V týpí sedí dva členové kmene Apačů. Jeden je velký a druhý malý. Malý je syn velkého, ale velký není otec malého. Jak je to možné?
|
|
- Petra Čechová
- před 6 lety
- Počet zobrazení:
Transkript
1 19 Kdo se směje naposled Třem studentům matematiky se chce na kolejích pomstít spolubydlící medik, a proto všem třem v noci pomaluje obličeje vzorečky. Ráno se ti tři probudí ve stejném pokoji, posadí se na posteli a začnou se smát. Každý z nich se směje automaticky, když vidí pomalovaný obličej. Pokud si jeden z nich uvědomí, že je také pomalován, tak se smát přestane. Jak na to tedy mohl ten první přijít, když na sebe nijak neukazovali ani spolu nemluvili a v místnosti nebylo zrcadlo? 20 Dny v týdnu Jestliže je dnes neděle, jaký den bude dva dny po dni před dnem po zítřku? 21 Indiáni V týpí sedí dva členové kmene Apačů. Jeden je velký a druhý malý. Malý je syn velkého, ale velký není otec malého. Jak je to možné? 22 Holiči Do města zavítal jeden cizinec a rozhodl se, že se nechá ostříhat. Ve městě jsou pouze dva holiči. Šel se k oběma nejdříve jen podívat. Přišel k prvnímu a uviděl, že má všude nepořádek a na hlavě ten nejnemožnější účes. U druhého zpozoroval, že je tam čisto a pěkně uklizeno a na hlavě má slušivý účes. Kterého holiče byste cizinci doporučili? 23 Skříňky Jedna královská dcera se chtěla vyhnout vdavkám, a tak si vymýšlela na své nápadníky různé úlohy se skříňkami. Na základě nápisů na skříňkách, kde nejvýše jeden je pravdivý, měli určit, ve které z nich se nachází snubní prsten. 1. Zlatá skříňka Prsten je v této skříňce 2. Stříbrná skříňka Prsten není v této skříňce 3. Bronzová skříňka Prsten není ve zlaté skříňce 23
2 23 Dort Rozdělte třemi řezy klasický dort na 8 částí. 24 Kolikrát se otočí? V krabičce jsou dvě ozubená kolečka. Větší z nich je uprostřed krabičky, má 24 zubů a netočí se je napevno. Menší má 8 zubů a obíhá kolem většího kolečka. Kolikrát se menší kolečko otočí vůči krabičce (kolem své osy) při jednom oběhnutí kolem většího kolečka? 25 Dělení čtverce Zkuste rozdělit čtverec na 13 úplně stejných částí. 26 Bonbony Na stole leží 3 sáčky. Jeden obsahuje dva černé, druhý dva bílé a třetí jeden černý a jeden bílý bonbon. Na sáčcích byly nálepky ČČ, BB, ČB. Někdo je však úmyslně pomíchal tak, že žádná nálepka teď není na správném sáčku. Kolik musíme vytáhnout bonbonů a z kterých sáčků tak, abychom dokázali nálepky správně přiřadit? Po vytažení musíme bonbon ihned vrátit do původního sáčku. 27 Rovnice Nahraďte otazníky vhodnými znaménky +, -,, / a závorkami, aby platily následující rovnosti: 17? 21? 3 = 20? 34? 16 = 30? 39? Safari Na safari se sešlo 78 nohou a 35 hlav. Kolik je tam pštrosů a kolik žiraf? 36
3 24 Doplňte v posledním čtverci číslo místo otazníku. 25 Doplňte číslo místo otazníku. 26 Namísto otazníku doplňte číslo. 27 Zjistěte, které číslo sem nepatří. 51
4 1. Prasátka Na obrázku je několik prasátek v ohradě. Dokážete pomocí tří rovných čar rozdělit prasátka tak, aby bylo každé prasátko v samostatné ohrádce? 2 Panáček v domečku Dokážete nakreslit stejný obrázek, který tady vidíte, aniž byste zvedli pero (tužku) z papíru? Pero musí na papír psát při každém pohybu a vy stejně nějak musíte docílit mezery mezi domečkem a panáčkem. Dokážete to? Tento obrázkový hlavolam skutečně má řešení. Je ale potřeba osvobodit svou mysl od zažitých stereotypů! Pro upřesnění: je možné kreslit přes nakreslené čáry několikrát. 3 Čtverec, trojúhelník, kruh Na obrázku vidíte čtverec, trojúhelník a kruh, které se navzájem překrývají. Na obrázku se také objevuje několik čísel. Zadání úlohy je následující: Jaký je součet čísel, která jsou zároveň ve čtverci i trojúhelníku, a nejsou v kruhu? 62
