Mgr. Lenka Jančová IX.
|
|
- Radek Procházka
- před 9 lety
- Počet zobrazení:
Transkript
1 Jméno Mgr. Lenka Jančová Datum Ročník IX. Vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Vzdělávací obor MATEMATIKA Tematický okruh SLOVNÍ ÚLOHY Téma klíčová slova Slovní úlohy o pohybu, soustavy rovnic o dvou neznámých, grafické znázornění, odpověď Anotace Pracovní list slouží k procvičování slovních úloh o pohybu nebo formou Kupky.
2 KUPKA: Žáci procvičují slovní úlohy o pohybu, soustavy rovnic o dvou neznámých individuálním tempem. Žáci si berou lístky z kupky s příklady a počítají na arch, po vypočítání všech příkladů, arch posunou dál a žáci kontrolují vypočítané příklady vždy jinou barvou. Arch se podá ještě dalšímu žákovi a ten opět kontroluje příklady opět jinou barvou. Na závěr se arch vrátí původnímu majiteli a ten má zkontrolované příklady. Při nejasnostech učitel objasní výsledek. Pracovat se může ve skupinách 3-4 členných nebo samostatně.
3 Slovní úlohy pohyb 1) Dan projížděl obcí rychlostí 16 m/s. Překročil povolenou rychlost 50 km/h? 2) Z Brna vyjela současně opačnými směry dvě auta. První jelo na Prahu 80 km/h a druhé jelo na Uherské Hradiště průměrnou rychlostí 70 km/h. Jak daleko od sebe budou za 1,5 hodiny? 3) Letadlo letí stálou rychlostí 800 km/h k letišti, které je ve vzdálenosti km. Za jak dlouho letadlo přistane na letišti? 4) Dvojčata Monika a Martina si vyšli na procházku, průměrnou rychlostí 3 km/h. Po dvaceti minutách vyjel na kole jejich starší bratr Filip, rychlostí 5 km/h. Kdy sestry dojede a v jaké vzdálenosti od domu? 5) Města M a N jsou od sebe vzdáleny 250 km. Z obou měst současně vyjedou proti sobě dvě auta. První, nákladní jede rychlostí 50 km/h, druhé osobní jede 80 km/h. Za jak dlouho se potkají a v jaké vzdálenosti od místa M, ze kterého vyjelo nákladní auto? 6) V 7:30 ráno šel na procházku Mirek, jde rychlostí 2 km/h. V 7:50 vyběhl Petr rychlostí 5 km/h. V kolik hodin doběhne Petr Mirka a v jaké vzdálenosti od domu? 7) Města Ostrava a Olomouc jsou od sebe vzdáleny 80 km. Z Ostravy vyjela v 8:00 rodina Dvořáčků rychlostí 60 km/h. Z Olomouce v 8:10 vyjela rodina Dostálkových na novém autě rychlostí 85 km/h. V jaké vzdálenosti od Ostravy a v kolik hodin se potkají rodiny Dvořáčků a Dostálkových? 8) Anička a David bydlí od sebe 10 kilometrů. Anička si domluvila schůzku s Davidem smskami. Anička vyšla rychlostí 4 km/h. David vyšel o 10 minut později, protože musel dofoukat kola na bicykly. Ale pak jel jak o závod rychlostí 6 km/h. Kolik kilometrů musela ujít Anička, než se potkali s Davidem? 9) Po dálnici mezi dvěma městy jedou nákladní a osobní automobily. Nákladní automobil ujede vzdálenost za 2 hodiny. Osobní automobil, který jede o 30 km/h rychleji, dojede do druhého města za 1,5 hodiny. Vypočítej průměrnou rychlost obou vozidel. 10) Ze stanice Nové Město jede nákladní vlak rychlostí 44 km/h. Za 15 minut projel stanicí stejným směrem po druhé koleji rychlík rychlostí 70 km/h. Za jak dlouho dojede rychlík osobní vlak a v jaké vzdálenosti od Města?
