I. TAYLORŮV POLYNOM. 2. a) x x3, b) x x3 + x5, c) 1 + 2x x2 2x 4, f (4) (0) = 48, d) x , c)
|
|
- Eliška Němečková
- před 5 lety
- Počet zobrazení:
Transkript
1 VÝSLEDKY I. TAYLORŮV POLYNOM. a) ( ) + ( ) ( 6 ), b) ( π ). a) +, b) +, c) + + 4, f (4) (0) = 48, d) + 4 4, e) + 0, f), g) , h) , i) 4 j) + 6 k) o( ), 8 4. a), b), c), d) -, e) 4 log a, f) 0, g), h), i), j), k) 6, l) 6. a) n = 7, limita je rovna, b) n =, limita, c) n = 4, limita 0 6. a = 4, b = 7. a =, b =, limita je rovna 0 8. P () = , limita vyjde ( + ) + ( + ) ( + ) 0. a) absolutně konverguje (AK), b) diverguje (D), c) AK, d) AK, e) D, f) AK, g) pro α > AK, jinak D, h) pro α 4 AK, jinak D, i) D. a), b) 840 4, c) (n+)!. a), 78888, b), 6, c), ,00 4 6,
2 II. MOCNINNÉ ŘADY. a) R=; pokud p > pak AK pro a D jinak; pokud p (0, ] pak AK pro <, K pro = a D jinak; pokud p 0, pak AK pro < a D jinak b) R=/, AK pro + < R, K pro = /, jinak D c) R=, AK pro < R, jinak D e d) R=, pokud a > pak AK pro R a jinak D, pokud a pak AK pro < R a jinak D e) R =, AK pro < R, jinak D 4 f) R=ma{a, b}, AK pro < R, jinak D g) R=, AK pro R, jinak D h) R = +, AK pro všechna R i) R = +, AK pro všechna R j) R = 4, AK i K pro 4 < < 4 k) R =, AK pro < <, K pro < e e e e e l) R=, AK i K pro < < m) R=, AK i K pro < < e e e n) R=, AK pro < <, K pro <. a) n n=0 ( )n, R n! b) n+ n=0 ( )n, (, ) n+ c) n=0 n, (, ) d) ( ) n+ n n= n, R (n)! e) + n+ ( )n+ n= ( / n(n+) f) n= g) n= ( ( )n ) n, < / n ) ( ) n n, < / ( ) n n h) arctg + n= n, < / n i) n= nn, < j) n+ n=0, < n+ k) l) n=0 b n n, kde b k =, b k+ =, b k+ = 0, b N 0 c) log( ). a) e 4, R b), (, ) ( ) 0 pro = 0 d) (+), (, ) e) ( ), (, ) f) ( ) (+) g) e/ 9 ( + 9) +, R h) cosh, R[hint: n=0 (cos + cosh ), R i) j) 4 ( ) ( ), (, ) 4. a) log b) c) π 4 i) 4 e log( ) +, 0 <, součet je n = +( ) n (n)! n=0 n ] n! d) 8 e) 8 f) arctg(/) g) π 4 h) log( )+ 4
3 III. HLEDÁNÍ PRIMITIVNÍ FUNKCE Výsledky jsou uvedeny vždy až na konstantu :. a) 0 + log 0 e sin na (, 0) a (0, ) b) e + ( ) 6, R 6 c) na (, 0) a (0, ) d) ( ) + ( ), R e) f) g) h) i) j) tg na ( π/ + kπ; π/ + kπ), k Z l) m) n) tg(/) na ( π + kπ; π + kπ), k Z o) p) q) arctg, D f = R. a), R { sin + 4k [ π b) F () = + kπ, π + kπ], k Z sin + 4k + ( π + kπ, π + kπ), k Z c) 4, R { d) F () = cos( ) cos( ) < e) F () = ( ) k ( cos + sin ) + k, [ π + kπ, π + (k + )π], k Z 4 4 (, 0) { e f) F () = [0, ] g) F () = < 0 + e 0 (, ) 6 4. a) log cos na každém z intervalů ( π + kπ, π + kπ), k Z b) log sin na každém z intervalů (kπ, (k + )π), k Z c) tg na každém z intervalů ( π + kπ, π + kπ), k Z d) arctg, R e) log log na (0, ) a (, ) f) +, R g) log log(log ) na (, e) a (e, ) h) F () = { ( + ) < + +. a) 4( +7) 7 4, D 6 f = (0, ) b) 7 + 9, D f = (0, ) c) log 4 log 6 log 9 f = R d) arctg, D f = R e), Df = (, ) f) 4 arctg(4 ), D f = R g) cos( ), D f = R\{0} R h) + sin(), D 4 f = R i) arctg( +), D f = R j) arctg(sin ), D f = k) l) m) n) o) ( sin() cos()); R p) q) ( 8 sin() + sin(4)); R