5 9 Restaurace Společnost šesti pánů obědvala v restauraci. Po vcelku dobrém obědě došlo na placení: každý z pánů zaplatil 50 Kč, dohromady tedy zaplatili 300 Kč. Účet celého stolu však činil jen 250 Kč. Při vracení zbývajících 50 Kč nechali pánové vrchnímu 20 Kč jako spropitné, a tak jim vrchní vrátil po 5 Kč. Každý ze šesti pánů tedy zaplatil 45 Kč, dohromady 270 Kč. S těmi 20 Kč na spropitné to činí 290 Kč. Kde ale zůstalo těch 10 Kč zbývajících do 300 Kč? 10 Zásilka Každý den přilétá ve 12:00 na letiště v Praze letadlo se spěšnou zásilkou. Pro zásilku vyráží z Liberce auto, a to tak, aby tam bylo přesně v poledne. Tam si ji vyzvedne a jede s ní zpět do Liberce. Jednoho dne ale přistálo letadlo dříve, a tak z letiště vypravili se zásilkou poslíčka na kole. Jel autu naproti a to 4x pomaleji než samotné auto. Když se za 20 minut setkali, předal zásilku a odjel zpět. O kolik minut dřív přijelo tentokrát auto do Liberce. 11 Peníze Do kasina přišel muž, který měl několik dvacetikorun a několik korun. Dohromady nebylo mincí ani dvacet. Muž všechno vsadil a vyhrál. Když nyní spočítal mince, zjistil, že má 6krát víc peněz. Také zjistil, že má tolik dvacetikorun, kolik měl předtím korun a naopak. Kolik měl původně peněz? 12 Detektivka Vedoucí pracovník přijížděl každodenně vlakem na nejbližší nádraží ráno v 5:30. Ve stejném čase vždy přijížděl z podniku k nádraží osobní automobil, který ho dovezl na pracoviště. Jednou v pondělí přijel na nádraží již ve 4:30, a šel tedy automobilu po silnici zvolna naproti. Jakmile se s ním setkal, nasedl a přijel do podniku o 20 minut dříve než obvykle. Tak to alespoň vysvětloval příslušníkům police. Ten den se totiž ráno stala u silnice vražda. Policie odhadla dobu vraždy podle rozbitých hodinek oběti na 5:25. Měl alibi, nebo je vrahem? 13 Lanovka Návštěvník horské chaty se rozhodl, že se sveze na čerstvém vzduchu sedačkovou lanovou dráhou. Všiml si, že v jednom okamžiku měla sedačka 74
6 9 Rovnice 3 Získejte rovnost přemístěním dvou zápalek. 10 Velký čtverec Tento velký čtverec obsahuje 25 malých čtverců, 16 čtverců po dvou zápalkách, 9 čtverců po třech zápalkách a 4 čtverce o čtyřech zápalkách. a) Odeberte 20 zápalek tak, že vzniklý obrazec bude obsahovat pouze 10 čtverců. b) Odeberte 24 zápalek tak, že zůstane 9 stejných čtverců v symetrickém postavení. 11 Tři čtverce Osmnáct zápalek ohraničuje 6 malých čtverců a 1 velký čtverec. Přeložením 4 zápalek vytvořte tři čtverce. 80
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Do jednoho vagonu se vejde 70
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Prohlédni si obrázek a vyber správnou
IT-SLOT 3. ročník Finálové otázky
1 Které číslo chybí? 30 60 27 54 2 V každém čtverci je jedno číslo chybné. Určete je. A=99, B=63 A=127, B=56 A=127, B=63 A=270, B=234 3 4 Určete chybějící číslo místo otazníku. 1 14 10 16 Karolína přinesla
Matematický KLOKAN 2006 kategorie Junior
Matematický KLOKAN 006 kategorie Junior Vážení přátelé, v následujících 7 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě dalších evropských zemí. V níže uvedeném testu je zadáno čtyřiadvacet
Jméno a příjmení. Pokud budete chtít svou odpověď opravit, zabarvěte původně zakřížkovaný čtvereček a zakřížkujte nový čtvereček.
