Základy programování (IZP)
|
|
- Renáta Říhová
- před 6 lety
- Počet zobrazení:
Transkript
1 Základy programování (IZP) Sedmé počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, Brno - Královo Pole Petr Veigend, iveigend@fit.vutbr.cz 2018/2019, 8. týden
2 Důležité informace Můj profil: Kancelář: A221 Konzultační hodiny: po domluvě em Karta Výuka odkaz na osobní stránky Komunikace: prosím používejte předmět: IZP - <předmět u> IZP cvičení 7 2
3 Důležité informace Příští týden Půlsemestrální zkouška IZP cvičení 7 3
4 Náplň cvičení Seznámení se zadáním druhého projektu Iterační výpočty IZP cvičení 7 4
5 SEZNÁMENÍ S DRUHÝM PROJEKTEM IZP cvičení 7 5
6 Implementační detaily Použití hlavičkového souboru math.h je zakázáno, kromě povolených: Funkcí log(), pow(), isnan(), isinf() Konstant NAN, INFINITY Nezapomeňte důkladně testovat na merlinovi!!! Pozor na ošetření vstupních hodnot IZP cvičení 7 6
7 ITERAČNÍ VÝPOČTY IZP cvičení 7 7
8 Rekurentní problémy Rekurentní problém: výpočet nové hodnoty závisí na hodnotě výpočtu z předcházejícího kroku Rekurentní vztah obecně: Y i+1 = F(Y i ) Pro výpočet hodnoty Y i+1 je nutné zjistit hodnotu Y i IZP cvičení 7 8
9 Rekurentní problémy Musí být dána počáteční hodnota Y 0 Co musí platit pro hodnoty získané posloupnosti Y i+1 = F(Y i ) pro y 0 Y i Y j pro všechna i j Y i pro i < N nesplňuje podmínky požadované hodnoty Y N splňuje podmínky hledané hodnoty IZP cvičení 7 9
10 Posloupnosti Algoritmické schéma posloupnosti Y = y0; // Y proměnná, y0 počáteční hodnota while( B(Y)) // dokud není splněna koncová podmínka Y = F(Y); // budeme počítat další prvek // posloupnosti IZP cvičení 7 10
11 Posloupnosti Algoritmické schéma posloupnosti Y = y0; // Y proměnná, y0 počáteční hodnota while( B(Y)) // dokud není splněna koncová podmínka Y = F(Y); Zápis v C může vypadat např. // budeme počítat další prvek // posloupnosti IZP cvičení 7 11
12 Posloupnosti Algoritmické schéma posloupnosti Y = y0; // Y proměnná, y0 počáteční hodnota while( B(Y)) // dokud není splněna koncová podmínka Y = F(Y); Zápis v C může vypadat např. double y = y0; // budeme počítat další prvek // posloupnosti while(!b(y)) // dokud není splněna koncová podmínka return y; y = f(y); // budeme počítat další prvek // posloupnosti IZP cvičení 7 12
13 Ukončovací podmínka Běžně se iterační výpočet ukončí, pokud Y i Y i 1 EPS To se dá v C zapsat např. Algoritmické schéma lze použít pro výpočet číselných řad (Taylorův rozvoj), kterými lze aproximovat funkce IZP cvičení 7 13
14 Ukončovací podmínka Běžně se iterační výpočet ukončí, pokud Y i Y i 1 EPS To se dá v C zapsat např. double y = y0; // aktuální člen double yp; // předchozí člen do { yp = y; // uložíme hodnotu předchozího členu y = f(y); // vypočítáme další člen } while (fabs(y - yp) > eps); Algoritmické schéma lze použít pro výpočet číselných řad (Taylorův rozvoj), kterými lze aproximovat funkce IZP cvičení 7 14
15 Druhá odmocnina Newtonovou metodou Implementujte funkci, která vypočítá druhou odmocninu x Newtonovou metodou y i+1 = 1 2 x y i + y i Prototyp funkce si vhodně zvolte Můžete použít funkci sqrt(x) pro ověření funkčnosti řešení IZP cvičení 7 15
16 Algoritmické schéma double y = y0; // aktuální člen double yp; // předchozí člen do { yp = y; // uložíme hodnotu předchozího členu y = f(y); // vypočítáme další člen } while (fabs(y - yp) > eps); y i+1 = 1 2 x y i + y i eps= sqrt(x) Jako y0 použijte x, místo ½ použijte 0.5 IZP cvičení 7 16
17 Continued Fractions ZŘETĚZENÉ ZLOMKY IZP cvičení 7 17