4 11) Ve firmě ABC naložili náklad a řidič kamionu v 9:50 vyjel rychlostí 75 km/h. V 10:00 ve firmě zjistil Ondřej, že řidič kamionu nechal důležité dokumenty ve firmě, proto musel nasednout do osobního auta a vyjel za řidičem Karlem rychlostí 90 km/h. V kolik hodin dohoní Ondřej Karla a v jaké vzdálenosti od firmy ABC? 12) Cyklista Roman vyjel z Brodu rychlostí 16 km/h. Za 1,5 hodiny vyjelo za ním auto a dohonilo ho za 20 minut. Jakou rychlostí jelo auto? 13) V tomto okamžiku má cyklista Dušan před druhým cyklistou Martinem náskok 15 km a jede stálou rychlostí 15 km/h. Martin jede za ním rychlostí 20 km/h. Za jak dlouho dohoní Martin Dušana? 14) Vzdálenost mezi dvěma městy je 150 km. Osobní auto ji ujelo o půl hodiny dříve než nákladní auto. Vypočítejte průměrné rychlosti obou aut, jestliže rozdíl těchto rychlostí byl 10 km/h. 15) Petr a Pavel vyjeli současně od křižovatky cest, které se odchylují v pravém úhlu. Petr jel rychlostí 12 km/h a Pavel 16 km/h. Jaká bude vzdálenost mezi Petrem a Pavlem po 15 minutách jízdy?
5 Řešení: 1) Dan překročil rychlost o 7,6 km/h. 2) s= 225 km 3) Letadlo přistane za 3,5 hodiny. 4) Filip dojde sestry po 30 minutách, ve vzdálenosti 2,5 km od domu. 5) Auta se potkají za 1 hodinu 54 minut, ve vzdálenosti 95 km od místa M. 6) Petr doběhl Mirka v 8:03, ve vzdálenosti 1,1 km od domu. 7) Rodiny se potkají v 8:36, ve vzdálenosti 36 km od Ostravy. 8) Anička musela ujít 4,4 km. 9) Průměrná rychlost nákladního automobilu je 90 km/h, osobního 120 km/h. 10) Rychlík dojede osobní vlak po 27 minutách, ve vzdálenosti 30,8 km. 11) Ondřej Karla dohoní v 10:50, ve vzdálenosti 75 km od firmy ABC. 12) Průměrná rychlost auta byla 88 km/h. 13) Martin dohoní Dušana po třech hodinách. 14) Průměrná rychlost nákladního auta je 50 km/h 15) Vzdušná vzdálenost mezi Petrem a Pavlem je 5 km.
7. Slovní úlohy o pohybu.notebook. May 18, 2015. 1. Vzdělávací oblast: Matematika a její aplikace. 3. Učivo: Slovní úlohy o pohybu
Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název
Vícemateriál č. šablony/č. sady/č. materiálu: Autor:
Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVCE_
Vícemateriál č. šablony/č. sady/č. materiálu: Autor:
Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVACE_
Více1. Nákladní automobil ujede nejprve 6 km rychlostí 30 km/h a potom 24 km rychlostí 60 km/h. Určete jeho průměrnou rychlost.
1. Nákladní automobil ujede nejprve 6 km rychlostí 30 km/h a potom 24 km rychlostí 60 km/h. Určete jeho průměrnou rychlost. 2. Cyklista jede z osady do města. První polovinu cesty vedoucí přes kopec jel
VíceDigitální učební materiál
Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova
VíceVY_42_INOVACE_M2_20 Základní škola a mateřská škola Herálec, Herálec 38, ; IČ: ; tel.:
Základní škola a mateřská škola Herálec, Herálec 38, 582 55; IČ: 70987882; tel: 569445137 Operační program: Vzdělávání pro konkurenceschopnost Projekt: ŠKOLA PRO ŽIVOT Registrační číslo projektu: CZ107/1400/212362
Vícekm vyjel z téhož místa o 3 hodiny později h km. Za jak dlouho dohoní cyklista chodce? h km vyjede z téhož místa o 2 hodiny h
ÚLOHY O POHYBU-řešení 1. Za codcem jdoucím průměrnou ryclostí 5 vyjel z téož místa o 3 odiny později cyklista průměrnou ryclostí 20. Za jak dlouo dooní cyklista codce? v 1 =5, t1 =(x+3), s 1 =v 1.t 1 v
VíceSlouží k procvičení slovních úloh řešených rovnicí. list/anotace
Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Mgr. Martina Smolinková Datum 9. 8. 2014 Ročník 8. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika
VíceIII/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Slovní úlohy II Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_19a
Více1. Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? 2. Jana uspořila dvakrát více než Jitka,
1. Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? 2. Jana uspořila dvakrát více než Jitka, Alena o 27 Kč méně než Jana. Celkem uspořily 453 Kč. Kolik
VíceSlovní úlohy. o pohybu
Slovní úloy o poybu Slovní úloy o poybu Na začátek zopakujme z fyziky vzorec pro výpočet průměrné ryclosti: v v je průměrná ryclost v / (m/s) s je ujetá dráa v (m) t je čas potřebný k ujetí dráy s v odinác
VíceGRAF 1: a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s?