MATEMATIKA 5 M5PAD19C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 14 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby Časový limit pro řešení didaktického testu
Jakýkoliv jiný způsob záznamu odpovědí (např. dva křížky u jedné úlohy) bude považován za nesprávnou odpověď.
MATEMATIKA 5 M5PZD16C0T02 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 60
SOUBOR TESTOVÝCH ÚLOH Z MATEMATIKY
SOUBOR TESTOVÝCH ÚLOH Z MATEMATIKY V široce otevřených úlohách 2 7 zapisujte celý postup řešení. 1 Vypočtěte, kolikrát kratší je časový interval sekund oproti časovému intervalu minuty. úzce otevřená 6krát
Matematika IV, VŠB-TU Ostrava. Úvodní 5minutovky. Pavel Ludvík. 18. listopadu 2015
Matematika IV, VŠB-TU Ostrava Úvodní 5minutovky Pavel Ludvík 18. listopadu 2015 Týden 1. 1. Vyřešte rovnici x 2 x 6 = 0. Ověřte dosazením, že funkce e 3x a e 2x splňují rovnici pro každé x R. f (x) f (x)
Petr Husar, www.e-matematika.cz nesnesitelně snadná matematika! Test z matematiky základní školy úroveň 2 řešení
Test z matematiky základní školy úroveň 2 řešení Každá otázka je za 1 bod, celkový počet bodů je 20. 1. Tři podnikatelé srovnávali své výdaje za měsíc listopad. Novákovy výdaje byly dvakrát větší než Šindelářovy
Přípravný kurz - Matematika
Přípravný kurz - Matematika Téma: Procenta, poměr, trojčlenka Klíčová slova: Procenta, poměr, zvětšení, zmenšení, trojčlenka, měřítko Autor: Mlynářová 2 9 9:02 Trojčlenka označuje postup při řešení úloh
Přípravný kurz - Matematika
Přípravný kurz - Matematika Téma: Procenta, poměr, trojčlenka Klíčová slova: Procenta, poměr, zvětšení, zmenšení, trojčlenka, měřítko Autor: Mlynářová 1 Trojčlenka označuje postup při řešení úloh přímé
Modulární systém dalšího vzdělávání pedagogických pracovníků JmK. v přírodních vědách a informatice CZ.1.07/1.3.10/
Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Teorie grafů Sbírka cvičení Domečkologie Zkuste nakreslit domečky na obrázku. Které
Kategorie: U 1 pro žáky 1. ročníků učebních oborů
Kategorie: U 1 pro žáky 1. ročníků učebních oborů 1) Kolika způsoby lze zaplatit částku 50 Kč, smíme-li použít pouze mince v hodnotě 1 Kč, 5 Kč a 10 Kč? ) Umocněte: 1 7 p3 q 3 r + 7pq r 3 = 3) Přeložíme-li
MATEMATIKA 7 M7PID15C0T01. 1 Základní informace k zadání zkoušky
MATEMATIKA 7 M7PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
V jídelně jsou tři stoly se stejným počtem židlí. Celkem si k nim posedalo 18 dětí, žádná židle nezbyla prázdná. Kolik dětí sedělo u každého stolu?