18 Algoritmické schéma double cf = 1.0; // nebo 0.0 double a, b, k = n; // n maximální úroveň zanoření for (; k >= 1; k--) { a = fa(k); b = fb(k); cf = b / ( a + cf ); } return a0 + cf; IZP cvičení 7 18
19 Zřetězené zlomky Implementujte výpočet čísla π pomocí zřetězeného zlomku: 4 π = IZP cvičení 7 19
20 Zřetězené zlomky Implementujte výpočet čísla π pomocí zřetězeného zlomku: 4 π = n = 4 IZP cvičení 7 20
21 Zřetězené zlomky Implementujte výpočet čísla π pomocí zřetězeného zlomku: n = 3 4 π = n = IZP cvičení 7 21
22 Zřetězené zlomky Implementujte výpočet čísla π pomocí zřetězeného zlomku: n = 2 n = 3 4 π = n = IZP cvičení 7 22
23 Zřetězené zlomky Implementujte výpočet čísla π pomocí zřetězeného zlomku: n = 1 n = 2 n = 3 4 π = n = IZP cvičení 7 23
24 Zřetězené zlomky Implementujte výpočet čísla π pomocí zřetězeného zlomku: n = 0 n = 1 n = 2 n = 3 4 π = n = IZP cvičení 7 24
25 Zřetězené zlomky (výpočet π) 4 π = double cf = 1.0; // nebo 0.0 double a, b, k = n; // n maximální úroveň zanoření for (; k >= 1; k--) { } a = fa(k); b = fb(k); cf = b / ( a + cf ); return a0 + cf; // pouze pravá strana IZP cvičení 7 25
26 ČÁSTEČNÉ SOUČTY (ŘADY) IZP cvičení 7 26
27 Řady (částečné součty) K výpočtu řad se používají částečné součty Pro řadu t 0, t 1, t 2, t 3,, kde t i = f t i 1 můžeme napsat řadu částečných součtů s 0, s 1, s 2, s 3,, kde s i = Můžeme je opět řešit rekurentně: s 0 = t 0 s 1 = s 0 + t 1 = t 0 + t 1 i j=0 s i = s i 1 + t i částečný součet pro aktuální člen je částečný součet pro předchozí člen + hodnota aktuálního členu t j IZP cvičení 7 27
28 Řady (částečné součty) Algoritmické schéma T = t0; // první člen řady S = T; // součet = první člen řady while( B(S, T)) { } T = f(t); // vypočítáme nový člen řady S = S + T; // tento člen přičteme k aktuálnímu // částečnému součtu Je nutné si vždy zjistit, jak se od sebe liší jednotlivé členy řady Pozor: Některé řady konvergují nejrychleji jen v omezeném definičním oboru funkce IZP cvičení 7 28
29 Posloupnosti vs. řady (částečné součty) Y = y0; // Y proměnná, y0 počáteční hodnota while( B(Y)) // dokud není splněna koncová podmínka Y = F(Y); // budeme počítat další prvek // posloupnosti T = t0; // první člen řady S = T; // součet = první člen řady while( B(S, T)) { } T = f(t); // vypočítáme nový člen řady S = S + T; // tento člen přičteme k aktuálnímu // částečnému součtu IZP cvičení 7 29
30 Částečné součty Pomocí částečných součtů implementuje výpočet exponenciální funkce e x. (Taylorova) řada má následující tvar: e x = 1 + x + x2 2! + x3 3! + x4 4! + Výsledek porovnejte s matematickou knihovnou math.h a obě hodnoty vypište na standardní výstup Nemůžete použít mocninu, faktoriál a funkci exp(x) z matematické knihovny math.h. Můžete použít funkci fabs()pro výpočet absolutní hodnoty a exp(x) pro ověření funkčnosti řešení IZP cvičení 7 30
31 Částečné součty ( ) x = 4.2; eps = 0.01; e x = 1 + x + x2 2! + x3 3! + x4 4! + double t = t0; // první člen řady double s = t; int i = 1; while (fabs(t) > eps) { // součet = první člen řady // index aktuálního členu řady t = f(t, i); // vypočítáme nový člen řady s = s + t; } return s; // tento člen přičteme k // aktuálnímu částečnému součtu IZP cvičení 7 31
32 PŘÍKLADY K PROCVIČENÍ IZP cvičení 7 32
33 Příklad na rozehřátí Implementujte funkci void getmax(int *pole, int len, int *max); která vyhledá v poli maximální hodnotu a vrátí ji přes ukazatel IZP cvičení 7 33