GRAF 1: s (m) a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s? e) Jakou dráhu ujede automobil za 5 s? f) Za jak
VíceNázev DUM: Úlohy o pohybu
ZŠ a MŠ Štramberk Projekt EU peníze školám Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název sady: Poznáváme svět algebry Název DUM: Úlohy o pohybu Vzdělávací oblast: Vzdělávací obor:
VíceVýukový materiál zpracovaný v rámci projektu EU peníze školám
Výukový materiál zpracovaný v rámci projektu EU peníze školám Regitrační čílo projektu: Šablona: Název materiálu: Autor: CZ..07/..00/.56 III/ Inovace a zkvalitnění výuky protřednictvím ICT VY INOVACE_0/07_Úlohy
VíceAutorka: Pavla Dořičáková
Rychlost Obsahový cíl: - Žák pracuje s veličinami dráha, rychlost, čas. - Žák pracuje se základními jednotkami pro dráhu, rychlost, čas. Jazykový cíl: - Žák používá správné tvary přídavných jmen a jejich
VíceMgr. Lenka Jančová 3. 3. 2014 IX.
Jméno Mgr. Lenka Jančová Datum 3. 3. 2014 Ročník IX. Vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Vzdělávací obor MATEMATIKA Tematický okruh SLOVNÍ ÚLOHY Téma klíčová slova Slovní úlohy o společné práci,
VícePOHYBY TĚLES / VÝPOČET ČASU
POHYBY TĚLES / VÝPOČET ČASU foto: zdroj www.google.cz foto: zdroj www.google.cz foto: zdroj www.google.cz 1 VÝPOČET ČASU - čas pohybu t vypočítáme jako podíl velikosti dráhy s a rychlosti v, kterou se
Více56. Po mostě dlouhém 150 m jel nákladní vlak rychlostí 30 km/h. Vlak byl dlouhý 300 m. Jak dlouho jel vlak po mostě?
1. Turista vyšel průměrnou rychlostí 5 km/h, za ½ hodiny za ním vyjel po stejné dráze cyklista průměrnou rychlostí 20 km/h. Za kolik minut dohoní cyklista turistu a kolik km přitom ujede? 2. Ze stanic
VíceKINEMATIKA 4. PRŮMĚRNÁ RYCHLOST. Mgr. Jana Oslancová VY_32_INOVACE_F1r0204
KINEMATIKA 4. PRŮMĚRNÁ RYCHLOST Mgr. Jana Oslancová VY_32_INOVACE_F1r0204 OPAKOVÁNÍ Otázka 1: Jak se vypočítá změna veličiny (např. dráhy, času) mezi dvěma měřeními? Otázka 2: Jak se vypočítá velikost
VíceMATEMATIKA STŘEDNÍ ŠKOLA EKONOMIKY, OBCHODU A SLUŽEB SČMSD BENEŠOV, S.R.O. Mgr. Miloslav Janík. Výukový materiál zpracován v rámci operačního projektu
Výukový materiál zpracován v rámci operačního projektu EU peníze školám REGISTRAČNÍ ČÍSLO PROJEKTU: CZ.1.07/1.5.00/34.0512 STŘEDNÍ ŠKOLA EKONOMIKY, OBCHODU A SLUŽEB SČMSD BENEŠOV, S.R.O. MATEMATIKA SLOVNÍ
VíceRovnoměrný pohyb IV
2.2.4 Rovnoměrný pohyb IV Předpoklady: 02023 Pomůcky: Př. : erka jede na kole za kamarádkou. a) Za jak dlouho ujede potřebných 6 km rychlostí 24 km/h? b) Jak daleko bude po 0 minutách? c) Jak velkou rychlostí
Více1 _ 2 _ 3 _ 2 4 _ 3 5 _ 4 7 _ 6 8 _
Obsah: 1 _ Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa... 2 4 _ Druhy pohybů... 3 5 _ Rychlost rovnoměrného pohybu... 4 7 _ Výpočet času... 6 8 _ Pracovní list: ČTENÍ Z
VíceSvobodná chebská škola, základní škola a gymnázium s.r.o. Slovní úlohy řešené rovnicemi I. procvičování
METODICKÝ LIST DA75 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Slovní úlohy řešené rovnicemi I. procvičování Astaloš Dušan Matematika devátý frontální, fixační samostatná
VíceEVROPSKÝ SOCIÁLNÍ FOND. Pohyb fyzika PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI. J. Cvachová říjen 2013 Arcibiskupské gymnázium Praha
EVROPSKÝ SOCIÁLNÍ FOND Pohyb fyzika PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI J. Cvachová říjen 2013 Arcibiskupské gymnázium Praha Klid a pohyb Co je na obrázku v pohybu? Co je na obrázku v klidu? Je
VícePOHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
POHYB TĚLESA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Pohyb Pohyb = změna polohy tělesa vůči jinému tělesu. Neexistuje absolutní klid. Pohyb i klid jsou relativní. Záleží na volbě vztažného tělesa. Spojením
VíceObsah: 1 Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa _ Druhy pohybů _ Rychlost rovnoměrného pohybu...