Úloha 1 Ke každé z jednoduchých úloh přiřaď, jaký výpočet určuje správný výsledek úlohy. 18 : 3 = 18 + 3 = 18. 3 = 18-3 = V jídelně jsou tři stoly se stejným počtem židlí. Celkem si k nim posedalo 18 dětí,
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Železná trubka o délce 3 metry
Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 9 M9PAD9C0T0 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 6 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby Základní informace k zadání zkoušky Časový limit
M - Slovní úlohy řešené rovnicí - pro učební obory
M - Slovní úlohy řešené rovnicí - pro učební obory Autor: Mgr. Jaromír Jurek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s využitím odkazu na www.jarjurek.cz. VARIACE 1 Tento
Modulární systém dalšího vzdělávání pedagogických pracovníků JmK. v přírodních vědách a informatice CZ.1.07/1.3.10/
Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Teorie grafů Sbírka cvičení Projekt učitelé Domečkologie Zkuste nakreslit domečky
Příprava na pololetní písemnou práci 9. ročník
Příprava na pololetní písemnou práci 9. ročník 1. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: 1 7 1 a) 0, b) 0,01. 1000 + 10. c) 0,5. 0,06 0,09
Druháci a matematika VII. Násobíme, dělíme do 20
Druháci a matematika VII Násobíme, dělíme do 20 1. Násobení 1. Vyznačte, jak děti stojí na hřišti. V kolika řadách stojí? V kolika stojí zástupech? Kolik je všech dětí na hřišti? Jak to vypočítáme? 2.
Úlohy soutěže MaSo, 13. května 2009
Úlohy soutěže MaSo, 13. května 2009 1. Je možné ze 36 zápalek složit pravoúhlý trojúhelník? Pokud ano, jak? (Zápalky se nesmějí ztrácet, lámat ani jinak zkracovat a dávají se jen na obvod.) [ano: 9, 12
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou zakresleny rovinné
Matematika 1. Otázka číslo: 1
Matematika 1 Test vychází z početních příkladů pro žáky 8. až 9. tříd. Úlohy pokrývají různá matematická témata. Většina slovních úloh jde řešit rovnicí i úsudkem. Otázka číslo: 1 Tři podnikatelé srovnávali
Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 9 M9PDD19C0T04 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
U každé úlohy je uveden maximální počet bodů.
MATEMATIKA MPZD1C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 1 Maximální bodové hodnocení: 0 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 0 minut.
TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 5 M5PID17C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 15 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 70
Pokud budete chtít svou odpověď opravit, zabarvěte původně zakřížkovaný čtvereček a zakřížkujte nový čtvereček.
MATEMATIKA 5 M5PID19C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 14 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je uveden
Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku
Poměry a úměrnosti Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku S poměrem lze pracovat jako se zlomkem a : b = a b porovnávat,
TVAROSLOVÍ Mgr. Soňa Bečičková
TVAROSLOVÍ Mgr. Soňa Bečičková ČÍSLOVKY VY_32_INOVACE_CJ_3_15 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Druhy číslovek, skloňování číslovek, duálové skloňování
Jméno a příjmení. Pokud budete chtít svou odpověď opravit, zabarvěte původně zakřížkovaný čtvereček a zakřížkujte nový čtvereček.
MATEMATIKA 5 M5PCD19C0T03 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 14 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby Časový limit pro řešení didaktického testu
MATEMATIKA. 7. třída. Scio Matematika ukázkový test 7. třída
MATEMATIKA 7. třída 1. Pavel musí vypracovat slohovou práci o rozsahu 4000 slov. Za půl hodiny napíše v průměru 100 slov. Kolik hodin Pavel potřebuje pro vytvoření slohové práce, pokud se chce po dopsání
Téma 1: Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel)
Téma : Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel) Příklady Číselná osa ) Která z následujících čísel neleží
Rovnoměrný pohyb IV
2.2.4 Rovnoměrný pohyb IV Předpoklady: 02023 Pomůcky: Př. : erka jede na kole za kamarádkou. a) Za jak dlouho ujede potřebných 6 km rychlostí 24 km/h? b) Jak daleko bude po 0 minutách? c) Jak velkou rychlostí
PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo:
PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo: 1. Toník se dopravuje ze školy domů autobusem číslo 176, který jezdí vždy v celou hodinu a pak dále po každých 15 minutách. Dnes dorazil Toník
Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro
Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.