34 Příklad na rozehřátí Implementujte funkci void getmax(int *pole, int len, int *max); která vyhledá v poli maximální hodnotu a vrátí ji přes ukazatel Jak inicializujeme pole? IZP cvičení 7 34
35 Příklad na rozehřátí Implementujte funkci void getmax(int *pole, int len, int *max); která vyhledá v poli maximální hodnotu a vrátí ji přes ukazatel Jak inicializujeme pole? int pole[10]={7,2,3,9,15,20,-1,42,100,-75}; IZP cvičení 7 35
36 Příklad na rozehřátí Implementujte funkci void getmax(int *pole, int len, int *max); která vyhledá v poli maximální hodnotu a vrátí ji přes ukazatel Jak inicializujeme pole? int pole[10]={7,2,3,9,15,20,-1,42,100,-75}; Jak zavoláme funkci getmax()? IZP cvičení 7 36
37 Příklad na rozehřátí Implementujte funkci void getmax(int *pole, int len, int *max); která vyhledá v poli maximální hodnotu a vrátí ji přes ukazatel Jak inicializujeme pole? int pole[10]={7,2,3,9,15,20,-1,42,100,-75}; Jak zavoláme funkci getmax()? int maximum = 0; getmax(pole, &maximum); IZP cvičení 7 37
38 Příklad 3: Zřetězené zlomky Implementujte výpočet čísla π pomocí zřetězeného zlomku: 4 π = Čitatele se vypočítají podle vztahu (2 n 1) IZP cvičení 7 38
39 Příklad 4: práce s řetězci Implementujte si vlastní funkci pro lexikografické porovnání dvou řetězců int strcmpmy(char* s1, char* s2); Funkce vrací: 0 pokud s1 == s2-1 pokud s1 < s2 1 pokud s1 > s2 Vyzkoušejte implementovat i další funkce z knihovny string.h IZP cvičení 7 39
40 Děkuji Vám za pozornost! IZP cvičení 7 40
Základy programování (IZP)
Základy programování (IZP) Deváté počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Gabriela Nečasová, inecasova@fit.vutbr.cz
Základy programování (IZP)
Základy programování (IZP) Deváté počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Petr Veigend, iveigend@fit.vutbr.cz 2016/2017
Základy programování (IZP)
Základy programování (IZP) Sedmé laboratorní cvičení Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Božetěchova 2, 612 66 Brno Cvičící: Petr Veigend (iveigend@fit.vutbr.cz) Gabriela
Základy programování (IZP)
Základy programování (IZP) Bonusové laboratorní cvičení Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Božetěchova 2, 612 66 Brno Cvičící: Petr Veigend (iveigend@fit.vutbr.cz) Gabriela
Iterační výpočty Projekt č. 2
Dokumentace k projektu pro předměty IUS & IZP Iterační výpočty Projekt č. 2 Autor: Jan Kaláb (xkalab00@stud.fit.vutbr.cz) Úvod Úkolem bylo napsat v jazyce C program sloužící k výpočtům matematických funkcí
Základy programování (IZP)
Základy programování (IZP) Páté počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Petr Veigend, iveigend@fit.vutbr.cz 5. týden
Základy programování (IZP)
Základy programování (IZP) Osmé počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Petr Veigend, iveigend@fit.vutbr.cz 20.11.2017,
Základy programování (IZP)
Základy programování (IZP) Čtvrté počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Petr Veigend, iveigend@fit.vutbr.cz 4.
Základy programování (IZP)
Základy programování (IZP) Deváté počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Petr Veigend, iveigend@fit.vutbr.cz 27.11.2017,
Základy programování (IZP)
Základy programování (IZP) Šesté počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Petr Veigend, iveigend@fit.vutbr.cz 6. týden
Iterační výpočty. Dokumentace k projektu č. 2 do IZP. 24. listopadu 2004
Dokumentace k projektu č. 2 do IZP Iterační výpočty 24. listopadu 2004 Autor: Kamil Dudka, xdudka00@stud.fit.vutbr.cz Fakulta Informačních Technologií Vysoké Učení Technické v Brně Obsah 1. Úvod...3 2.