Obsah: 1 Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa... 2 4 _ Druhy pohybů... 3 5 _ Rychlost rovnoměrného pohybu... 4 6 _ Výpočet dráhy... 5 7 _ Výpočet času... 6 8 _ PL:
VíceOčekávaný výstup Zvládnutí řešení slovních úloh, vedoucích k sestavení dvou rovnic o dvou neznámých. Speciální vzdělávací potřeby.
Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Ing. Renata Dupalová Datum 18.7.2014 Ročník 9. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika
VíceBIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.
BIOMECHANIKA 4, Kinematika pohybu I. (zákl. pojmy - rovnoměrný přímočarý pohyb, okamžitá a průměrná rychlost, úlohy na pohyb těles, rovnoměrně zrychlený a zpomalený pohyb, volný pád) Studijní program,
VíceZákladní škola Kaplice, Školní 226
Základní škola Kaplice, Školní 226 DUM VY_2_INOVACE_06MA autor: Michal Benda období vytvoření: 2011 ročník, pro který je vytvořen: 7 vzdělávací oblast: vzdělávací obor: tématický okruh: téma: Matematika
VícePřípravný kurz z fyziky na DFJP UPa
Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu
VíceRovnoměrný pohyb II
2.2.12 Rovnoměrný pohyb II Předpoklady: 020210 Pomůcky: Př. 1: Jakou vzdálenost urazí za pět minut automobil jedoucí rychlostí 85 km/h? 5 t = 5min = h, v = 85 km/h 5 s = vt = 85 km = 7,1 km Automobil jedoucí
VíceKINEMATIKA 5. ROVNOMĚRNÝ POHYB I. Mgr. Jana Oslancová VY_32_INOVACE_F1r0205
KINEMATIKA 5. ROVNOMĚRNÝ POHYB I. Mgr. Jana Oslancová VY_32_INOVACE_F1r0205 DRUHY POHYBŮ Velikosti okamžité rychlosti se většinou v průběhu pohybu mění Okamžitá rychlost hmotného bodu (její velikost i
VíceSlovní úlohy na lineární rovnici
Slovní úlohy na lineární rovnici Slovní úlohy je výhodné rozdělit na několik typů a určit nejsnadnější postup jejich řešení. Je vhodné označit v dané úloze jednu veličinu jako neznámou ( většinou tu, na
VíceŘešíme slovní úlohy Růžena Blažková Pedagogická fakulta MU
Řešíme slovní úlohy Růžena Blažková Pedagogická fakulta MU blazkova@ped.muni.cz V úvodu si položme několik otázek: - Proč řešíme slovní úlohy? - Je řešení slovních úloh žáky oblíbené? - Jaká tématika slovních
VíceRNDr. Zdeněk Horák IX.
Jméno RNDr. Zdeněk Horák Datum 8. 10. 2014 Ročník IX. Vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Vzdělávací obor MATEMATIKA Tematický okruh KRUH, KRUŽNICE Téma klíčová slova Opakování učiva z tematického
VíceSlovní úlohy o pohybu I
.2. Slovní úlohy o pohybu I Předpoklady: 0024 Př. : Běžec na lyžích se pohybuje na celodenním výletu průměrnou rychlostí km/h. Jakou vzdálenost ujede za hodinu? Za hodiny? Za hodin? Za t hodin? Najdi vzorec,
VíceZákladní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ
Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo
VíceTento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
VíceOčekávané ročníkové výstupy z matematiky 9.r.