0,2 0,20 0, Desetinná čísla II. Předpoklady:
1.2.2 Desetinná čísla II Předpoklady: 010201 Pedagogická poznámka: Je třeba zahájit tak, aby se stihl ještě společný začátek příkladu 7 (pokud někdo příklad 7 začne s předstihem, nevadí to, ale jde o to,
1. Dvě mince dávají dohromady 3 koruny, i když jedna z nich není koruna. Co je to za mince?
1. Dvě mince dávají dohromady 3 koruny, i když jedna z nich není koruna. Co je to za mince? 2. V pokoji je tma a v zásuvce prádelníku je čtyřiadvacet červených a čtyřiadvacet modrých ponožek. Kolik nejméně
Příprava na pololetní písemnou práci 9. ročník
Příprava na pololetní písemnou práci 9. ročník. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: a) 7 0, b) 9 4 0,0 0000 0, k) 6 c) 0,0,06 0,09:0, d)
MATEMATIKA 9 Přijímací zkoušky na nečisto
787 Střední průmyslová škola stavební, Hradec Králové, Pospíšilova tř. MATEMATIKA 9 Přijímací zkoušky na nečisto 7. 3. 2017 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50
Slovní úlohy řešené rovnicí pro učební obory
Variace 1 Slovní úlohy řešené rovnicí pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Slovní
ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ
ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ 7 NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN! Test obsahuje 30 úloh na 60 minut. Každá úloha má právì jedno správné øešení. Za správné øešení získáš 2 body. Za chybnou odpovìï ztratíš
3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose
3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,
Proč je lepší, je-li poklop na studni kulatý, než aby byl ve tvaru čtverce?
60. Bohyně Vedle sebe seděly tři bohyně Pravda, která vždy mluví pravdu, Lež, která vždy lže a Polopravda, která mluví někdy pravdu a někdy lež. Poutník by rád zjistil, která je která, a tak se ptá: Poutník:
M08-01 Přijímačky nanečisto osmileté studium matematika
M08-01 Přijímačky nanečisto osmileté studium matematika Řešení 1) Bratři Martin a Tomáš dostali stolní hru, ve které se hrálo o papírové peníze - dolary. Martin rozdělil peníze před začátkem hry tak, že
1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm
1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm jablek více než na první. Kolik jablek je dohromady na stole, víš-li, že na druhé hromádce
MATEMATICKÉ DOVEDNOSTI
MA1ACZZ506DT Hodnocení výsledků vzdělávání žáků 5. ročníků ZŠ 2006 MATEMATICKÉ DOVEDNOSTI DIDAKTICKÝ TEST A Testový sešit obsahuje 12 úloh. Na řešení úloh máte 40 minut. Zde v testovém sešitě si můžete
Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ ŘÍJEN LISTOPAD PROSINEC
Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání
MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky
MATEMATIKA 9 M9PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)
Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015
1. otázka. 2. otázka = Ve které z následujících možností je výsledek uvedeného výpočtu? 3. otázka
1. otázka Paní Irena měla černé, bílé a černobílé kočky. elkově jich měla dvanáct. Z toho bylo šest černých a čtyři bílé. Jakou část z celkového počtu představují černobílé kočky? 2. otázka 24 + 12 3 5
MATEMATIKA Srovnávací pololetní práce; příklady 7. ročník, II. pololetí
MATEMATIKA Srovnávací pololetní práce; příklady 7. ročník, II. pololetí I. Celá čísla,vypočítejte: -3 + 8-5 + 2-9 4 8 8 2-6 + 9-6 2 25 + 32 4 5-8 + 5-6 2-6 + 4-2 + 30 8 9 42 20-9 + 3 9 +25 4 7-3 + 0 9
100 50 : [20 + 25 : (101 96)] = 100 50 : [20 + 25 : 5] = 100 50 : [20 + 5] = = 100 50 : 25 = 100 2 = 98
Test z matematiky základní školy úroveň 1 řešení Každá otázka je za 1 bod, celkový počet bodů je 20. 1. Výsledek výpočtu 100 50 : [20 + 25 : (101 96)] 100 50 : [20 + 25 : (101 96)] = 100 50 : [20 + 25
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,
Jak by mohl vypadat test z matematiky