4 r) s) t) u) v) cos, D f = k Z ( π + kπ, π + kπ) 6. a) arcsin + sin( arcsin ) = arcsin + 4, D f = (, ) b) tg(arcsin ) =, D f = (, ) c) sin(arctg ) = a a a, D a + f = R d) a(arcsin cos(arcsin )) = a arcsin a a a a, ( a, a) 7. a) cos + sin + 6 cos 6 sin, R b) (e sin + e cos ), R c) log, (0, ) d) I n := n e d = n e ni n ; I := e e, R e) 4 ( log ), (0, ) f) e ( sin + cos sin ), R g) pro a + b 0: ea (a sin(b) b cos(b)) ; pro a = b = 0: ; oboj pro R a +b h) i) j) ( + π) ln( + π) ; ( π, ) 8. a) b) 8 + 7, D 8 f = R \ { } c) d) log ( log ), D f = R \ {0} e) arctg log( + ), D f = R f) cos() + sin(), D 4 f = R g) ( / log 4 log + 8 9), Df = (0, ) h) e ( + + ), D f = R i) (log + log + ), D f = (0, ) j) ( )e, D f = R k) ( )e, D f = (0, ) l) (6 ) cos 6( ) sin, D f = (0, ) m) arcsin( / sin )/ ; R n) o) p) q) ( 9. j) log log + 6 log + ), D 6 f = R \ {,, } k) 7+8 log + +, D + f = R\{ } l) +log log +, D f = R\{, } m) 8 log( + +)+ arctg( +) 8 log( +)+ + n) + log log ( ++) 9 9 ( + + ) + 8 o) log arctg( ), D f = R + arctg ( ), D f = R \ {}, D ( ) f = R \ {} 0. a) log cos, D 4 +cos (cos +) f = R\ k Z {kπ, π +kπ} [dá se řešit substitucí t = cos ] tg, b) tg +log (tg +) Df = R\ k Z {kπ, π +kπ, π +kπ} [dá se řešit substitucí t = tg ] 4 c) log(cos + ) log(cos ), D f = R \ k Z { π + kπ} d) tg + log tg tg +, Df = R \ k Z { π + kπ, π 6 + kπ, π 6 + kπ} ( e) log(cos +) log(cos +)+ log( cos ) = log ( cos )(cos +), D 6 6 f = R\ k Z { {kπ} arctg(tg ) arctg( tg ) + kπ( / ) ( π f) F () = + kπ, π + kπ), k Z π π + kπ( / ) = π + kπ, k Z (+cos ) )
5 ( ) log tg tg + + ( ) arctg tg 6 (tg +) ( π + kπ, π + kπ) 4 g) F () = π 6 ( ) = π + kπ log tg tg + + ( ) k Z arctg tg 6 (tg +) + π ( π + kπ, π + kπ) 4 h) viz cvičení 7. března 07 i) arctg(sin ), D f = R j) viz příklad. z materiálů Luboše Picka k) viz příklad. tamtéž l) viz příklad. tamtéž ( ) m) F () = 6 arctg tg ( ) + k π 6 pro ( π + kπ, π + kπ), k Z 6 π + k π 6 pro = π + kπ, k Z 6 6 { ( ) tg arctg 8 n) F () = tg + kπ pro ( π + kπ, π + kπ), k Z 4(tg +) 8 π + kπ pro = { π + kπ, k Z 8 ( 8 ) o) F () = arctg tg + + kπ pro ( π + kπ, π + kπ), k Z π + kπ pro = π + kπ, k Z. a) log(e /6 + ) log( e / + ) arctg(e /6 ), D f = R b) viz příklad.4 z materiálů Luboše Picka c) log( + e ) + e +, D f = R d) + log e + 6 log(e + ), D f = R \ {0}. a) log( + ), D f = (0, ) [dá se řešit substitucí t = ] b) ( 6 + ) ( 6 + ) + ( 6 + ) ( 6 + ) 6 7 ( 6 + ) 7 + log ( + ( 6 + ) ) 6 arctg ( 6 + ), D f = (, ) [dá se řešit substitucí t = 6 + ] c) ( + ) 4 ( + ) log + + log (( + ) ) arctg ( ( +)+ 7 7 ), D f = R \ { } [dá se řešit substitucí t = + ] d) e) ( ++ f) log ) , D f = (, ). b) + a + a log( + + a ), D f = R c) a sgn() a log( + a ), (, a), (a, ) d) ln( + + 4) e) ln + + ( ) + 4. a) + sgn() log( + ), D f = (, ] [, ) b) + a a log( + + a ), D f = R c) log( + + ), D ++ f = R d) sgn( ), D + f = (, ) (, ). a) (t +t+) b) (t t+) c) (t+) ( t+) = +, =. Pak na intervalu (, ) vede na integrál z t ( ) ; na intervalu ( (t ), ) vede na integrál z t ( ). (t )
