Matematická analýza ve Vesmíru. Jiří Bouchala
|
|
- Silvie Marková
- před 7 lety
- Počet zobrazení:
Transkript
1 Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky - p. 1/19
2 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru. funkcí - p. /19
3 Rozklad polynomu na kořenové činitele. Připomeňme si, že polynomem s reálnými koeficienty rozumíme každou funkci q danou předpisem q(x) := a n x n + a n 1 x n a 1 x 1 + a 0, kde a 0, a 1,..., a n R, a že každý takový polynom lze psát ve tvaru typu: m x q(x) = a n (x α 1 ) n 1...(x α k ) n k (x + β 1 x + γ 1 ) m 1...(x + β l x + γ l ) m l, (sin x, cos x) Ö kde R(x, ax +...)dx. α i jsou navzájem různá reálná čísla, β j, γ j R, polynomy (x + β j x + γ j ) mají navzájem různé nereálné kořeny, n i, m j N {0}. Matematická analýza ve Vesmíru. funkcí - p. 3/19
4 Rozklad racionální funkce na parciální zlomky. Věta Necht p a q jsou polynomy s reálnými koeficienty a takové, že stupeň polynomu p je menší než stupeň polynomu q. Rozložme q do tvaru q(x) = a n (x α 1 ) n 1...(x α k ) n k (x + β 1 x + γ 1 ) m 1...(x + β l x + γ l ) m l. Pak existují reálná čísla a ij, b rs, c rs taková, že typu: m x (sin x, cos x) p(x) q(x) = a 11 x α 1 + a 1 (x α 1 ) + + a 1n 1 (x α 1 ) n a k1 x α k + a k (x α k ) + + a kn k (x α k ) n k + R(x, ax +...)dx. + b 11x+c 11 x +β 1 x+γ 1 + b 1x+c 1 (x +β 1 x+γ 1 ) + + b 1m 1 x+c 1m1 (x +β 1 x+γ 1 ) m b l1x+c l1 x +β l x+γ l + b lx+c l (x +β l x+γ l ) + + b lm l x+c lml (x +β l x+γ l ) m l. Matematická analýza ve Vesmíru. funkcí - p. 4/19
5 Příklady. x+ 3x +3x 18 = x+ 3(x )(x+3) = a x + b x+3, 3x x+1 (x+4) (x 1) 3 = a x+4 + b (x+4) + c x 1 + x 3 +x 13 x (x +x+3) = a x + b x + x +x+3, d (x 1) + e (x 1) 3, x 3 +x 13 x (x +x+1) = x3 +x 13 = a x (x+1) x + b x + c x+1 + d, (x+1) x = a (x 1)(x +x+3) x 1 + bx+c x +x+3 + dx+e (x +x+3). typu: m x (sin x, cos x) R(x, ax +...)dx. Definice. Funkce tvaru p(x) q(x), kde p a q jsou polynomy, nazýváme racionálními funkcemi; říká parciální zlomky funkcím tvaru a (x α) n a bx+c (x +βx+γ) m se (a, b, c, α, β, γ R; n, m N; x + βx + γ nemá reálné kořeny). Matematická analýza ve Vesmíru. funkcí - p. 5/19
6 Příklad. Rozložme racionální funkci x +x+1 x 4 1 Řešení. na parciální zlomky. x +x+1 x 4 1 = x +x+1 (x+1)(x 1)(x +1) = a x+1 + b x 1 + x +1 pro nějaká a, b, c, d R. Po vynásobení výrazem x 4 1 obdržíme x + x + 1 = a(x 1)(x + 1) + b(x + 1)(x + 1) + (cx + d)(x 1). Porovnáním koeficientů u jednotlivých mocnin sestavíme soustavu (lineárních) rovnic x 3 : 0 = a + b + c, x : 1 = a + b + d, x 1 : 1 = a + b c, x 0 : 1 = a + b d, typu: m x (sin x, cos x) R(x, ax +...)dx. jejichž vyřešením získáme (a jednoznačně!) hledaná čísla a, b, c, d. Výsledek: x + x x 4 = 1 4(x + 1) + 3 4(x 1) x (x + 1). Matematická analýza ve Vesmíru. funkcí - p. 6/19