Základy programování (IZP)
Základy programování (IZP) Jedenácté počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Gabriela Nečasová, inecasova@fit.vutbr.cz
Základy programování (IZP)
Základy programování (IZP) Druhé počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Petr Veigend, iveigend@fit.vutbr.cz Verze
Martin Flusser. Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague. October 17, 2016
ZPRO cvičení 2 Martin Flusser Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague October 17, 2016 Outline I 1 Outline 2 Proměnné 3 Proměnné - cvičení 4 Funkce 5 Funkce
Programování v C++ 1, 1. cvičení
Programování v C++ 1, 1. cvičení opakování látky ze základů programování 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 2 Shrnutí procvičených
Pole a Funkce. Úvod do programování 1 Tomáš Kühr
Pole a Funkce Úvod do programování 1 Tomáš Kühr (Jednorozměrné) pole u Datová struktura u Lineární u Homogenní = prvky stejného datového typu u Statická = předem určený počet prvků u Pole umožňuje pohodlně
Základy programování (IZP)
Základy programování (IZP) Druhé počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Petr Veigend, iveigend@fit.vutbr.cz 2016/2017
Úvod do programování - Java. Cvičení č.4
Úvod do programování - Java Cvičení č.4 1 Sekvence (posloupnost) Sekvence je tvořena posloupností jednoho nebo více příkazů, které se provádějí v pevně daném pořadí. Příkaz se začne provádět až po ukončení
8. lekce Úvod do jazyka C 3. část Základní příkazy jazyka C Miroslav Jílek
8. lekce Úvod do jazyka C 3. část Základní příkazy jazyka C Miroslav Jílek 1/41 Základní příkazy Všechny příkazy se píšou malými písmeny! Za většinou příkazů musí být středník (;)! 2/41 Základní příkazy
Algoritmizace a programování
Algoritmizace a programování Výrazy Operátory Výrazy Verze pro akademický rok 2012/2013 1 Operace, operátory Unární jeden operand, operátor se zapisuje ve většině případů před operand, v některých případech
Programování v C++ 1, 14. cvičení
Programování v C++ 1, 14. cvičení výpustka, přetěžování funkcí, šablony funkcí 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 2 funkcí
Programování v jazyce C pro chemiky (C2160) 12. Specifické problémy při vývoji vědeckého softwaru
Programování v jazyce C pro chemiky (C2160) 12. Specifické problémy při vývoji vědeckého softwaru Reprezentace reálnách čísel v počítači Reálná čísla jsou v počítači reprezentována jako čísla tvaru ±x
Základy programování (IZP)
Základy programování (IZP) Čtvrté počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Petr Veigend, iveigend@fit.vutbr.cz 2016/2017
Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2
Dokumentace k projektu pro předměty IZP a IUS Iterační výpočty projekt č.. lstopadu 1 Autor: Mlan Setler, setl1@stud.ft.vutbr.cz Fakulta Informačních Technologí Vysoké Učení Techncké v Brně Obsah 1 Úvod...
Programování v C++, 2. cvičení
Programování v C++, 2. cvičení 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 Operátory new a delete 2 3 Operátory new a delete minule
Dynamicky vázané metody. Pozdní vazba, virtuální metody
Dynamicky vázané metody Pozdní vazba, virtuální metody Motivace... class TBod protected: float x,y; public: int vrat_pocet_bodu() return 1; ; od třídy TBod odvodíme: class TUsecka: public TBod protected:
VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
1 2 3 4 5 6 součet cvičení celkem. známka. Úloha č.: max. bodů: skut. bodů:
Úloha č.: max. bodů: skut. bodů: 1 2 3 4 5 6 součet cvičení celkem 20 12 20 20 14 14 100 známka UPOZORNĚNÍ : a) Písemná zkouška obsahuje 6 úloh, jejichž řešení musí být vepsáno do připraveného formuláře.
Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. projekt č listopadu 2008
Dokumentace k projektu pro předměty IZP a IUS Iterační výpočty projekt č. 2 19. listopadu 2008 Autor: Vojtěch Kalčík, xkalci01@fit.stud.vutbr.cz Fakulta Informačních Technologií Vysoké Učení Technické
Matematická analýza ve Vesmíru. Jiří Bouchala
Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.7/1.5./34.5 Šablona: III/ Přírodovědné předměty
Základy programování (IZP)
Základy programování (IZP) Druhé laboratorní cvičení Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Božetěchova 2, 612 66 Brno Cvičící: Petr Veigend (iveigend@fit.vutbr.cz) Důležité
Rekurze. Jan Hnilica Počítačové modelování 12
Rekurze Jan Hnilica Počítačové modelování 12 1 Rekurzivní charakter úlohy Výpočet faktoriálu faktoriál : n! = n (n - 1) (n - 2)... 2 1 (0! je definován jako 1) můžeme si všimnout, že výpočet n! obsahuje
Diskrétní matematika. DiM /01, zimní semestr 2017/2018
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2017/2018 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
2.1 Podmínka typu case Cykly Cyklus s podmínkou na začátku Cyklus s podmínkou na konci... 5
Obsah Obsah 1 Řídicí struktury 1 2 Podmínka 1 2.1 Podmínka typu case......................... 2 3 Příkaz skoku 3 4 Cykly 4 4.1 Cyklus s podmínkou na začátku................... 4 4.2 Cyklus s podmínkou
POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.
Jednoduché cykly Tento oddíl obsahuje úlohy na první procvičení práce s cykly. Při řešení každé ze zde uvedených úloh stačí použít vedle podmíněných příkazů jen jediný cyklus. Nepotřebujeme používat ani
Intervalové stromy. Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme. 1. Změna jednoho čísla v posloupnosti.
Intervalové stromy Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme průběžně provádět tyto dvě operace: 1. Změna jednoho čísla v posloupnosti. 2. Zjištění součtu čísel
Wolfram Alpha. v podobě html stránky, samotný výsledek je často doplněn o další informace (např. graf, jiné možné zobrazení výsledku a
Wolfram Alpha jde o výpočetní prostředí z nejrůznějších oborů (matematika, fyzika, chemie, inženýrství... ) přístupné online: http://www.wolframalpha.com/ Jaké matematické výpočty Wolfram Alpha zvládá?
Požadavky k opravným zkouškám z matematiky školní rok 2014-2015
Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
Rekurze. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.
Rekurze doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Rekurze 161 / 344 Osnova přednášky
Úvod do programování 7. hodina
Úvod do programování 7. hodina RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Umíme z minulé hodiny Syntax Znaky Vlastní implementace
Zimní semestr akademického roku 2015/ ledna 2016
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Zimní semestr akademického roku 015/016 5. ledna 016 Obsah Cvičení Předmluva iii
Elektronika pro informační technologie (IEL)
Elektronika pro informační technologie (IEL) Páté laboratorní cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Petr Veigend, iveigend@fit.vutbr.cz
Martin Flusser. Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague. December 7, 2016
ZPRO cvičení 8 Martin Flusser Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague December 7, 2016 Outline I 1 Outline 2 Dynamické alokování paměti 3 Dynamická alokace
Úvod do programování. Lekce 5
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Inovace a zvýšení atraktivity studia optiky reg. č.: CZ.1.07/2.2.00/07.0289 Úvod do programování Lekce 5 Tento projekt je spolufinancován Evropským
3. ledna list a odevzdejte tento zvláštní list (listy) i všechny ostatní listy, které jste při řešení
Jméno a příjmení: Písemná část zkoušky z předmětu AN1E 3. ledna 2019 Skutečná písemná práce bude obsahovat 5 příkladů. Zvolte si pořadí, v jakém budete příklady řešit. Vaše řešení nemusí být kulturně zapsané,
Programy a algoritmy pracující s čísly. IB111 Úvod do programování skrze Python
Programy a algoritmy pracující s čísly IB111 Úvod do programování skrze Python 2013 1 / 60 Připomenutí z minule proměnné, výrazy, operace řízení výpočtu: if, for, while funkce příklady: faktoriál, binární
Základy programování (IZP)
Základy programování (IZP) Třetí počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Petr Veigend, iveigend@fit.vutbr.cz Verze
Lekce 01 Úvod do algoritmizace
Počítačové laboratoře bez tajemství aneb naučme se učit algoritmizaci a programování s využitím robotů Lekce 01 Úvod do algoritmizace Tento projekt CZ.1.07/1.3.12/04.0006 je spolufinancován Evropským sociálním
Diferenciální rovnice 1
Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.