6 V. RIEMANNŮV A NEWTONŮV INTEGRÁL. a) π b) c) log d) 4π e) f) 00 g) π h) a4 π i) e 6 ab j) log π k) ( ) ( π l) log m) π n) 6 π o) log a) (q p)(b a) b) π c) 9 4 d) e) n n+ f) 4 g) h) π a tg() arctg( ) ) b ( +). a) konverguje (K) b) diverguje (D) c) K d) K e) D f) K právě tehdy, když (p < a q < ) g) K právě tehdy, když (q < a p < /) h) K i) K právě tehdy, když (q > 0 a p > 0) j) K právě tehdy, když m < k) K právě tehdy, když k < l) K m) K právě tehdy, když α < < α + β n) K právě tehdy, když α (, ) o) K právě tehdy, když (α + γ > a β γ > ) 4. a) K b) K. a) K právě tehdy, když p > nebo (p = a q > ) b) K pro a R c) K právě tehdy, když a (, ) d) K právě tehdy, když p > e) K 7. a) konverguje neabsolutně (NAK) b) NAK c) NAK d) K právě tehdy, když α (, ) e) NAK f) NAK g) K právě tehdy, když q < / 8. a) NAK b) K právě tehdy, když α > c) K právě tehdy, když α < < β nebo β < < α d) K právě tehdy, když α (, 0); absolutně konverguje (AK) právě tehdy, když α (, ) 9. a) arctg / b) 6/ c) 9/4 d) / 0. a) a sinh(b/a) b) log / c) 8 (0 ) d) 6 + log e) 7 4 ln(e4 + ) ( ). a) V = 4π, S = 4π b) 6π c) V = π a b, S = 4π ab d) π( ) e) 8π + ln(+ ) 6. a) K b) D c) K d) K
7 VI. METRICKÉ PROSTORY. a) ano b) ne c) ne. a) ano b) ano c) ne d) ne e) ano. 4. ano a) b) f 4 n ano, g n ne 8. a) b) a = 6 9. obě tvrzení platí pokud je metrika generovaná normou, jinak ne (jako příklad lze vzít prostor s diskrétní metrikou) 0.. a) je uzavřená, má prázdný vnitřek, N = N = N b) Int Q =, Q = Q = R, Q není otevřená ani uzavřená. c) Množina není uzavřená ani otevřená, vnitřek je prázdný, hranice i uzávěr jsou { : n N} {0}. d) Množina není uzavřená ani otevřená. Vnitřek je n {[, y] R : > 0, y < 0}, uzávěr {[, y] R : 0, y 0}, hranice{[, y] R : 0 & y 0 & ( = 0 y = 0)}. e) Otevřená, uzávěr {[, y] : + y 0}, hranice {[, y] : + y = 0}. f) Uzavřená, vnitřek {[, y] : > y}, hranice {[, y] : = y}. g) Uzavřená, prázdný vnitřek. h) Ani uzavřená ani otevřená, vnitřek prázdný, hranice i uzávěr {[, y, z] R : 0, y 0, + y =, z 0}. i) Uzavřená, prázdný vnitřek. j) Otevřená, uzávěr {f C[0, ] : f( ) [0, ]}, hranice {f C[0, ] : f( ) {0, }} k) Uzavřená, prázdný vnitřek.. a) platí A B A B ale naopak ne (třeba pro A = Q, B = R \ Q v R) b) platí Int(A \ B) Int(A) \ Int(B) ale naopak ne (třeba pro A = [, 4], B = [, ] v R) c) rovnost platí pro A otevřenou. pokud není A uzavřená, ekvivalence neplatí (například pro = 0 a A = (0, ) v R)
8 VII. FUNKCE VÍCE PROMĚNNÝCH - LIMITY, DERIVACE. viz pdf limita a spojitost funkce. viz pdf limita a spojitost funkce. viz pdf limita a spojitost funkce 4. a) b) = mm y n, (, y) R. d) pro 0. pro 0 neeistují. = y + z, = nm y n pro (, y) R. c) = + y, = + y pro (, y, z) z R. (, y) = sgn y pro y 0. f) (0, 0) = (0, 0) = 0. (, y) = sgn(y + cos ) sin, = yey, = ey pro (, y) = y sgn e) (0, y) pro y 0 a (, 0) (, y) = sgn(y + cos ), pokud y cos. (, cos ) neeistuje pro R. (kπ, ( )k+ ) = 0 pro k Z. (, cos ) neeistuje pro kπ. g) (, y) = cos sgn(sin sin y), (, y) = cos y sgn(sin sin y), pokud sin sin y. ( π + kπ, π + lπ) = ( π + kπ, π + lπ) = 0. V ostatních bodech