako a b h. Zmenšení půdorysu bazénu zaoblením svislých rohů můžeme vyjádřit jako rozdíl obsahu 4 čtverců o straně r a 4 čtvrtkruhů s poloměrem r. Řešení: V = h[ab (4r 2 πr 2 )] = abh 4r 2 h + πr 2 h VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 11 Funkce je dána grafem. 12 Maturita z matematiky ZD
13 11 Kterou dvojici vlastností má funkce na intervalu 3; 3? A) spojitá a rostoucí B) nespojitá a klesající C) spojitá a klesající D) nespojitá a prostá E) nespojitá a lichá 2 body Podle grafu je funkce evidentně nespojitá a prostá. Není lichá, graf není souměrný podle počátku. Řešení: D 12 Přímka p je určena rovnicí 3x + y 6 = 0. Rozhodněte o každém z následujících tvrzení ( ), zda je pravdivé (ANO), či nikoli (NE): ANO NE 12.1 Přímka p je rovnoběžná s přímkou m: x 3y + 6 = Přímka p je kolmá k přímce n: x 3y + 6 = Přímka p je kolmá k přímce o: x = y Přímka p prochází bodem M [1; 3]. Normálový vektor přímky p má souřadnice (3; 1). Přímka m má normálový vektor ( 1; 3). Přímky p, m nejsou rovnoběžné, protože (3; 1) k( 1; 3). Přímka n má normálový vektor (1; 3). Platí (3; 1) (1; 3) = 0, je tedy přímka n kolmá na přímku p. Přímka o má normálový vektor (1; 1). Není ani kolmý ani rovnoběžný s vektorem (3; 1). Dosazením zjistíme, že souřadnice bodu M rovnici přímky p vyhovují. Řešení: NE, ANO, NE, ANO 13 Vrcholy trojúhelníku ABC tvoří body se souřadnicemi A [1; 1], B [2; 1] a C [3; 2]. Jaké vlastnosti trojúhelník ABC má? A) je rovnoramenný, ostroúhlý B) je rovnoramenný, pravoúhlý C) je rovnostranný D) je rovnoramenný, tupoúhlý E) nemá žádnou z uvedených vlastností 2 body Maturita z matematiky ZD 13
14 Pomocí souřadnic bodů A [1; 1], B [2; 1], C [3; 2] nejprve určíme souřadnice vektorů: A B = ( 1; 2), C B = (1; 3), C A = (2; 1). Zjistíme, že vektory A B, C A mají stejnou velikost a jejich skalární součin je roven 0. Řešení: B VÝCHOZÍ OBRÁZEK K ÚLOZE Maturita z matematiky ZD
15 max. 4 body 14 Přiřaďte grafu každé goniometrické funkce na obrázcích nejvhodnější funkční předpis z možností A F: A) y = sin x B) y = 2 cos x C) y = sin x D) y = tg x E) y = cotg x F) y = cos x Funkce 14.1 nabývá maxima pro x = 0, z nabídky vyhovuje jen funkce y = cos 2x. Funkce 14.2 má pro x = 0 hodnotu 0. To platí o funkci y = sin x, ta ale v okolí bodu x = 0 neklesá. Proto rovnicí zobrazené funkce je y = sin x. Funkce 14.3 je neomezená a nespojitá. Protože je klesající a nespojitá v bodě x = 0, vyhovuje jí rovnice y = cotg x. Funkce 14.4 je také neomezená a nespojitá, ale pro x = 0 má hodnotu 0. Z výběru jí odpovídá funkce y = tg x, protože v okolí bodu x = 0 klesá. Řešení: B, C, E, D 15 Je dána nerovnice x + 1 x body Nerovnici vyhovují právě všechna reálná čísla x, pro která platí: A) x 1; ) B) x 1; 1 C) x 1; 1) D) x ( ; 1) E) x ( ; 1) x + 1 x + 1 x + 1 Nerovnici 1 anulujeme). Nerovnici 0 upravíme na podílový tvar 0. Úvahou nebo řešením metodou nulových bodů určíme, že x x 1 x nerovnici vyhovují právě všechna čísla menší než 1. Řešení: D KONEC TESTU Maturita z matematiky ZD 15
16 16 Maturita z matematiky ZD
17 III. KLÍČ 1) Maximální bodové ohodnocení je 35 bodů. 2) Úlohy 1 10 jsou otevřené. 3) Úlohy jsou uzavřené, s nabídkou možných odpovědí, kde u každé úlohy, resp. podúlohy je právě jedna odpověď správná. Tabulka úspěšnosti Počet bodů Výsledná známka Úloha Správné řešení Počet bodů (A B) C = 0; 3 1 bod 1.2 B A = 2; 3 1 bod 2 x = x y V = 3xy 3.2 V = bod m m 1 bod Kč 1 bod 5.2 I 2 = Kč Kč 1 bod 7 5 Kč /1min minut ,1 1 bod 9.2 0,2 1 bod r πr = r 2 (1 1 4 π) 1 bod 10.2 V = h[ab (4r 2 πr 2 )] = abh 4r 2 h + πr 2 h Maturita z matematiky ZD 17
18 11 D 2 body NE 12.2 ANO 12.3 NE 12.4 ANO 13 B 2 body B 14.2 C 14.3 E 14.4 D 15 D 2 body 4 podúlohy 2 b. 3 podúlohy 1 b. 2 podúlohy 0 b. 1 podúloha 0 b. 0 podúloh 0 b. max. 4 body 4 podúlohy 4 b. 3 podúlohy 3 b. 2 podúlohy 2 b. 1 podúloha 1 b. 0 podúloh 0 b. 18 Maturita z matematiky ZD
19 IV. ZÁZNAMOVÝ LIST 1) Maximální bodové ohodnocení je 35 bodů. 2) Úlohy 1 10 jsou otevřené. Zapište výsledek. 3) Úlohy jsou uzavřené, s nabídkou možných odpovědí, kde u každé úlohy, resp. podúlohy je právě jedna odpověď správná. Zapište vybranou možnost. Tabulka úspěšnosti Počet bodů Výsledná známka Úloha Správné řešení Počet bodů bod bod bod bod bod bod bod bod bod 10.2 Maturita z matematiky ZD 19
20 11 2 body body body 4 podúlohy 2 b. 3 podúlohy 1 b. 2 podúlohy 0 b. 1 podúloha 0 b. 0 podúloh 0 b. max. 4 body 4 podúlohy 4 b. 3 podúlohy 3 b. 2 podúlohy 2 b. 1 podúloha 1 b. 0 podúloh 0 b. 20 Maturita z matematiky ZD
CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné
VíceCVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka
VíceCVIČNÝ TEST 18. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 18 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Anna zdědila 150 000 Kč a banka jí nabízí uložit
VíceCVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde
VíceCVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 36 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Určete iracionální číslo, které je vyjádřeno číselným výrazem (6 2 π 4
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných
VíceCVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 2 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Od součtu libovolného čísla x a čísla 256 odečtěte číslo x zmenšené o 256.
VíceCVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 48 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán konvexní čtyřúhelník, jehož vnitřní
VíceCVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23
CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :
VíceCVIČNÝ TEST 29. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 29 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Smrk má vysokou klíčivost, jen 5 % semen nevyklíčí.
VíceCVIČNÝ TEST 19. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 19 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Určete, kolikrát je rozdíl čísel 289 a 255 větší než jejich součet.
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje
VíceCVIČNÝ TEST 17. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 17 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Jsou dány funkce f: y = x + A, g: y = x B,
VíceCVIČNÝ TEST 43. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 43 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Pro a, b R + určete hodnotu výrazu ( a b) 2 ( a + b) 2, víte-li,
VíceCVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 40 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Vypočtěte pro a 1; 3 hodnotu výrazu 4 + a 3 + a 3 ( 2). 1 bod VÝCHOZÍ TEXT
VíceCVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku
VíceCVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu
VíceCVIČNÝ TEST 39. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 13
CVIČNÝ TEST 9 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 1 I. CVIČNÝ TEST 1 bod 1 Do kruhu je vepsán rovnostranný trojúhelník. Jakou část obsahu kruhu
VíceCVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 24 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písemnou práci z chemie psalo všech 28 žáků ze
VíceCVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na bájný zikkurat tvaru komolého kolmého jehlanu s větší podstavou u země vede
VíceCVIČNÝ TEST 7. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 7 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Určete přirozené číslo n tak, aby platilo: 3 + 12 + 27 = n. 1 bod 2 Doplňte
VíceCVIČNÝ TEST 49. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 49 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Kolik hodnot proměnné a R existuje takových, že diference aritmetické
VíceCVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 22 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Kontroloři Státní zemědělské a potravinářské inspekce
VíceCVIČNÝ TEST 14. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 14 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST 1 bod 7x 11 1 Určete hodnotu výrazu pro x = 27. 11 7x 32 2 Aritmetický průměr
VíceCVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově
VíceCVIČNÝ TEST 53. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 53 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána funkce f: y = x p, x R {3}, kde p je reálný
VíceCVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
VíceCVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 37 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na staré hliněné desce je namalován čtverec
VíceModelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
VíceCVIČNÝ TEST 12. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 12 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písmena A, B, C a D vyjadřují každé jednu z číslic
VíceCVIČNÝ TEST 25. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 25 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V lidové výkupně barevných kovů vykoupili
VíceCVIČNÝ TEST 27. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 27 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Karel povídá: Myslím si celé číslo. Je záporné. Nyní
VíceModelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
VíceCVIČNÝ TEST 20. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 20 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Jsou dána tři celá čísla A, B, C. Zvětšíme-li číslo A o 1, číslo
VíceObecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.