7 Důležité pozorování. Výpočet výše uvedené soustavy rovnic se zrychlí, dosadíme-li do rovnice x + x + 1 = a(x 1)(x + 1) + b(x + 1)(x + 1) + (cx + d)(x 1) reálné kořeny x 4 1 (jmenovatele): Poznámka. Není-li v p(x) q(x) x = 1: 3 = 4b b = 3 4, x = 1: 1 = 4a a = 1 4. stupeň polynomu p menší než stupeň nekonstantního polynomu q, provedeme dělení polynomů p(x) : q(x) se zbytkem. Získáme tak vyjádření ve tvaru typu: m x (sin x, cos x) R(x, ax +...)dx. p(x) q(x) = u(x) + v(x) q(x), kde u a v jsou polynomy a stupeň polynomu v je menší než stupeň polynomu q. Matematická analýza ve Vesmíru. funkcí - p. 7/19
8 Řešení. Příklad. Rozložme racionální funkci x 4 x 4 x 3 x+1. x 4 : x 4 x 3 x + 1 = 1 + x3 +x 1 x 4 x 3 x+1, (x 4 x 3 x + 1) x 3 + x 1 a proto existují čísla a, b, c, d R taková, že 1 + x3 +x 1 x 4 x 3 x+1 = 1 + Odtud plyne x 3 +x 1 = 1 + a (x 1) (x +x+1) x 1 + b (x 1) + x +x+1. x 3 + x 1 = a(x 1)(x + x + 1) + b(x + x + 1) + (cx + d)(x 1). Porovnáním koeficientů u jednotlivých mocnin získáme soustavu x 3 : 1 = a + c, x 1 : 1 = b + c d, x : 0 = b c + d, x 0 : 1 = a + b + d, jejímž řešením jsou čísla a = 1, b = 1 3, c = 0, d = 1 3, typu: m x (sin x, cos x) R(x, ax +...)dx. a proto x 4 x 4 x 3 x+1 = x (x 1) 1 3(x +x+1). Matematická analýza ve Vesmíru. funkcí - p. 8/19
9 Integrace parciálních zlomků. typu počítáme pomocí substituce x α = t. Příklady. a (x α) n dx dx x 6 = dt t = ln t = ln x 6 v (, 6) i v (6, ). x 6 = t dx = dt dx = dt (x 6) 3 t = 1 3 t = 1 (x 6) v (, 6) i v (6, ). typu: m x (sin x, cos x) R(x, ax +...)dx. Pozor! dx 6 x = dt t = ln t = ln 6 x = ln x 6 6 x = t dx = dt v (, 6) i v (6, ). Matematická analýza ve Vesmíru. funkcí - p. 9/19
10 Integrace parciálních zlomků. typu bx+c (x +βx+γ) m dx nejdříve rozložíme na součet bx+c (x +βx+γ) dx = b x+β m (x +βx+γ) dx + (c bβ m ) dx (x +βx+γ), m a potom první z integrálů vypočítáme substitucí x + βx + γ = t (protože pak (x + β) dx = dt), druhý integrál doplněním na čtverec ve jmenovateli a vhodnou (lineární) substitucí převedeme na výpočet integrálu dt (1+t ), pro který jsme již dříve odvodili m (pomocí per partes) rekurentní formuli. typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru. funkcí - p. 10/19
11 Příklad. 6x 1 x +x+3 dx = 3 x+ x +x+3 dx 7 = 3 dt t 7 x + x + 3 = t (x + ) dx = dt dx (x+1) + = 3 ln t 7 dx x +x+3 = dx 1+ x+1 = typu: m x (sin x, cos x) = 3 ln(x +x+3) 7 = 3 ln(x + x + 3) 7 arctg x+1 = u dx = du du 1+u = 3 ln(x +x+3) 7 arctg u = ( ) x+1 (v R). R(x, ax +...)dx. Cvičení. Vypočtěte 6x 1 (x + x + 3) dx. Matematická analýza ve Vesmíru. funkcí - p. 11/19
12 Dobrá rada: vyplatí se přemýšlet! Podívejme se na následující dva výpočty: x 3 x 4 +1 dx = x 3 (x + x+1)(x dx = x+1) = ax+b x + x+1 + x x+1 dx = 4(x + + x x+1) = x+ 4(x x+1) dx = = 1 4 ln(x + x+1)+ 1 4 ln(x x+1) = 1 4 ln(x4 +1), typu: m x (sin x, cos x) R(x, ax +...)dx. x 3 x 4 +1 dx = 1 4 x = t 4x 3 dx = dt dt t = 1 4 ln t = 1 4 ln(x4 + 1) (v R). Cvičení. Vypočtěte x 3x dx. Matematická analýza ve Vesmíru. funkcí - p. 1/19