parciální ( ) derivace neeistují. h) Pokud, y > 0 nebo, y < 0, pak = z z ; ( ) = z z ; y y y y ( ) z = z y log. i) Pokud > 0 a z 0, pak = y y z ; = y z log ; y z z = y z log y. j) Pokud > 0, pak = z z cos(y ) y y; = cos(y ) y log. k) = π e +y+y π(+y), = π ( +y+y ) e +y+y π(+6y) pro (, y) (0, 0); v bodě (0, 0) ( +y+y ) jsou obě parciální derivace nulové. l) Pokud > y, pak +y ; +y. Jinak parciální derivace nemají smysl.. a) ne b) ne c) ano d) ne e) ano f) ano = = y 6. a) f(, y) = ( (4 +y 4 ) ( y )4 ( 4 +y 4 ), y(4 +y 4 ) ( y )4y ( 4 +y 4 ) ) pro (, y) (0, 0), v bodě (0, 0) totální diferenciál neeistuje b) f(, y) = (, 0) pro > y, f(, y) = (0, y ) pro < y, f(0, 0) = (0, 0), v bodech (a, a) kde a 0 totální diferenciál neeistuje 7. viz pdf parc. derivace a tot. dif.
+ n( 1)n+1 (x 7) n, poloměr konvergence 6. 3.Poloměr konvergence je vždy +. a) f(x) = x n. (x 7) n, h(x) = 7 + 7(n+1)( 1) n. ( 1)n
VÝSLEDKY I. TAYLORŮV POLYNOM. a + b + 4 4 c + 0 d e + + 4 f + + 4 g + 70 4 h 4 4. a b c d - e log a f 0 g h i j k - 4. a 7 b 4. a AK absolutně konverguje b D diverguje c D d AK e D f AK g AK II. MOCNINNÉ
Více1. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) x cotg x 1. c) lim. g) lim e x 1. cos(x) =
I. L'HOSPITALOVO PRAVIDLO A TAYLOR V POLYNOM. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) a) lim tg sin ( + ) / e e) lim a a i) lim a a, a > P ipome me si: 3 tg 4 2 tg b) lim 3 sin 4 2 sin
Vícearcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.
Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál
Více. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.
Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo
VíceTeorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
Vícef konverguje a g je omezená v (a, b), pak také konverguje integrál b a fg. Dirichletovo kritérium. Necht < a < b +, necht f : [a, b) R je funkce
1. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Abelovo kritérium. Necht < a < b +, necht f : [a, b) R je funkce spojitá na [a, b) a funkce g : [a, b) R je na [a, b) spojitá
VíceUrčete (v závislosti na parametru), zda daný integrál konverguje, respektive zda konverguje. dx = t 1/α 1 dt. sin x α dx =
. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Věta 1 (Abelovo-Dirichletovo kritérium konveregnce Newtonova integrálu). Necht a R, b R a necht a < b. Necht f : [a, b) R je
VíceTeorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
Vícex 2 +1 x 3 3x 2 4x = x 2 +3
I. Určitý integrál I.. Eistence určitých integrálů Zjistěte, zda eistují určité integrály : Příklad. + + d Řešení : Ano eistuje, protože funkce f() + + je spojitá na intervalu,. Příklad. + 4 d Řešení :
VíceI. TAYLORŮV POLYNOM. Taylorovy řady některých funkcí: Pro x R platí: sin(x) =
Taylorovy řady ěkterých fukcí: I. TAYLORŮV POLYNOM Pro R platí: si) = 2+ = ), cos) = 2 2+)! = ), 2)! e = =.! Pro, : log + ) = = ) Pro, ) a a R: + ) a = a ) =, kde ) a = a a ) a 2) a +).!. Nalezěte Taylorův
VícePro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.)