I. TAYLORŮV POLYNOM. 2. a) x x3, b) x x3 + x5, c) 1 + 2x x2 2x 4, f (4) (0) = 48, d) x , c)
VÝSLEDKY I. TAYLORŮV POLYNOM. a) ( ) + ( ) ( 6 ), b) ( π ). a) +, b) +, c) + + 4, f (4) (0) = 48, d) + 4 4, e) + 0, f), g) ++ 6 4, h) + 70 4, i) 4 j) + 6 k) 7 8 40. + o( ), 8 4. a), b), c), d) -, e) 4
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÍCH TECHNOLOGIÍ DOKUMENTACE K PROJEKTU 2 DO PŘEDMĚTŮ IZP A IUS ITERAČNÍ VÝPOČTY BC. PETR ŠAFAŘÍK xsafar14 BRNO 2010 Obsah 1 Úvod 1 2 Analýza problému a princip
Náplň. v.0.03 16.02.2014. - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění
Náplň v.0.03 16.02.2014 - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění Spojení dvou samostatně setříděných polí void Spoj(double apole1[], int adelka1, double
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce
Poslední nenulová číslice faktoriálu
Poslední nenulová číslice faktoriálu Kateřina Bambušková BAM015, I206 Abstrakt V tomto článku je popsán a vyřešen problém s určením poslední nenulové číslice faktoriálu přirozeného čísla N. Celý princip
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky
I. Kalkulátor Rebell SC2040 manuál s příklady Tlačítko: MODE CLR
I. Kalkulátor Rebell SC2040 manuál s příklady Tlačítko: MODE CLR Toto tlačítko je velmi důležité pro volbu pracovního režimu. 1 stisknutí: 1 (COMP) - běžné výpočty SD, REG statistické výpočty 2 stisknutí
Martin Flusser. November 1, 2016
ZPRO cvičení 4 Martin Flusser Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague November 1, 2016 Outline I 1 Outline 2 Cykly 3 Cykly cvičení 4 Rekurze 5 Rekurze
ZÁPOČTOVÝ TEST. Zpracoval Vilém Závodný, http://narrow.ic.cz. #include "stdafx.h" #include "stdio.h"
BPC2 ZÁPOČTOVÝ TEST PROSÍM ČTĚTE!!!! Příklady jsou zpracovány tak aby bylo možné je odzkoušet v programu Microsoft Visual C++ jako konzolovou aplikaci. Všechny příklady jsou 100% funkční. V červeném rámečku
1.1 Struktura programu v Pascalu Vstup a výstup Operátory a některé matematické funkce 5
Obsah Obsah 1 Programovací jazyk Pascal 1 1.1 Struktura programu v Pascalu.................... 1 2 Proměnné 2 2.1 Vstup a výstup............................ 3 3 Operátory a některé matematické funkce 5
X36UNX 16. Numerické výpočty v sh příkazy expr, bc, dc. Zdeněk Sojka
X36UNX 16 Numerické výpočty v sh příkazy expr, bc, dc Zdeněk Sojka sojkaz1@fel.cvut.cz dc desk calculator - zadávání příkazů postfixově - data se ukládají do stacku - příkazy obyčejně pracují s jedním
11MAMY LS 2017/2018. Úvod do Matlabu. 21. února Skupina 01. reseni2.m a tak dále + M souborem zadané funkce z příkladu 3 + souborem skupina.
11MAMY LS 2017/2018 Cvičení č. 2: 21. 2. 2018 Úvod do Matlabu. Jan Přikryl 21. února 2018 Po skupinách, na které jste se doufám rozdělili samostatně včera, vyřešte tak, jak nejlépe svedete, níže uvedená
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ..07/..00/6.007 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Goniometrické funkce Autor: Ondráčková
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: geometrická posloupnost, geometrická
Základy algoritmizace a programování
Základy algoritmizace a programování Přednáška 1 Olga Majlingová Katedra matematiky, ČVUT v Praze 19. září 2011 Obsah Úvodní informace 1 Úvodní informace 2 3 4 Doporučená literatura web: http://marian.fsik.cvut.cz/zapg
Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3
Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme
- jak udělat konstantu long int: L long velka = 78L;
Konstanty (konstatní hodnoty) Např.: - desítkové: 25, 45, 567, 45.678 - osmičkové: 045, 023, 03 vždy začínají 0 - šestnáctkové: 0x12, 0xF2, 0Xcd, 0xff, 0xFF - jak udělat konstantu long int: 245566553L
Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky
Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.