13 typu sin m x kde n, m N {0}, rozdělíme na dva případy. 1. Je-li n nebo m liché číslo, užijeme při výpočtu první substituční metodu. Příklad. sin 3 x cos x dx = sinx(1 cos x) cos x dx = cos x = t sin x dx = dt typu: m x (sin x, cos x) R(x, ax +...)dx. = (1 t )t dt = t3 3 + t5 5 = cos3 x 3 + cos5 x 5 v R.. Jsou-li n a m sudá čísla, lze při výpočtu využít rovností sin x = 1 cos(x), cos x = 1 + cos(x). Matematická analýza ve Vesmíru. funkcí - p. 13/19
14 Příklad. sin x cos x dx = 1 cos(x) 1+cos(x) dx = 1 4 = dx cos(4x) dx = 1 4 x 1 8 x cos (x) dx = sin(4x) 4 = x 8 sin(4x) 3 v R. Označení. Symbolem R(u, v) rozumějme zlomek, v jehož čitateli i jmenovateli jsou pouze konečné součty výrazů tvaru k u n v m, kde k, u, v R; n, m N {0}. Zobrazení (u, v) R(u, v) se říká racionální funkce dvou proměnných. typu: m x (sin x, cos x) R(x, ax +...)dx. Příklady takovýchto zobrazení: R(u, v) = 3u v 0 +uv 0 +1u 0 v 0 1u 0 v 0 = 3u + u + 1, R(u, v) = 1u3 v +3uv 3 +u 0 v 0 1 u 0 v 0 = u 3 v + 3uv 3 +, R(u, v) = u0 v +1u 0 v 0 1u v 0 +1u 0 v 3 = v +1 u +v 3. Matematická analýza ve Vesmíru. funkcí - p. 14/19
15 typu R(sin x, cosx) dx lze substitucí tg x Přesvědčme se o tom. Nejdříve si vyjádřeme sinx, cos x a dx pomocí t. sin x + cos x = 1 tg x = 1 cos x a proto Takže = t převést na integrály sinx = sin x cos x = tg x cos x = t 1+t, cos x = cos x 1 = 1 1+t 1 = 1 t 1 1 cos x dx = dt. 1 cos x = 1 1+tg x 1+t, R(sinx,cos x) dx = R( t 1+t, 1 t 1+t ) 1+t dt. = 1 1+t, typu: m x (sin x, cos x) R(x, ax +...)dx. (Všimněme si, že dříve zkoumané integrály typu sin m x dx jsou rovněž typu R(sinx,cos x) dx stačí volit R(u, v) := u n v m. Na předcházejících stránkách popsané metody jejich výpočtu jsou však zpravidla méně pracné než použití substituce tg x = t.) Matematická analýza ve Vesmíru. funkcí - p. 15/19
16 Příklad. 1 sin x 1+cos x dx = 1 t 1+t 1+ 1 t 1+t = t ln(t + 1) = tg x ln(tg x 1+t dt = t t+1 t +1 dt = 1 t t +1 dt = A opět: vyplatí se přemýšlet! sin 3 x cos x dx = t 1+t 3 1 t 1+t + 1) v (například) ( π, π). 1+t dt = 16t 3 dt =..., (1+t ) (t 1) (t+1) typu: m x (sin x, cos x) R(x, ax +...)dx. sin 3 x cos x dx = (1 cos x) sin x cos x dx = 1 t t dt = 1 t + t = = 1 cos x + cos x. cos x = t sin x dx = dt Matematická analýza ve Vesmíru. funkcí - p. 16/19
17 typu R (x, s ax+b ) kde a, b, c, d R, s N \ {1}, ad bc (proč?), zjednodušíme s ax+b substitucí = t. typu: m x Příklad. x+3+x x+3 x dx = t+ t 3 t t 3 t dt = t +t 3 t +t+3 t dt = (sin x, cos x) R(x, ax +...)dx. x + 3 = t x = t 3 dx = t dt = t 4 + 8t+1 (t+1)(t 3) dt = t 4t + 9 t t+1 dt = = t 4t 9 ln t 3 + ln t + 1 = = x+3 4 x ln x ln x Matematická analýza ve Vesmíru. funkcí - p. 17/19