Vybrané příklady ze skript J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I I. LINEÁRNÍ ALGEBRA I.. Vektory, vektorové prostory Jsou zadány vektory u, v, w a reálná čísla α, β, γ. Vypočítejte vektor
VíceI. TAYLORŮV POLYNOM ( 1
I. TAYLORŮV POLYNOM Připomeňme si defiice elemetárích fukcí: a si( = 2+ = ( (2+! b cos( = 2 = ( (2! c e = =!. Dokažte, že Taylorův polyom k-tého řádu v bodě pro fukce f je rove polyomu P : (tyto výsledky
VíceIntegrální počet - II. část (další integrační postupy pro některé typy funkcí)
Integrální počet - II. část (další integrační postupy pro některé typy funkcí) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz) 1 /
VíceMatematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16
Matematika 1 3. přednáška 1 Derivace 2 Vlastnosti a použití 3. přednáška 6.10.2009) Matematika 1 1 / 16 1. zápočtový test již během 2 týdnů. Je nutné se něj registrovat přes webové rozhraní na https://amos.fsv.cvut.cz.
VíceDiferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
VíceII. 3. Speciální integrační metody
48 II. Integrální počet funkcí jedné proměnné II.. Speciální integrační metody Integrály typu f ( x, r x, r x,..., r k x ), tj. integrály obsahující proměnnou x pod odmocninou, kde k N a r,..., r k jsou
VíceZimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 7. prosince 2014 Předmluva
VíceSeznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.
INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodce studiem V kapitole Diferenciální počet funkcí jedné proměnné jste se seznámili s derivováním funkcí Jestliže znáte derivace
VíceKapitola 7: Neurčitý integrál. 1/14
Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní
VíceIntegrální počet - I. část (neurčitý integrál a základní integrační metody)
Integrální počet - I. část (neurčitý integrál a základní integrační metody) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 6. přednáška z AMA Michal Fusek (fusekmi@feec.vutbr.cz) / 23 Obsah
VíceDerivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace
Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace
VícePrimitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní
Více(5) Primitivní funkce
(5) Primitivní funkce Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (5) Primitivní funkce 1 / 20 Def: Primitivní funkce Definice Necht funkce f je definována na neprázdném otevřeném intervalu (a,
VíceVIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2
Vícef(x) = ln arcsin 1 + x 1 x. f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech f(x) = (sin x) x2 + 3 cos x
Příkad Nalezněte definiční obor funkce f(x) = ln arcsin + x x Určete definiční obor funkce f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech [;?] a Určete definiční obor
VíceSeparovatelné diferenciální rovnice
Matematika 2, příklady na procvičení (Josef Tkadlec, 8. 6. 2009) Separovatelné diferenciální rovnice. Řešte diferenciální rovnici s počáteční podmínkou x = e x t, x() = 0. 2. Řešte diferenciální rovnici
VíceNalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné
. Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x
VícePožadavky k zápočtu a ke zkoušce z předmětu Matematická analýza 2 kód NMMA102, letní semestr 2012 2013. Luboš Pick
Požadavky k zápočtu a ke zkoušce z předmětu Matematická analýza 2 kód NMMA102, letní semestr 2012 2013 Luboš Pick Obsah Popis předmětu 1 Zápočet 1 Zkouška 2 Celkové hodnocení zkoušky 4 Seznamy požadovaných
VíceMatematika vzorce. Ing. Petr Šídlo. verze
Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............
VíceMatematika 1 pro PEF PaE
Derivace funkcí jedné proměnné / 9 Matematika pro PEF PaE 4. Derivace funkcí jedné proměnné Přemysl Jedlička Katedra matematiky, TF ČZU Derivace funkcí jedné proměnné Nejjednodušší derivace 2 / 9 Derivace
VíceVIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos 3x 3. Zderivuj funkci y = 3 e sin2 (x 2 ). Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y
VíceKatedra aplikované matematiky, VŠB TU Ostrava.