3. přednáška. Obsah: Řídící struktury sekvence, if-else, switch, for, while, do-while. Zpracování posloupnosti
Obsah: Řídící struktury sekvence, if-else, switch, for, while, do-while. Zpracování posloupnosti 3. přednáška nalezení největšího prvku, druhého nejvyššího prvku, algoritmus shozeného praporku. Algoritmizace
Začínáme vážně programovat. Řídící struktury Přetypování Vstupně výstupní operace Vlastní tvorba programů
Začínáme vážně programovat Řídící struktury Přetypování Vstupně výstupní operace Vlastní tvorba programů Podmínky a cykly Dokončení stručného přehledu řídících struktur jazyka C. Složený příkaz, blok Pascalské
3 Co je algoritmus? 2 3.1 Trocha historie... 2 3.2 Definice algoritmu... 3 3.3 Vlastnosti algoritmu... 3
Obsah Obsah 1 Program přednášek 1 2 Podmínky zápočtu 2 3 Co je algoritmus? 2 3.1 Trocha historie............................ 2 3.2 Definice algoritmu.......................... 3 3.3 Vlastnosti algoritmu.........................
Proměnná. Datový typ. IAJCE Cvičení č. 3. Pojmenované místo v paměti sloužící pro uložení hodnoty.
Proměnná Pojmenované místo v paměti sloužící pro uložení hodnoty. K pojmenování můžeme použít kombinace alfanumerických znaků, včetně diakritiky a podtržítka Rozlišují se velká malá písmena Název proměnné
Digitální učební materiál
Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_142_IVT Autor: Ing. Pavel Bezděk Tematický okruh:
Řídicí struktury. alg3 1
Řídicí struktury Řídicí struktura je programová konstrukce, která se skládá z dílčích příkazů a předepisuje pro ně způsob provedení Tři druhy řídicích struktur: posloupnost, předepisující postupné provedení
CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu
Jak v Javě primitivní datové typy a jejich reprezentace. BD6B36PJV 002 Fakulta elektrotechnická České vysoké učení technické
Jak v Javě primitivní datové typy a jejich reprezentace BD6B36PJV 002 Fakulta elektrotechnická České vysoké učení technické Obsah Celočíselný datový typ Reálný datový typ Logický datový typ, typ Boolean
Numerické algoritmy KAPITOLA 11. Vyhledávání nulových bodů funkcí
Numerické algoritmy KAPITOLA 11 V této kapitole: Vyhledávání nulových bodů funkcí Iterativní výpočet hodnot funkce Interpolace funkcí Lagrangeovou metodou Derivování funkcí Integrování funkcí Simpsonovou
Posloupnosti a řady. a n+1 = a n + 4, a 1 = 5 a n+1 = a n + 5, a 1 = 5. a n+1 = a n+1 = n + 1 n a n, a 1 = 1 2
Vlastnosti posloupností 90000680 (level ): Je dána posloupnost (an + b), ve které platí, že a = a a 4 = 8. Potom: Posloupnosti a řady 900006807 (level ): Které z čísel 5, 5, 8, 47 není členem posloupnosti
12. Automatické vyhodnocení derivací. jaro 2012
1/16 12. derivací jaro 2012 2/16 Motivace kromě funkce dokážeme vyhodnotit i její derivace první, druhé,... parciální mnohé numerické problémy jsou lépe řešitelné metodami s dostupnou derivací metody s
VÝUKOVÝ MATERIÁL. Bratislavská 2166, Varnsdorf, IČO: tel Číslo projektu
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
Rozvinutí funkce do Maclaurinova rozvoje
Rozvinutí funkce do Maclaurinova rozvoje 1.1 Úvod Na přednáškách z matematické analýzy mě zaujala teorie o mocninných řadách a rozvojích, kde jsem zjistil, že každá vhodná funkce lze rozvinout do nekonečné
Základy programování. Úloha: Eratosthenovo síto. Autor: Josef Hrabal Číslo: HRA0031 Datum: 28.11.2009 Předmět: ZAP
Základy programování Úloha: Eratosthenovo síto Autor: Josef Hrabal Číslo: HRA0031 Datum: 28.11.2009 Předmět: ZAP Obsah 1 Zadání úkolu: 3 1.1 Zadání:............................... 3 1.2 Neformální zápis:.........................