Pomůcky: tabulky, kalkulačky 2. pololetí Soustavy lineárních rovnic 1A x y = 1 2x + 3y = 12 1B x y = -3 2x y = 0 2A x y = -2 2x 2y = 2 2B x y = -2 3x 3y = 6 3A y = 2x + 3 x = 0,5. (y 3) 3B x = 2y + 5 y
Více1. Mojmír ujel na kole během čtyř dnů celkem 118 km. Druhý den ujel o 12 km víc než první den, třetí den ujel polovinu toho, co druhý den a poslední
1. Mojmír ujel na kole během čtyř dnů celkem 118 km. Druhý den ujel o 12 km víc než první den, třetí den ujel polovinu toho, co druhý den a poslední den o 26 km méně než první den. Kolik km ujel v jednotlivé
VíceZákladní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici
Kinematika Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Základní pojmy Kinematika - popisuje pohyb tělesa, nestuduje jeho příčiny Klid (pohyb)
VícePohyb tělesa (5. část)
Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.
VíceZákladní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/1.759 Název DUM: Pohyb tělesa
VíceEU OPVK III/2/1/3/2 autor: Ing. Gabriela Geryková, Základní škola Žižkova 3, Krnov, okres Bruntál, příspěvková organizace
POHYBY TĚLES / VÝPOČET RYCHLOSTI foto: zdroj www.google.cz foto: zdroj www.google.cz foto: zdroj www.google.cz 1 VÝPOČET RYCHLOSTI - rychlost v vypočítáme jako podíl velikosti dráhy s a času t, za který
VíceVY_32_INOVACE_6/20_Matematika a její aplikace. Předmět: Matematika Ročník: 8. Poznámka: Slovní úlohy Vypracovala: Zuzana Strejcová
VY_32_INOVACE_6/20_Matematika a její aplikace Předmět: Matematika Ročník: 8. Poznámka: Slovní úlohy Vypracovala: Zuzana Strejcová Slovní úlohy procenta Slovní úlohy procenta Slovní úlohy o pohybu Slovní
VíceMetodické pokyny k pracovnímu listu č Úlohy o pohybu, společné práci a směsích
Název projektu: Spokojená škola Číslo projektu: OPVK.CZ.1.07/1.2.33/02.0039 Metodické pokyny k pracovnímu listu č. 9.04 Úlohy o pohybu, společné práci a směsích Pracovní list je zaměřen na řešení slovních
VíceVýpočet dráhy. Autor: Pavel Broža Datum: 12. 4. 2014 Cílový ročník: 7. Život jako leporelo, registrační číslo CZ.1.07/1.4.00/21.
Výpočet dráhy Autor: Pavel Broža Datum: 12. 4. 2014 Cílový ročník: 7. Život jako leporelo, registrační číslo CZ.1.07/1.4.00/21.3763 Výpočet dráhy vzor 1 Auto jelo po dálnici průměrnou rychlostí 120 km/h.
VíceTento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
VíceKINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje
VícePOHYBY TĚLES / GRAF ZÁVISLOSTI DRÁHY NA ČASE - PŘÍKLADY
POHYBY TĚLES / GRAF ZÁVISLOSTI DRÁHY NA ČASE - PŘÍKLADY foto: zdroj www.google.cz foto: zdroj www.google.cz foto: zdroj www.google.cz Na obrázku je graf závislosti dráhy tělesa na čase. Odpověz na otázky:
Více( ) Zadání SPORT 2014. 1. Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1
Zadání SPORT 0. Kolik % z,5 Kč 0,5 Kč? a) 5% b) 0% c) 0% d) 5%. Žák popleta v písemce napsal: ( x ) x =. Pro která x ho výpočet správný? a) x = b) x = c) x = 0 d) pro žádné x. Určete délku x podle údajů
VíceMATEMATIKA 8. ročník II. pololetí
MATEMATIKA 8. ročník II. pololetí Úpravy algebraických výrazů: Sčítání a odčítání celistvých výrazů: 1.A a) 5a + ( 3a + 7 ) b) (-3a 4b ) - ( 12a + 6 ) c) ( -8a + 3 ) ( -15a 4 ) 1.B a) 4x + ( 4x + 7 ) b)
VíceZákladní škola Kaznějov, příspěvková organizace, okres Plzeň-sever