SBÍRKA PŘÍKLADŮ Z MATEMATICKÉ ANALÝZY JIŘÍ BOUCHALA Katedra aplikované matematiky, VŠB TU Ostrava jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala 3 Předmluva Cílem této sbírky je poskytnout studentům vhodné
VíceF (x) = f(x). Je-li funkce f spojitá na intervalu I, pak existuje k funkci f primitivní funkce na intervalu I.
KAPITOLA 7: 7. Úvod Primitivní funkce [MA-6:P7.] Definice: Funkce F je primitivní funkcí k funkci f na intervalu I, jestliže pro každé I eistuje F a platí F f. Poznámky: Obsahuje-li I některý z krajních
VíceKonvergence kuncova/
Konvergence http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Příklady.. 3. 3 + d Konverguje - u je funkce spojitá, u srovnáme s /. e d Konverguje - na intervalu [, ] je funkce spojitá, na intervalu
VícePRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE
PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
VíceImplicitní funkce. 2 + arcsin(x + y2 ) = arccos(y + x 2 ), [0, 0] , 5] stacionární bod?
Implicitní funkce V následujících úlohách ukažte, že uvedená rovnice určuje v jistém okolí daného bodu [ 0, y 0 ] implicitně zadanou funkci proměnné. Spočtěte první a druhou derivaci této funkce v bodě
VícePRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.
PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
VíceÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika BA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika BA0 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 005 () Určete rovnici kručnice o poloměru
VíceI. VRSTEVNICE FUNKCE, OTEV ENÉ A UZAV ENÉ MNOšINY
I. VRSTEVNICE FUNKCE, OTEV ENÉ A UZAV ENÉ MNOšINY 1. Ur ete a nakreslete deni ní obor a vrstevnice funkcí: a) f(, y) = + y b) f(, y) = y c) f(, y) = 2 + y 2 d) f(, y) = 2 y 2 e) f(, y) = y f) f(, y) =
Více30. listopadu Derivace. VŠB-TU Ostrava. Dostupné: s1a64/cd/index.htm.
KMA/MAT1 Přednáška a cvičení č. 11 30. listopadu 2017 [KS] Jaromír Kuben Petra Šarmanová: Diferenciální počet funkcí jedné proměnné. VŠB-TU Ostrava. Dostupné: http://homel.vsb.cz/ s1a64/cd/inde.htm. 1
Více1. sin(x + y) = sin(x) cos(y) + cos(x) sin(y) pro x, y R, cos(x + y) = cos(x) cos(y) sin(x) sin(y) pro x, y R;
3. Elementární funkce. Věta C. Existují funkce sin(x) a cos(x) z R do R a číslo π (0, ) tak, že platí: 1. sin(x + y) = sin(x) cos(y) + cos(x) sin(y) pro x, y R, cos(x + y) = cos(x) cos(y) sin(x) sin(y)
VíceKapitola 7: Integrál. 1/17
Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený
Více7.1 Úvod. Definice: [MA1-18:P7.1a]
KAPITOLA 7: 7. Úvod Primitivní funkce [MA-8:P7.a] Definice: Funkce F je primitivní funkcí k funkci f na intervalu I, jestliže pro každé I eistuje F a platí F f. Poznámky: Obsahuje-li I některý z krajních
VícePožadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
VíceI. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou
Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici
VíceMatematická analýza ve Vesmíru. Jiří Bouchala
Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. /8 3. Elementární funkce. 3. Elementární funkce. Matematická analýza ve Vesmíru.
VíceDefinice derivace v bodě
Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +
VíceSPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ
VÝPOČET PEIÁLNÍH PRIMITIVNÍH FUNKÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Nicméně eistují jisté třídy funkcí, pro které eistuje algoritmus, který vždy vede k výpočtu
VíceText m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze na tabuli a nejsou zde obsaºeny.
VíceMatematická analýza 1, příklady na procvičení (Josef Tkadlec, )
Matematická analýza, příklady na procvičení (Josef Tkadlec, 6.. 7) Reálná čísla. Určete maximum, minimum, supremum a infimum následujících množin: Z; b) M = (, ), 5 ; c) M =, Q; d) M = { + n : n N}; e)
Více11. Číselné a mocninné řady
11. Číselné a mocninné řady Aplikovaná matematika III, NMAF072 M. Rokyta, KMA MFF UK ZS 2017/18 11.1 Základní pojmy Definice Necht {a n } C je posloupnost komplexních čísel. Pro m N položme s m = a 1 +
VíceKapitola 7: Integrál.