5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených
VíceCVIČNÝ TEST 23. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 23 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Určete nulové body následujících výrazů. 1.1 V(a) = 9 a 27 3 a ; a
VíceCVIČNÝ TEST 42. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 42 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na číselné ose jsou zakresleny obrazy čísel
VíceCVIČNÝ TEST 6. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 6 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Každý z n žáků jedné třídy z gymnázia v Přelouči se
Více2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
VíceCvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
VíceMATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA DIDAKTICKÝ TEST MAHZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického
VíceCVIČNÝ TEST 38. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 38 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Pro a b a b zjednodušte výraz ( a b a ) ( b a b ). VÝCHOZÍ TEXT K ÚLOZE Jedním
VíceCVIČNÝ TEST 56. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 56 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 7 IV. Záznamový list 9 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE Vrchol komína Kocourkovské elektrárny vidí pozorovatel
VíceCvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................
VíceVZOROVÝ TEST PRO 2. ROČNÍK (2. A, 4. C)
VZOROVÝ TEST PRO. ROČNÍK (. A, 4. C) max. body 1 Vypočtěte danou goniometrickou rovnici a výsledek uveďte ve stupních a radiánech. cos x + sin x = 1 4 V záznamovém archu uveďte celý postup řešení. Řešte
VíceMatematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T DUBNA 07 : 9. dubna 07 D : 830 P P P : 30 M. M. : 30 : 8,8 M. :, % S : -7,5 M. P : -,5 :,4 Zopakujte si základní informace ke zkoušce: n Test obsahuje 30 úloh a
VíceVZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST MAIZD15C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického
VíceCVIČNÝ TEST 11. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 11 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je k dispozici m přepravek na ovoce. Prázdná přepravka
VíceCVIČNÝ TEST 47. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 47 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 3 IV. Záznamový list 5 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE Sbor chlapců a mužů se pro různé příležitosti
VíceMATEMATIKA. 2Pravidla správného zápisu odpovědí. 1Základní informace k zadání zkoušky DIDAKTICKÝ TEST. Testový sešit neotvírejte, počkejte na pokyn!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 30 bodů Pro přijetí uchazečů je rozhodné umístění v sestupném pořadí uchazečů podle dosaženého bodového hodnocení. 1Základní informace k zadání zkoušky
VíceMATEMATIKA MAIZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA DIDAKTICKÝ TEST MAIZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického
VíceCVIČNÝ TEST 55. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 55 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 9 IV. Záznamový list 2 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE Jsou dány dva poměry 4 : a : 2 a b : 2 : 4, kde a, b jsou
VíceCVIČNÝ TEST 8. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 23 IV. Záznamový list 25
CVIČNÝ TEST 8 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 23 IV. Záznamový list 25 I. CVIČNÝ TEST m 1 Vzorec F = κ 1 m R 2 vyjadřuje velikost gravitační síly, kterou na sebe
VíceMATEMATIKA vyšší úroveň obtížnosti
MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD11C0T04 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový
VíceII. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.
Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,
VíceFAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos
VíceCVIČNÝ TEST 4. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 21 IV. Záznamový list 23
CVIČNÝ TEST 4 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Písmena A a B vyjadřují každá jednu z číslic 0, 1, 2, 3, 4, 5, 6, 7, 8,
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu
VíceA[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
Více9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b
008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
VíceMatematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2017
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T BŘEZNA 07 D : 4 BŘEZNA 07 P P P : 964 : 0 M M : 0 : 8,8 M : 8,8 % S : -7,5 M P : -,5 :,8 Zopakujte si základní informace ke zkoušce: n Test obsahuje 0 úloh a na
VíceMaximální bodové Hranice. bílých polí.. žádné body. hodnocení. bodů. chybné řešení. První. je právě jedna. odpovědí. nesprávnou.