Základní škola Kaznějov, příspěvková organizace, okres Plzeň-sever DIGITÁLNÍ UČEBNÍ MATERIÁL Název projektu Registrační číslo projektu UČENÍ JE SKRYTÉ BOHATSTVÍ INOVACE VÝUKY ZŠ KAZNĚJOV CZ.1.07/1.1.12/02.0029
VíceTéma Pohyb grafické znázornění
Téma Pohyb grafické znázornění Příklad č. 1 Na obrázku je graf závislosti dráhy na čase. a) Jak se bude těleso pohybovat? b) Urči velikost rychlosti pohybu v jednotlivých časových úsecích dráhy. c) Jak
VíceMěřítko plánu a mapy Pracovní list do matematiky pro žáky 7. ročníku
Měřítko plánu a mapy Pracovní list do matematiky pro žáky 7. ročníku MASARYKOVA ZÁKLADNÍ ŠKOLA A MATEŘSKÁ ŠKOLA VELKÁ BYSTŘICE projekt č. CZ.1.07/1.4.00/21.1920 Název projektu: Učení pro život Číslo DUMu:
VíceSlovní úlohy: Pohyb. a) Stejným směrem
Slovní úlohy: Pohyb a) Stejným směrem Ze stejného města vyjely dva automobily různými rychlostmi. První vyrazil v 10:30 hodin stálou rychlostí 62 km/h. Deset minut za ním vyjel po stejné trase druhý automobil
VíceEU PENÍZE ŠKOLÁM Operační program Vzdělávání pro konkurenceschopnost
ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, 779 00 OLOMOUC tel.: 585 427 142, 775 116 442; fax: 585 422 713 e-mail: kundrum@centrum.cz; www.zs-mozartova.cz Projekt: ŠKOLA RADOSTI, ŠKOLA
VíceROVNOMĚRNĚ ZRYCHLENÝ POHYB, ZPOMALENÝ POHYB TEORIE. Zrychlení. Rychlost
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S1_D05_Z_MECH_Rovnomerne_zrychleny_pohyb_z pomaleny_pohyb_pl Člověk a příroda Fyzika
VíceMoravské gymnázium Brno s.r.o. Mgr. Věra Jeřábková, Mgr. Marie Chadimová
Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Mgr. Věra Jeřábková, Mgr. Marie Chadimová Tematická oblast Matematika, trojúhelník-podobnost Ročník 2. Datum tvorby
VíceMartina Bábíčková, Ph.D. 05.01.2014
Jméno Martina Bábíčková, Ph.D. Datum 05.01.2014 Ročník Vzdělávací oblast Informační a komunikační technologie Vzdělávací obor Informatika Tematický okruh Textový editor, Internet Téma klíčová slova Internet
Víceznačka v (velocity) c) další jednotky rychlosti:
RYCHLOST 1) Rychlost fyz. veličina, která popisuje pohyb značka v (velocity) 2) Jednotky rychlosti a) zákl. jednotka: 1 m/s = 1 b) dílčí jednotka: 1 km/h m s = 1 ms 1 DÚ: c) další jednotky rychlosti: Příklady
VíceUŽITÍ TRIGONOMETRIE V PRAXI
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol UŽITÍ
VíceKinematika pohyb rovnoměrný
DUM Základy přírodních věd DUM III/2-T3-03 Téma: Kinematika rovnoměrný Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Kinematika rovnoměrný Kinematika je jedna ze základních
VíceČT 2 15% ČT 1? nesleduje 42% Nova 13% Prima 10% a. 210 b. 100 c. 75 d. 50
1. Rada pro televizní vysílání prováděla průzkum sledovanosti českých televizních stanic. Průzkumu se zúčastnilo 500 tzv. respondentů. Sledovanost stanic ČT1, ČT2, Nova a Prima je uvedena v diagramu. Kolik
VíceSlovní úlohy na pohyb
VY_32_INOVACE_M-Ar 8.,9.09 Sloní úlohy na pohyb Anoace: Praconí li ukazuje žákoi poup řešení loních úloh na pohyb. Jou zde rozebrány ypy, keré mohou naa. Poupy řešení zoroých příkladů jou žákům promínuy
VíceZákladní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ
Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo
VíceVýpočet rychlosti. Autor: Pavel Broža Datum: 14. 3. 2014 Cílový ročník: 7. Život jako leporelo, registrační číslo CZ.1.07/1.4.00/21.