Kapitola 7: Integrál. Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f(x) x I nazýváme primitivní funkcí k funkci
Více1. Obyčejné diferenciální rovnice
& 8..8 8: Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných. Obyčejné diferenciální rovnice Rovnice, ve které je neznámá funkcí a v rovnici se vyskytuje spolu se svými derivacemi, se nazývá
VíceTest M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0.
Test M-ZS- M-ZS-/ Příklad Najděte tečnu grafu funkce f x x 6 3 x, která je kolmá na přímku p :x y 3 0. Zřejmě D f R. Přímka p má směrnici, tečna na ní kolmá má proto směrnici. Protože směrnice tečny ke
VíceWikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017
Matematika I - Sbírka příkladů WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 7 Obsah Limity a spojitost. l Hôpitalovo pravidlo zakázáno............................ 4. l Hôpitalovo pravidlo povoleno............................
Více3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim
3 a b s = (a + b) 2 f(s) 3,46 4,680 3,93-2,9422 3,93 4,680 4,2962-2,034 4,2962 4,680 4,4886-0,0954 4,4886 4,680 4,5848 3,2095 4,4886 4,5848 4,5367,0963 4,4886 4,5367 4,526 0,427 4,4886 4,526 4,5006 0,508
VíceZimní semestr akademického roku 2015/ ledna 2016
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Zimní semestr akademického roku 015/016 5. ledna 016 Obsah Cvičení Předmluva iii
VíceMATEMATIKA 1B ÚSTAV MATEMATIKY
MATEMATIKA B Sbírka úloh Edita Kolářová ÚSTAV MATEMATIKY MATEMATIKA B Sbírka úloh Úvod Dostali jste do rukou sbírku příkladů k přednášce Matematika B - Sbírka úloh. Tato sbírka je doplněním tetu Fuchs,
VíceDEFINICE,VĚTYADŮKAZYKÚSTNÍZKOUŠCEZMAT.ANALÝZY Ib
INFORMACE O PRŮBĚHU A POŽADAVKY KE ZKOUŠCE Z MAT. ANALÝZYIbVLS2010/11 Ke zkoušce mohou přistoupit studenti, kteří získali zápočet. Do indexu jej zapíši na zkoušce, pokud cvičící potvrdí, že na něj student
VíceVII. Limita a spojitost funkce
VII. Limita a spojitost funkce VII.1. Limita funkce Úvodní poznámky: Limita funkce f v bodě c R hodnota a R, k níž se přibližují hodnoty f(x), jestliže x se blíží k hodnotě c; funkce f nemusí být definovaná
VíceI. Určete(a nakreslete) definiční obor a vrstevnice funkcí 1. f(x, y)=x+ y 2. f(x, y)= y 3. f(x, y)=x 2 + y 2 4. f(x, y)=x 2 y 2
I. Určete(a nareslete) definiční obor a vrstevnice funcí. f( )=+. f( )=. f( )= +. f( )= 5. f( )=. f( )= 7. f( )= + 8. f( )= ( + )( ) 9. f( )= ( + ) 0. f( )= sin( + ). f( )=sgn(sin sin). f( )= + Rozhodněte
VíceMatematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky
Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.
Více8. Elementární funkce. I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k k!.
8. Elementární funkce I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k = k!. Vlastnosti exponenciální funkce: a) řada ( ) konverguje absolutně
Více1 L Hospitalovo pravidlo
L Hospitalovo pravidlo Věta.. Bud R R R {± }). Necht je splněna jedna z podmínek i) ii) f) g), g). Eistuje-li vlastní nebo nevlastní) f ) g ) Obdobné tvrzení platí i pro jednostranné ity., pak eistuje
VíceDerivace úvod. Jak zjistit míru změny?