Jak by mohl vypadat test z matematiky 1 Zapište zlomkem trojnásobek rozdílu, 2 Vypočtěte: 2.1 0,05: 0,001 0,7 0,3 = 2.2 : = 3 Vypočtěte a výsledek zapište zlomkem v základním tvaru: 36 3 3 16 + 1 6 = 4
1. Pojem celé číslo. 2. Zobrazení celých čísel. Číselná osa :
C e l á č í s l a 1. Pojem celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek, 8 korun apod). Desetinná čísla
Záhadná slova úloha za 2 body
Záhadná slova úloha za 2 body Určete, co mají společného následující slovní spojení: HRANICE VOJAKA LIBA ULICE KORUNOVACE VLADCI NALADILA DEN KOMU SLAST KACENKY JEDLE GREAT KOLT BRLOH - finálové kolo (8.6.2011)
Test Zkušební přijímací zkoušky
Test Zkušební přijímací zkoušky 1. Vypočtěte: ( 10 1.5) ( 4 ).( 15). ( 5 6). Doplňte číslo do rámečku, aby platila rovnost:.1. 4 11 10. 8 16 6.. 49 7 1.. + 1. Proveďte početní operace:.1. 6x 4x ( 4x x)
Nápovědy k numerickému myšlení TSP MU
Nápovědy k numerickému myšlení TSP MU Numerické myšlení 2011/var. 01 26. Ciferné součty čísel v každém z kruhů mají tutéž hodnotu. Pozor, hledáme číslo, které se nehodí na místo otazníku. Jedná se o dvě
Ekvivalentní úpravy soustavy rovnic v oboru reálných čísel: Metody řešení soustavy dvou rovnic o dvou neznámých:
Soustava rovnic o dvou neznámých Soustavou rovnic nazýváme dvojici rovnic, která má platit současně. Řešením takové soustavy je uspořádaná dvojice kořenů [x, y],která splňuje obě rovnice. Ekvivalentní
2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 9 M9PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
Matematika 5. ročník
Matematika 5. ročník Pátá třída (Testovací klíč: EFPNGSXL) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Slovní úlohy / Geometrie / Počítání s čísly / 0/10 0/7 0/9 Obecná
MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky
MATEMATIKA 9 M9PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
KoMáR - Řešení 5. série školní rok 2015/2016. Řešení Páté Série
Řešení Páté Série Úloha 1. Máte za úkol zaplnit následující útvar čísly od 1 do 13. Součet těchto čísel musí být v každé řadě trojúhelníků stejný. Je možné útvar takto zaplnit? Zdůvodněte své tvrzení.
Školní kolo soutěže Mladý programátor 2015, kategorie A, B
Doporučené hodnocení školního kola: Hodnotit mohou buď učitelé školy, tým rodičů nebo si žáci, kteří se zúčastní soutěže, mohou ohodnotit úlohy navzájem sami (v tomto případě doporučujeme, aby si žáci
Mgr. Lenka Jančová 20. 3. 2014 IX.
Jméno Mgr. Lenka Jančová Datum 20. 3. 2014 Ročník IX. Vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Vzdělávací obor MATEMATIKA Tematický okruh SLOVNÍ ÚLOHY Téma klíčová slova Slovní úlohy o pohybu, soustavy
15 Lze obarvit moře?
Lze obarvit moře? 15 Pomůcky Papír, tužka, kalkulačka Úvod Nejen v matematice, ale i v jiných oborech (fyzika, chemie, biologie) se pracuje s údaji, k jejichž zápisu se používají velká čísla (tj. čísla,
Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.
Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání
Přiřaď k páčkám 1, 2, 3, 4, 5, 6, 7 písmena a, b, c, d a urči,
21. Na obrázku je robot, který na sobě má 7 páček, osmá schází. Přiřaď k páčkám 1, 2, 3, 4, 5, 6, 7 písmena a, b, c, d a urči, jak má vypadat osmá, chybějící páčka. 32 6. Na obrázku je podivný letící hmyz
že sem na jih zabloudil letos nějaký orel, aby unikl chladnějším
Kapitola 3 Na farmě vzdálené třicet kilometrů severně od údolí Pastvin draků se Larisa postavila a setřela si pot z čela. Naklonila košík, který držela v ruce, a podívala se na červeňoučké jahody, jež
Příklad 1. Z uvedených možností vyberte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Koupím byt nebo nové auto.
Příklad 1. Z uvedených možností vyberte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Koupím byt nebo nové auto. A: Koupím-li byt, nekoupím nové auto. B: Koupím byt nebo nekoupím nové auto.