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
9.3.2010 Program převod z desítkové na dvojkovou soustavu: /* Prevod desitkove na binarni */ #include <stdio.h>
9.3.2010 Program převod z desítkové na dvojkovou soustavu: /* Prevod desitkove na binarni */ #include int main(void) { int dcislo, kolikbcislic = 0, mezivysledek = 0, i; int vysledek[1000]; printf("zadejte
Otázky z kapitoly Posloupnosti
Otázky z kapitoly Posloupnosti 8. září 08 Obsah Aritmetická posloupnost (8 otázek). Obtížnost (0 otázek)........................................ Obtížnost (0 otázek).......................................
Tato tematika je zpracována v Záznamy přednášek: str
Obsah 10. přednášky: Souvislosti Složitost - úvod Výpočet časové složitosti Odhad složitosti - příklady Posuzování složitosti Asymptotická složitost - odhad Přehled technik návrhů algoritmů Tato tematika
Algoritmizace a programování
Algoritmizace a programování Typy Základní (primitivní) datové typy Deklarace Verze pro akademický rok 2012/2013 1 Typy v jazyce Java Základní datové typy (primitivní datové typy) Celočíselné byte, short,
Desetinná čísla. pro celá čísla jsme používali typ int. pro desetinná čísla používáme typ double
Čísla Desetinná čísla pro celá čísla jsme používali typ int pro desetinná čísla používáme typ double analogicky pro konverzi ze stringu na double se místo Convert.ToInt32 používá Convert.ToDouble Př. program,
4.2.5 Orientovaný úhel II
.2.5 Orientovaný úhel II Předpoklady: 20 Minulá hodina Orientovaný úhel rozlišujeme: směr otáčení (proti směru hodinových ručiček je kladný směr), počáteční rameno. Každý úhel má nekonečně mnoho velikostí:...,
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu Autor Jazyk Téma sady didaktických materiálů Téma didaktického materiálu Vyučovací předmět Cílová skupina (ročník) Úroveň
Úvod do programování. Lekce 3
Úvod do programování Lekce 3 Řízení běhu programu - pokračování /2 příklad: program vypisuje hodnotu sin x dx pro různé délky integračního kroku 0 #include #include // budeme pouzivat funkci
11. Číselné a mocninné řady
11. Číselné a mocninné řady Aplikovaná matematika III, NMAF072 M. Rokyta, KMA MFF UK ZS 2017/18 11.1 Základní pojmy Definice Necht {a n } C je posloupnost komplexních čísel. Pro m N položme s m = a 1 +
. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0
Příklad 1 Určete definiční obor funkce: a) = b) = c) = d) = e) = 9 f) = Řešení 1a Máme určit definiční obor funkce =. Výraz je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy
Úvod do programování. Lekce 1
Úvod do programování Lekce 1 Základní pojmy vytvoření spustitelného kódu editor - psaní zdrojových souborů preprocesor - zpracování zdrojových souborů (vypuštění komentářů atd.) kompilátor (compiler) -
Požadavky k opravným zkouškám z matematiky školní rok 2013-2014
Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
Zimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 014/015. prosince 014 Předmluva iii
Výčtový typ strana 67
Výčtový typ strana 67 8. Výčtový typ V této kapitole si ukážeme, jak implementovat v Javě statické seznamy konstant (hodnot). Příkladem mohou být dny v týdnu, měsíce v roce, planety obíhající kolem slunce
Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h)
Příklad Řešte v R rovnice: a) 8 3 5 5 2 8 =20+4 b) = + c) = d) = e) + =2 f) +6 +8=4 g) + =0 h) = Řešení a Máme řešit rovnici 8 3 5 5 2 8 =20+4 Zjevně jde o lineární rovnici o jedné neznámé. Nejprve roznásobíme