18 typu R(x, ax + bx + c) kde a, b, c R, a 0, ax + bx + c má dva různé (obecně komplexní) kořeny α 1, α (proč?), rozdělíme na dva případy. 1. Je-li a > 0, volíme tzv. Eulerovou substituci ax + bx + c = ax + t, která je vhodná na každém otevřeném intervalu, který je částí definičního oboru dané integrované funkce. Příklad. dx x = 1 4t t x +x 1 t + +1 t +1 (1 t) (1 t) +t 4(1 t) dt = typu: m x (sin x, cos x) R(x, ax +...)dx. x + x 1 = 1 x + t, x = t +1 (1 t), dx = 4t t + 4(1 t) dt = t +1 dt = arctg t = arctg ( x + x 1 x) v (, 1 ) i v ( 1 +, ). Matematická analýza ve Vesmíru. funkcí - p. 18/19
19 R(x, ax + bx + c) dx. Je-li a < 0, má smysl uvažovat pouze případ, kdy α 1, α R (jinak ax + bx + c < 0 v R). Předpokládejme, že α 1 < α. Pak pro každé x (α 1, α ) (a jiná nás nemohou zajímat) platí ax + bx + c = a(x α 1 )(x α ) = = ( a)(x α 1 )(α x) = α x ( a)(x α 1 ), x α 1 a proto počítaný integrál lze psát ve tvaru ( R x, ) a(x α 1 ) α x x α 1 dx; typu: m x (sin x, cos x) R(x, ax +...)dx. a integrály tohoto druhu už počítat umíme - volíme substituci α x x α 1 = t. Cvičení. Přepočítejte výše popsanou metodou, že dx + = arctg x+3 3 x x 1 x + 1 x x+3+ 1 x v ( 3, 1). Matematická analýza ve Vesmíru. funkcí - p. 19/19
Kapitola 7: Neurčitý integrál. 1/14
Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní
VíceKapitola 7: Integrál.
Kapitola 7: Integrál. Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f(x) x I nazýváme primitivní funkcí k funkci
VíceII. 3. Speciální integrační metody
48 II. Integrální počet funkcí jedné proměnné II.. Speciální integrační metody Integrály typu f ( x, r x, r x,..., r k x ), tj. integrály obsahující proměnnou x pod odmocninou, kde k N a r,..., r k jsou
VícePetr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Neurčitý integrál Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VíceIntegrální počet - II. část (další integrační postupy pro některé typy funkcí)
Integrální počet - II. část (další integrační postupy pro některé typy funkcí) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz) 1 /
VíceKapitola 7: Integrál. 1/17
Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený
VíceSPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ
VÝPOČET PECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Pro různé situace se hodí různé metody (výpočtu!). Jak již bylo několikrát zdůrazněno,
VíceSPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ
VÝPOČET PEIÁLNÍH PRIMITIVNÍH FUNKÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Nicméně eistují jisté třídy funkcí, pro které eistuje algoritmus, který vždy vede k výpočtu
VíceTeorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
Více1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
VíceTeorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
VíceObsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
Vícearcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.
Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál
Více1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
VíceMatematická analýza 1b. 9. Primitivní funkce
Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
VíceVzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 0 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ..07/.5.00/3.0 Zlepšení podmínek pro
Vícec ÚM FSI VUT v Brně 20. srpna 2007
20. srpna 2007 1. 3 arctg x 1+x 2 dx 2. (x 2 + 2x + 17)e x dx 3. 1 x 3 x dx Vypočtěte integrál: 3 arctg x 1 + x 2 dx Příklad 1. Řešení: Použijeme substituci: arctg x = t 3 arctg x dx = 1 dx = dt 1+x 2
VíceF (x) = f(x). Je-li funkce f spojitá na intervalu I, pak existuje k funkci f primitivní funkce na intervalu I.
KAPITOLA 7: 7. Úvod Primitivní funkce [MA-6:P7.] Definice: Funkce F je primitivní funkcí k funkci f na intervalu I, jestliže pro každé I eistuje F a platí F f. Poznámky: Obsahuje-li I některý z krajních
VíceMatematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci
Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci petr.salac@tul.cz jiri.hozman@tul.cz 5.12.2016 Fakulta přírodovědně-humanitní a pedagogická
VíceÚvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali
NEURČITÝ INTEGRÁL Úvod Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali Umět pracovat s integrálním počtem Je důležité pro
Vícex 2 +1 x 3 3x 2 4x = x 2 +3
I. Určitý integrál I.. Eistence určitých integrálů Zjistěte, zda eistují určité integrály : Příklad. + + d Řešení : Ano eistuje, protože funkce f() + + je spojitá na intervalu,. Příklad. + 4 d Řešení :
Více7.1 Úvod. Definice: [MA1-18:P7.1a]
KAPITOLA 7: 7. Úvod Primitivní funkce [MA-8:P7.a] Definice: Funkce F je primitivní funkcí k funkci f na intervalu I, jestliže pro každé I eistuje F a platí F f. Poznámky: Obsahuje-li I některý z krajních
VíceJan Kotůlek. verze 3 ze dne 25. února 2011
Integrace racionálních lomených funkcí Jan Kotůlek (kombinované studium, první soustředění) verze 3 ze dne 5. února 0 Abstrakt Tento článek je koncipován jako rozšířený zápis průběhu prvního soustředění
VíceZimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 7. prosince 2014 Předmluva
Vícepouze u některých typů rovnic a v tomto textu se jím nebudeme až na
Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)
VíceNeurčitý integrál. Robert Mařík. 4. března 2012
Neurčitý integrál Robert Mařík 4. března 0 V tomto souboru jsou vysvětleny a na příkladech s postupným řešením demonstrovány základní integrační metody. Ikonka za integrálem načte integrál do online aplikace
VícePrimitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní
VíceKapitola 11: Lineární diferenciální rovnice 1/15
Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +
VíceZáklady matematické analýzy
Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
VíceObsah Obyčejné diferenciální rovnice
Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................
VíceMatematika vzorce. Ing. Petr Šídlo. verze
Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............
VícePraha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,
E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................
Vícerovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y =
Cíle Přehled základních typů diferenciálních rovnic prvního řádu zakončíme pojednáním o lineárních rovnicích, které patří v praktických úlohách k nejfrekventovanějším. Ukážeme například, že jejich řešení
Vícekuncova/, 2x + 3 (x 2)(x + 5) = A x 2 + B Přenásobením této rovnice (x 2)(x + 5) dostaneme rovnost
. cvičení http://www.karlin.mff.cuni.cz/ kuncova/, kytaristka@gmail.com Příklady Najděte primitivní funkce k následujícím funkcím na maimální možné podmnožině reálných čísel a tuto množinu určete.. f()
Více1 1 x 2. Jedná se o diferenciální rovnici se separovanými proměnnými, která má smysl pro x ±1 a
. Řešené úlohy Příklad. (separace proměnných). Řešte počáteční úlohu y 2 + yy ( 2 ) = 0, y(0) = 2. Řešení. Rovnici přepíšeme do tvaru y 2 = yy ( 2 ) y = y2 y 2. Jedná se o diferenciální rovnici se separovanými
Více1 Neurčitý integrál 1.1 NEURČITÝ INTEGRÁL
1 Neurčitý integrál 1.1 NEURČITÝ INTEGRÁL V předchozím semestru jsme se seznámili s derivováním funkcí. Nyní se přesuneme k integrování funkce, což je vlastně zpětný proces k derivaci. Ukážeme si, jakým
Více)(x 2 + 3x + 4),
3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem
VíceVěta o dělení polynomů se zbytkem
Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)
VíceMatematika IV 9. týden Vytvořující funkce
Matematika IV 9. týden Vytvořující funkce Jan Slovák Masarykova univerzita Fakulta informatiky jaro 2015 Obsah přednášky 1 Vytvořující funkce a Fibonacciho čísla 2 Vytvořující funkce - připomenutí 3 Řešení
VíceLimita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39
Limita funkce FIT ČVUT v Praze 3.týden (FIT) Limita funkce 3.týden 1 / 39 Definice funkce. Zobrazení (f, D f ), jehož definiční obor D f i obor hodnot H f je podmnožinou množiny reálných čísel, se nazývá
VíceWolfram Alpha. v podobě html stránky, samotný výsledek je často doplněn o další informace (např. graf, jiné možné zobrazení výsledku a
Wolfram Alpha jde o výpočetní prostředí z nejrůznějších oborů (matematika, fyzika, chemie, inženýrství... ) přístupné online: http://www.wolframalpha.com/ Jaké matematické výpočty Wolfram Alpha zvládá?
Více4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE
FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y
VícePříklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 12. a) 3 +1)d. Vypočítejte určité integrály: b) 5sin 4 ) d. c) d. g) 3 d. h) tg d. k) 4 arctg 2 ) d.
ŘEŠENÉ PŘÍKLADY Z MA ČÁST Příklad Vypočítejte určité integrály: a) +)d b) 5sin) d c) d d) d e) d f) g) d d h) tgd i) d j) d k) arctg) d l) d m) sin d n) ) d o) p) q) r) s) d d ) d d d t) +d u) d v) d ŘEŠENÉ
Více7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí
202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají
Vícey = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1
ODR - řešené příkla 20 5 ANALYTICKÉ A NUMERICKÉ METODY ŘEŠENÍ ODR A. Analtické meto řešení Vzorové příkla: 5.. Příklad. Řešte diferenciální rovnici = 2. Řešení: Přepišme danou rovnici na tvar = (2 ), což
Více8.4. Shrnutí ke kapitolám 7 a 8
8.4. Shrnutí ke kapitolám 7 a 8 Shrnutí lekce Úvodní 7. kapitola přinesla informace o druzích řešení diferenciálních rovnic prvního řádu a stručné teoretické poznatky o podmínkách existence a jednoznačnosti
VíceÚvod, základní pojmy, funkce
Úvod, základní pojmy, funkce Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 1. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 69 Obsah 1 Matematická logika 2 Množiny 3 Funkce,
VíceNejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.
1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co
VíceINTEGRÁLY S PARAMETREM
INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity
VíceVzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Integrální počet VY_32_INOVACE_M0307. Matematika
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 0 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ..07/.5.00/34.0 Zlepšení podmínek pro
VíceIntegrální počet funkcí jedné proměnné
Integrální počet funkcí jedné proměnné V diferenciálním počtu jsme určovali derivaci funkce jedné proměnné a pomocí ní vyšetřovali řadu vlastností této funkce. Pro připomenutí: derivace má uplatnění tam,
VícePosloupnosti a řady. 28. listopadu 2015
Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj
VícePolynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...