TEST LOGIKY. Využitelný pro měření kompetence: řešení problémů, orientace v informacích
TEST LOGIKY Využitelný pro měření kompetence: řešení problémů, orientace v informacích Forma: papír - tužka Čas na administraci: max. 25 min. Časový limit: ano Vyhodnocení: ručně cca 10 minut jeden testovaný
INTERNETOVÉ ZKOUŠKY NANEČISTO 1. kolo řešení matematika
INTERNETOVÉ ZKOUŠKY NANEČISTO 1. kolo řešení matematika 1. Zimní bundu zdražili v obchodě o 22 % a po zdražení stála 5 68 Kč. Kolik korun stála bunda před zdražením? 122 % 5 68 Kč 1 % 44 Kč 100 % 4 400
MATEMATIKA základní úroveň obtížnosti
MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro
Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6.
Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6. ROČNÍK Zadání úloh Autorka úloh: Mgr. Lucie Filipenská Katedra didaktiky
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Ke každé z jednoduchých úloh přiřaď,
MATEMATIKA 9 Přijímací zkoušky na nečisto
787 Střední průmyslová škola stavební, Hradec Králové, Pospíšilova tř. MATEMATIKA 9 Přijímací zkoušky na nečisto 12.1.2017 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50
Očekávaný výstup Zvládnutí řešení slovních úloh, vedoucích k sestavení dvou rovnic o dvou neznámých. Speciální vzdělávací potřeby.
Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Ing. Renata Dupalová Datum 18.7.2014 Ročník 9. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika
Úlohy na procvičení z matematiky před nástupem na SPŠST Panská
Úlohy na procvičení z matematiky před nástupem na SPŠST Panská PROCENTA Kolik je 0 % ze? Určete základ, je-li 0 rovno % Kolik procent je 0 ze 7? Najděte číslo, které je o % větší, než číslo 0 Je zlomek
PŘIJÍMACÍ ZKOUŠKY 2010
MATEMATIKA Obor: 79-41-K/41 Součet bodů: Opravil: 2. termín Kontroloval: Vítejte v Omské, v následujících 45 minutách budete řešit test z matematiky. Dobře si přečtěte zadání, výpočty uvádějte s celým
Dláždění I. Předpoklady:
1.3.18 Dláždění I Předpoklady: 010317 Pedagogická poznámka: tato hodina se věnuje opakování výpočtů povrchů a bylo by zřejmě možné ji zařadit i do úvodního opakování. Nakonec jsem ji přidal na toto místo,
MATEMATIKA 8. ročník II. pololetí
MATEMATIKA 8. ročník II. pololetí Úpravy algebraických výrazů: Sčítání a odčítání celistvých výrazů: 1.A a) 5a + ( 3a + 7 ) b) (-3a 4b ) - ( 12a + 6 ) c) ( -8a + 3 ) ( -15a 4 ) 1.B a) 4x + ( 4x + 7 ) b)
Matematický KLOKAN 2006 kategorie Kadet (A) 15. (B) 16. (C) 17. (D) 13. (E) 14. (A) 5 (B) 3 (C) 4 (D) 2 (E) 6
Matematický KLOKAN 2006 kategorie Kadet Úlohy za 3 body 1. Soutěž Klokan se koná každoročně od roku 1991. Kolikátý ročník soutěže probíhá v roce 2006? (A) 15. (B) 16. (C) 17. (D) 13. (E) 14. 2. Bod O je
2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 7 M7PZD15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
součet druhé mocniny čísla zvětšeného o jedna a odmocniny z jeho trojnásobku
.7. Zápisy pomocí výrazů I Předpoklady: 70 Pedagogická poznámka: Hodina obsahuje poměrně málo příkladů, protože se snažím, aby z ní všichni spočítali opravdové maximum. Postupujeme tedy pomalu a kontrolujeme
Základní škola Kaznějov, příspěvková organizace, okres Plzeň-sever
Základní škola Kaznějov, příspěvková organizace, okres Plzeň-sever DIGITÁLNÍ UČEBNÍ MATERIÁL Název projektu Registrační číslo projektu UČENÍ JE SKRYTÉ BOHATSTVÍ INOVACE VÝUKY ZŠ KAZNĚJOV CZ.1.07/1.1.12/02.0029
Jméno a příjmení. Pokud budete chtít svou odpověď opravit, zabarvěte původně zakřížkovaný čtvereček a zakřížkujte nový čtvereček.