Výpočet rychlosti Autor: Pavel Broža Datum: 14. 3. 2014 Cílový ročník: 7. Život jako leporelo, registrační číslo CZ.1.07/1.4.00/21.3763 Výpočet rychlosti vzor 1 Auto ujelo celkovou dráhu 14 km za celkový
VíceRovnoměrný pohyb III
..13 Rovnoměrný pohyb III Předpoklady: 001 Pomůcky: Př. 1: Maky se na kole vydala na výlet, který bohužel neskončil tak, jak si představovala. a) Jak daleko se dostala, jestliže jela 3 minut rychlostí
VíceVY_42_Inovace_10_MA_1.01_ Slovní úlohy pracovní list
Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0394 VY_42_Inovace_10_MA_1.01_ Slovní úlohy pracovní list Název školy Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor
VíceSLOVNÍ Matematizace reálné MATEMATICKÁ ÚLOHA situace ÚLOHA. VÝSLEDEK Interpretace VÝSLEDEK SLOVNÍ výsledku MÚ MATEMATICKÉ ÚLOHY do reality ÚLOHY
SLOVNÍ ÚLOHY ŘEŠENÉ ROVNICEMI Růžena Blažková, Irena Budínová Slovní úlohy jsou úlohy, ve kterých jsou vztahy mezi známými a neznámými údaji vyjádřeny slovní formulací. Úkolem řešení slovních úloh je najít
VíceDigitální učební materiál
Digitální učební materiál Číslo projektu CZ..7/.5./4.82 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
VíceCVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
Více2. Mechanika - kinematika
. Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu
VíceSILNIČNÍ DAŇ U NÁKLADNÍCH VOZŮ
SILNIČNÍ DAŇ U NÁKLADNÍCH VOZŮ Název školy Obchodní akademie, Vyšší odborná škola a Jazyková škola s právem státní jazykové zkoušky Uherské Hradiště Název DUMu VY_32_INOVACE_UCE1415 Autor Ing. Martina
Více2. Mechanika - kinematika
. Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu
VíceDigitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
VícePOHYBY TĚLES / VÝPOČET
POHYBY TĚLES / VÝPOČET DRÁHY foto: zdroj www.google.cz foto: zdroj www.google.cz foto: zdroj www.google.cz 1 VÝPOČET DRÁHY - dráhu rovnoměrného pohybu s vypočítáme, jestliže rychlost v násobíme časem t,
VíceEkvivalentní úpravy soustavy rovnic v oboru reálných čísel: Metody řešení soustavy dvou rovnic o dvou neznámých:
Soustava rovnic o dvou neznámých Soustavou rovnic nazýváme dvojici rovnic, která má platit současně. Řešením takové soustavy je uspořádaná dvojice kořenů [x, y],která splňuje obě rovnice. Ekvivalentní
VícePOHYB TĚLESA SADA PŘÍKLADŮ
POHYB TĚLESA SADA PŘÍKLADŮ 1. Doplň následující tabulku rychlostí rovnoměrných pohybů. Výsledky správně zaokrouhli. 1) 2) 3) 4) 5) 6) 7) rychlost rychlost jízda rychlost na let ptáka v obci cyklisty družice
Více3. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE
. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE Dovednosti:. Lineární funkce. -Vědět, že je vyjádřena předpisem f: y = a + b, a znát geometrický význam konstant a,b. -Umět přiřadit proměnné její
VíceProjekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Lineární rovnice
2. Lineární rovnice označuje rovnici o jedné neznámé, ve které neznámá vystupuje pouze v první mocnině. V základním tvaru vypadá následovně: ax + b = 0, a 0 Zde jsou a a b nějaká reálná čísla, tzv. koeficienty
VíceDIPLOMOVÁ PRÁCE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH ÚLOHY O POHYBU VE STŘEDOŠKOLSKÉ MATEMATICE PEDAGOGICKÁ FAKULTA KATEDRA MATEMATIKY
JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH PEDAGOGICKÁ FAKULTA KATEDRA MATEMATIKY DIPLOMOVÁ PRÁCE ÚLOHY O POHYBU VE STŘEDOŠKOLSKÉ MATEMATICE Vypracoval: Renata DOSKOČILOVÁ Vedoucí diplomové práce: RNDr.