Polynomy Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Základní vlastnosti polynomů 2 1.1 Teorie........................................... 2 1.1.1 Zavedení polynomů................................
VíceIntegrální počet - I. část (neurčitý integrál a základní integrační metody)
Integrální počet - I. část (neurčitý integrál a základní integrační metody) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 6. přednáška z AMA Michal Fusek (fusekmi@feec.vutbr.cz) / 23 Obsah
Více4C. Polynomy a racionální lomené funkce. Patří mezi tzv. algebraické funkce, ke kterým patří také funkce s odmocninami. Polynomy
4C. Polynomy a racionální lomené funkce Polynomy a racionální funkce mají zvláštní význam zejména v numerické a aplikované matematice. Patří mezi tzv. algebraické funkce, ke kterým patří také funkce s
VíceDiferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
Více26. listopadu a 10.prosince 2016
Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální
VíceFunkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou
Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí
VíceFAKULTA STAVEBNÍ MATEMATIKA I MODUL 7 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL 7 NEURČITÝ INTEGRÁL STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Daněček, Oldřich Dlouhý,
VíceTest M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0.
Test M-ZS- M-ZS-/ Příklad Najděte tečnu grafu funkce f x x 6 3 x, která je kolmá na přímku p :x y 3 0. Zřejmě D f R. Přímka p má směrnici, tečna na ní kolmá má proto směrnici. Protože směrnice tečny ke
VíceDerivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
VíceMATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze
Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 12. přednáška Blanka Šedivá KMA zimní semestr 216/21 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 216/21 1 / 15 Integrování jako inverzní operace příklady inverzních
VíceNalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,
Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,
VíceDefinice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),
Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako
VíceMatematika II: Pracovní listy do cvičení
Matematika II: Pracovní listy do cvičení Radomír Paláček, Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Příklady Integrální počet funkcí
VíceMATEMATIKA K ZÁKLADŮM FYZIKY 2 (kombinované studium) RNDr. Jiří Lipovský, Ph.D.
MATEMATIKA K ZÁKLADŮM FYZIKY (kombinované studium) RNDr. Jiří Lipovský, Ph.D. Hradec Králové 8 Obsah Komplexní čísla 5. Algebraický, goniometrický a exponenciální tvar komplexního čísla 5. Moivreova věta,
VícePRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE
PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
VíceÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup
VícePRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.
PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
VícePOLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie
POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie Komplexní čísla. Komplexní čísla jsou objekty tvaru α+iβ, kde α, β R. Množina všech komplexních čísel se značí C. Rovnost komplexních
VíceGoniometrie a trigonometrie
Goniometrie a trigonometrie Vzorce pro goniometrické funkce Nyní si řekneme něco o velmi důležitých vlastnostech a odvodíme si také některé velmi důležité vzorce pro výpočty s goniometrickými funkcemi.
Více9.4. Rovnice se speciální pravou stranou
Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta
Více7. Integrální počet Primitivní funkce, Neurčitý integrál
7. Integrální počet 7.. Primitivní funkce, Neurčitý integrál Definice 7. Říkáme, že F (x) je v intervlu (, b) (přitom může být tké =, b = + ) primitivní funkcí k finkci f(x), jestliže pro všechn x (, b)
Více(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí
1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální
VíceMatematika. Obálka ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE MASARYKŮV ÚSTAV VYŠŠÍCH STUDIÍ. Bakalářský program: Ekonomika a management
Matematika Obálka ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE MASARYKŮV ÚSTAV VYŠŠÍCH STUDIÍ Bakalářský program: Ekonomika a management Matematika doc. RNDr. Stanislav Kračmar, CSc. www.muvs.cvut.cz Evropský
VíceMETODICKÝ NÁVOD MODULU
Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název Základy matematiky modulu: Zkratka: ZM Počet kreditů: 4 Semestr: Z/L Mentor: Petr Dolanský Tutor: Petr Dolanský I OBSAH BALÍČKU STUDIJNÍCH
Více9.3. Úplná lineární rovnice s konstantními koeficienty
Úplná lineární rovnice s konstantními koeficienty Cíle Nyní přejdeme k řešení úplné lineární rovnice druhého řádu. I v tomto případě si nejprve ujasníme, v jakém tvaru můžeme očekávat řešení, poté se zaměříme
VíceKatedra aplikované matematiky, VŠB TU Ostrava.