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testuu
VíceZáklady matematiky pracovní listy
Dagmar Dlouhá, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny pro předmět Základy matematiky vyučovaný Katedrou matematiky
VíceMATEMATIKA vyšší úroveň obtížnosti
MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD11C0T02 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový
VíceMATEMATIKA. v úpravě pro neslyšící MAMZD19C0T01 DIDAKTICKÝ TEST SP-3-T SP-3-T-A
MATEMATIKA v úpravě pro neslyšící MAMZD9C0T0 DIDAKTICKÝ TEST 2 SP-3-T SP-3-T-A Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 %. Základní informace k zadání zkoušky Didaktický test obsahuje
VíceZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
Vícec) nelze-li rovnici upravit na stejný základ, logaritmujeme obě strany rovnice
Několik dalších ukázek: Eponenciální rovnice. Řešte v R: a) 5 +. 5 - = 5 - b) 5 9 4 c) 7 + = 5 d) = e) + + = f) 6 4 = g) 4 8.. 9 9 S : a) na každé straně rovnice musí být základ 5, aby se pak základy mohly
VíceMANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH
Krok za krokem k nové maturitě Maturita nanečisto 005 MA4 MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH Matematika rozšířená úroveň Vážení vyučující! ředmětoví koordinátoři Centra pro zjišťování výsledků vzdělávání pro
VíceMATEMATIKA základní úroveň obtížnosti
MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro
Vícec jestliže pro kladná čísla a,b,c platí 3a = 2b a 3b = 5c.
Úloha 1 1 b. Od součtu neznámého čísla a čísla 17 odečteme rozdíl těchto čísel v daném pořadí. Vypočtěte a zapište výsledek v. Úloha 2 1 b. 25 Na číselné ose jsou obrazy čísel 0 a 1 vzdáleny 5 mm. Určete
VíceVzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.
Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)
VíceOpakování k maturitě matematika 4. roč. TAD 2 <
8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární
VíceCVIČNÝ TEST 16. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 16 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Brzký ranní vlak z Prahy do Brna zastavil
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu je
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory
VíceMATEMATIKA vyšší úroveň obtížnosti
MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD2C0T0 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit
VíceANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,
VíceKvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel.
Kvadratická funkce Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí y = ax 2 + bx + c Číslo a je různé od nuly, b,c jsou libovolná reálná čísla. Definičním oborem kvadratické funkce je
VíceMATEMATIKA 9 M9PZD15C0T01. 1 Základní informace k zadání zkoušky
MATEMATIKA 9 M9PZD15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
Více4.3.4 Základní goniometrické vzorce I
.. Základní goniometrické vzorce I Předpoklady: 0 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě
Více4.3.3 Základní goniometrické vzorce I
4.. Základní goniometrické vzorce I Předpoklady: 40 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě
VíceSystematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné
VíceMATEMATIKA vyšší úroveň obtížnosti
MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVDC0T03 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit
VíceMATEMATIKA MAMZD13C0T04
MATEMATIKA MAMZD13C0T04 DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického
VíceM - Příprava na 3. čtvrtletní písemnou práci
M - Příprava na 3. čtvrtletní písemnou práci Určeno pro třídu ODK VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
VíceMATEMATIKA MAMZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA DIDAKTICKÝ TEST MAMZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického
Více55. ročník matematické olympiády
. ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST Maimální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu je
VíceMATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
VíceFunkce. b) D =N a H je množina všech kladných celých čísel,
Funkce ) Napište funkční předpisy a najděte definiční obory funkcí f pro které platí: f ( ) je povrch krychle o straně b) f ( ) je objem kvádru s čtvercovou podstavou o straně a povrchem rovným c) f (
VíceUrčete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy: Vypočtěte, kolik korun je 5 setin procenta ze 2 miliard korun.
1. Operace s reálnými čísly Obsah jedné stěny krychle je 289 cm 2. Vypočítejte objem této krychle. [S= 4 913 cm 3 ] Určete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy:
Více2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole
MATEMATIKA MATEMATIKA DIDAKTICKÝ TEST DIDAKTICKÝ TEST DIDAKTICKÝ TEST MAMZD14C0T01 MAMZD14C0T01 MAMZD14C0T01 Maximální bodové hodnocení: 50 bodů 2.1 Pokyny k otevřeným úlohám Maximální Hranice úspěšnosti:
Více6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2
6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje
Více3. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE
. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE Dovednosti:. Lineární funkce. -Vědět, že je vyjádřena předpisem f: y = a + b, a znát geometrický význam konstant a,b. -Umět přiřadit proměnné její
VíceMATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!
MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací
VíceOdvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].
Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1
VíceRadián je středový úhel, který přísluší na jednotkové kružnici oblouku délky 1.
Goniometrické funkce Velikost úhlu v míře stupňové a v míře obloukové Vjadřujeme-li úhl v míře stupňové, je jednotkou stupeň ( ), jestliže v míře obloukové, je jednotkou radián (rad). Ve stupňové míře
Více