VíceŠkolní plán mobility ZŠ Lelekovice 2013
Školní plán mobility ZŠ Lelekovice 2013 1. Informace o škole Název školy : Základní škola Lelekovice, Hlavní 102, Lelekovice, Brno-venkov Adresa : Hlasvní 102/, Lelekovice 66431, Brno-venkov Web : www.zslelekovice.cz
VíceSlovní úlohy 09 - řešení
Slovní úlohy 09 - řešení. Od letního koupaliště vyjede v 6.20 Luděk na kole rychlostí 20 km/h. Když je 5 km od koupaliště, vyjede za ním jeho kamarádka Pavlína na skútru průměrnou rychlostí 40 km/h a dohoní
VíceRovnice ve slovních úlohách
Rovnice ve slovních úlohách Při řešení slovních úloh postupujeme obvykle takto (matematizace): 1. V textu úlohy vyhledáme veličinu, která je neznámá, a její číselnou hodnotu označíme vhodným písmenem (
VíceProjekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti, vztahy, práce s daty Gradovaný řetězec úloh Téma: Měřítko mapy Autor: Jana Slezáková
VíceZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647
ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 Název vzdělávacího materiálu: VY_32_INOVACE_HRAVĚ14 Soutěž přirozená čísla, desetinná čísla, zlomky,
VíceZavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,
VíceMatematika a její aplikace. Matematika a její aplikace. Náklady na cestování
Šablona FG č. I, sada č. 2 Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Matematika a její aplikace Matematika a její aplikace Číslo a proměnná Náklady na cestování Ročník 4. Anotace Pracovní
VíceMateřská škola a Základní škola při dětské léčebně, Křetín 12
VY_32_INOVACE_DUM.M.19 Mateřská škola a Základní škola při dětské léčebně, Křetín 12 Autor: Mgr. Miroslav Páteček Vytvořeno: červen 2012 Klíčová slova: Třída: Anotace: Matematika a její aplikace Mocniny,
VícePřímá a nepřímá úměrnost
Přímá a ne - rovnice: y = k.x + c - graf: přímka - platí: čím víc, tím víc - př.: spotřeba benzínu motorovým vozidlem a vzdálenost, kterou vozidlo urazí při stejném výkonu ne k - rovnice: y c x - graf:
VíceCZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT
Autor Mgr. Lenka Střelcová Tematický celek Posloupnosti Cílová skupina 3. ročník SŠ Anotace Materiál má podobu výkladového a pracovního listu s úlohami, pomocí nichž si žáci osvojí a procvičí využití geometrické
VíceOčekávaný výstup Závěrečné procvičení typických slovních úloh Speciální vzdělávací žádné
Název projektu Život jako leporelo Registrační číslo CZ..07/..00/2.76 Autor Ing. Renata Dupalová Datum 7. 8. 20 Ročník 7. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika Tematický
VíceZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647
ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 Název vzdělávacího materiálu: VY_32_INOVACE_HRAVĚ19 Soutěž zlomky, celá čísla, procenta, rovnice a sl.
VícePoměr Sbírka příkladů k procvičování
Poměr Sbírka příkladů k procvičování 1. Urči v základním tvaru: a) 2. Rozděl 252 v poměru 5:1. 1 2 3 : : 2 3 4 1 1 1 b) 1 : :1. 3 2 6 3. Urči velikosti úhlů v trojúhelníku, jsou-li v poměru 7:6:5. 4. Změň
VíceDigitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/ Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_3_INOVACE_CH9_1_07 ŠVP Podnikání RVP 64-41-L/51
VíceMATEMATIKA 9 Přijímací zkoušky na nečisto
787 Střední průmyslová škola stavební, Hradec Králové, Pospíšilova tř. MATEMATIKA 9 Přijímací zkoušky na nečisto 7. 3. 2017 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50
VíceRNDr. Zdeněk Horák 23. 11. 2013 VII.
Jméno RNDr. Zdeněk Horák Datum 23. 11. 2013 Ročník VII. Vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Vzdělávací obor MATEMATIKA Tematický okruh ZLOMKY Téma klíčová slova Slovní úlohy se zlomky, početní
VíceHMOTNÝ BOD, POHYB, POLOHA, TRAJEKTORIE, DRÁHA, RYCHLOST
Škola: Autor: Šablona: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek VY_32_INOVACE_MGV_F_SS_1S1_D02_Z_MECH_Hmotny_bod_r ychlost_pl Člověk a příroda Fyzika Mechanika
VíceSlovní úlohy řešené rovnicí pro učební obory
Variace 1 Slovní úlohy řešené rovnicí pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Slovní
Více