SBÍRKA PŘÍKLADŮ Z MATEMATICKÉ ANALÝZY JIŘÍ BOUCHALA Katedra aplikované matematiky, VŠB TU Ostrava jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala 3 Předmluva Cílem této sbírky je poskytnout studentům vhodné
VíceSbírka příkladů z matematické analýzy II. Petr Tomiczek
Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................
VíceFUNKCE A JEJICH VLASTNOSTI
PŘEDNÁŠKA 3 FUNKCE A JEJICH VLASTNOSTI Pojem zobrazení a funkce Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic
Více[1] Definice 1: Polynom je komplexní funkce p : C C, pro kterou. pro všechna x C. Čísla a 0, a 1,..., a n nazýváme koeficienty polynomu.
Polynomy Polynom je možno definovat dvěma způsoby: jako reálnou nebo komplexní funkci, jejichž hodnoty jsou dány jistým vzorcem, jako ten vzorec samotný. [1] První způsob zavedení polynomu BI-LIN, polynomy,
Více1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
VíceKapitola 8: Dvojný integrál 1/26
Kapitola 8: vojný integrál 1/26 vojný integrál - osnova kapitoly 2/26 dvojný integrál přes obdélník definice výpočet (Fubiniova věta pro obdélník) dvojný integrál přes standardní množinu definice výpočet
VíceTěleso racionálních funkcí
Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso
VíceALGEBRA. 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = , b =
ALGEBRA 1 Úkol na 13. 11. 2018 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = 353 623, b = 244 571. 2. Připomeňte si, že pro ε = cos 2π 3 + i sin
VíceMatematika 1 sbírka příkladů
Matematika 1 sbírka příkladů RNDr. Rudolf SCHWARZ, CSc. Brno 2012 1. Poznámka Výsledky jednotlivých příkladů mají tuto barvu. 2. Poznámka Pokud je v hranatých závorkách uvedeno písmeno, označuje, ze které
Více1 Integrální počet. 1.1 Neurčitý integrál. 1.2 Metody výpočtů neurčitých integrálů
Integrální počet. Neurčitý integrál Neurčitým integrálem k dané funkci f() nazýváme takovou funkci F (), pro kterou platí, že f() = F (). Neboli integrálem funkce f() je taková funkce F (), ze které bychom
VíceTransformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.
Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních
VíceDiferenciální rovnice
Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT
Více6. Lineární ODR n-tého řádu
6. Lineární ODR n-tého řádu A. Obecná homogenní LODRn V předcházející kapitole jsme diferenciální rovnici (libovolného řádu) nazvali lineární, je-li tato rovnice lineární vzhledem ke hledané funkci y a
VíceBlok 1. KMA/MA2M Matematická. Primitivní funkce. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci
Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/..00/8.0141 KMA/MAM Matematická analýza Primitivní funkce Blok 1 1 Definice a základní vlastnosti Definice 1.1
VíceSoustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty
Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava
Více4 Počítání modulo polynom
8 4 Počítání modulo polynom Co se vyplatilo jendou, vyplatí se i podruhé. V této kapitole zavedeme polynomy nad Z p a ukážeme, že množina všech polynomů nad Z p tvoří komutativní okruh s jednotkou. Je-li
VíceDerivace a monotónnost funkce
Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je
VíceDiferenciální rovnice separace proměnných verze 1.1
Úvod Diferenciální rovnice separace proměnných verze. Následující tet popisuje řešení diferenciálních rovnic, konkrétně metodu separace proměnných. Měl by sloužit především studentům předmětu MATEMAT na
VíceZimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva
VíceProgram SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
VíceOperace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
Více5. cvičení z Matematiky 2
5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými
Více