MATEMATIKA 5 M5PBD19C0T02 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 14 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby Časový limit pro řešení didaktického testu
MATEMATICKÉ DOVEDNOSTI
Hodnocení výsledků vzdělávání žáků 9. tříd 005 MA0Z9 MATEMATICKÉ DOVEDNOSTI A Testový sešit obsahuje 7 úloh. Na řešení úloh máte 40 minut. Při řešení konstrukční úlohy užívejte rýsovací potřeby. V průběhu
MATEMATIKA NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! 9. třída
MATEMATIKA 9. třída NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! JMÉNO TŘÍDA ČÍSLO ŽÁKA AŽ ZAHÁJÍŠ PRÁCI, NEZAPOMEŇ: www.scio.cz, s.r.o. Pobřežní 34, 186 00 Praha 8 tel.: 234 705 555 fax: 234 705
9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b
008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly
MATEMATIKA M9PID14C0T01. 1 Základní informace k zadání zkoušky
MATEMATIKA DIDAKTICKÝ TEST M9PID14C0T01 Maximální bodové hodnocení: 35 bodů 1 Základní informace k zadání zkoušky Didaktický test obsahuje 14 úloh. Časový limit pro řešení didaktického testu je 60 minut.
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Maminka má v peněžence 4 stokoruny,
KLÍČ SPRÁVNÝCH ŘEŠENÍ Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY DO 4LETÉHO SŠ STUDIA VE STŘEDNÍCH ŠKOLÁCH ZŘIZOVANÝCH MORAVSKOSLEZSKÝM KRAJEM
KSŘP-M9M0CINT JAK JSOU HODNOCENY OTEVŘENÉ ÚLOHY Z MATEMATIKY (TEST PRO PŘIJÍMAČKY DO 4LETÉHO SŠ STUDIA) ÚLOHA 1 1 O kolik více je 4 10 než 4 10? o 2 400 2 400 4 000 1 600 Numerická chyba ve výsledku, např.
km vyjel z téhož místa o 3 hodiny později h km. Za jak dlouho dohoní cyklista chodce? h km vyjede z téhož místa o 2 hodiny h
ÚLOHY O POHYBU-řešení 1. Za codcem jdoucím průměrnou ryclostí 5 vyjel z téož místa o 3 odiny později cyklista průměrnou ryclostí 20. Za jak dlouo dooní cyklista codce? v 1 =5, t1 =(x+3), s 1 =v 1.t 1 v
= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme
- FUNKCE A ROVNICE Následující základní znalosti je nezbytně nutné umět od okamžiku probrání až do konce kapitoly (většinou do napsání čtvrtletní písemné práce, na výjimky z tohoto pravidla bude upozorněno).
PŘIJÍMACÍ ZKOUŠKY 2008
MATEMATIKA Obor: 79-41-K/401 Součet bodů: Opravil: 1. termín Kontroloval: Vítejte v Omské, v následujících 45 minutách budete řešit test z matematiky. Dobře si přečtěte zadání, výpočty uvádějte s celým
Slovní úlohy řešené soustavou rovnic
Slovní úlohy řešené soustavou rovnic Jirka s maminkou byl na nákupu. Maminka koupila 2 kg broskví a 5 kg brambor a platila 173 Kč. Sousedka koupila 3 kg broskví a 4 kg brambor a platila 186 Kč. Kolik stál
Jakýkoliv jiný způsob záznamu odpovědí (např. dva křížky u jedné úlohy) bude považován za nesprávnou odpověď.
MATEMATIKA 5 M5PID16C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 60
2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 9 M9PID19C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
Převrácená čísla
..0 Převrácená čísla Předpoklady: 007 Př. : Vypočti. Výsledek uveď v základním tvaru. a) 5 7 b) c) 0 9 d) 4 0 8 7 0 6 6 5 8 a) 5 7 5 = 7 = 4 0 7 5 4 b) 6 = = 8 6 c) 0 9 0 9 = = 7 0 9 0 d) 6 6 8 4 = = 5