Derivace úvod P ČEZ Jak zjistit míru změny? Derivace nám dá odpověď jestli je funkce: rostoucí/klesající konkávní/konvení jak moc je strmá jak moc roste kde má maimum/minimum 1000 700 P ČEZ P ČEZ 3% 4%
VíceZobecněný Riemannův integrál
Zobecněný Riemannův integrál Definice (Zobecněný Riemannův integrál). Buď,,. Nechť pro všechna existuje určitý Riemannův integrál. Pokud existuje konečná limita, říkáme, že zobecněný Riemannův integrál
VíceÚvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
VíceMichal Fusek. 10. přednáška z AMA1. Ústav matematiky FEKT VUT, Michal Fusek 1 / 62
Nekonečné řady Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 0. přednáška z AMA Michal Fusek (fusekmi@feec.vutbr.cz) / 62 Obsah Nekonečné číselné řady a určování jejich součtů 2 Kritéria
VíceObsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
VícePříklady k přednášce 3
Příklad k přednášce 3 1. Určete, zda závislost a daná uvedeným vztahem je funkce = f(). V případě záporné odpovědi stanovte, kterými funkcemi je možné příslušnou závislost popsat. 1. =3 2, (, + ) je funkcí,
VíceŘADY KOMPLEXNÍCH FUNKCÍ
ŘADY KOMPLEXNÍCH FUNKCÍ OBECNÉ VLASTNOSTI Řady komplexních čísel z n byly částečně probírány v kapitole o číselných řadách. Definice říká, že n=0 z n = z, jestliže z je limita částečných součtů řady z
VíceCvičení 1 Elementární funkce
Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte
VíceMatematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2
Matematika 2 14. přednáška Číselné a mocninné řady Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel
VíceVIII. Primitivní funkce a Riemannův integrál
VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.
VíceÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup
VícePosloupnosti a řady. 28. listopadu 2015
Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj
Vícedx se nazývá diferenciál funkce f ( x )
6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí
VíceDerivace a průběh funkce příklady z písemných prací
Derivace a průběh funkce příklady z písemných prací Vyšetřete průběh následuících funkcí. Příklad. = x +arctg( x ). D(f) =R.. Funkce e spoitá na R. 3. Funkce není lichá, sudá, ani periodická.. lim x ±
VíceDerivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
VíceMETODICKÝ NÁVOD MODULU
Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název Základy matematiky modulu: Zkratka: ZM Počet kreditů: 4 Semestr: Z/L Mentor: Petr Dolanský Tutor: Petr Dolanský I OBSAH BALÍČKU STUDIJNÍCH
VíceDiferenciální rovnice separace proměnných verze 1.1
Úvod Diferenciální rovnice separace proměnných verze. Následující tet popisuje řešení diferenciálních rovnic, konkrétně metodu separace proměnných. Měl by sloužit především studentům předmětu MATEMAT na
VíceÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o
VícePříklady ke cvičením z matematické analýzy- ZS 2008/2009- Série I.
Příklady ke cvičením z matematické analýzy- ZS 008/009- Série I. Jako slunce zastiňuje hvězdy svým jasem, tak i vzdělaný člověk může zastínit slávu druhých lidí ze společnosti, bude-li předkládat matematické
VíceOtázky k ústní zkoušce, přehled témat A. Číselné řady
Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte
VíceSeznámíte se s principem integrace metodou per partes a se základními typy integrálů, které lze touto metodou vypočítat.
.. Integrace metodou per partes.. Integrace metodou per partes Průvodce studiem V předcházející kapitole jsme poznali, že integrování součtu funkcí lze provést jednoduše, známe-li integrály jednotlivých
VíceElementární funkce. Polynomy
Elementární funkce 1 Elementární funkce Elementární funkce jsou níže uvedené funkce a jejich složenin : 1. Polnom.. Racionální funkce. 3. Mocninné funkce. 4. Eponenciální funkce. 5. Logaritmické funkce.
Více1. Písemka skupina A...
. Písemka skupina A.... jméno a příjmení Načrtněte grafy funkcí (v grafu označte všechny průsečíky funkce s osami a asymptoty). y y sin 4 y y arccos ) Určete, jestli je funkce y ln prostá? ) Je funkce
VíceText může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.
Více1. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny 1., 2. a 3. parciální derivace funkce f a funkce g.
. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny.,. a 3. parciální derivace funkce f a funkce g.. Spočtěte všechny první parciální derivace funkcí: a) f(x, y) = x 4 + y 4 4x y, b) f(x,
VíceMATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel
MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní
VíceMatematická analýza ve Vesmíru. Jiří Bouchala
Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.
Více11. KŘIVKOVÝ INTEGRÁL Křivkový integrál I. druhu Úlohy k samostatnému řešení
Sbíra úloh z matematia 11 Křivový integrál 11 KŘIVKOVÝ INTEGRÁL 115 111 Křivový integrál I druhu 115 Úloh samostatnému řešení 115 11 Křivový integrál II druhu 116 Úloh samostatnému řešení 116 11 Greenova
VíceSbírka příkladů z matematické analýzy II. Petr Tomiczek
Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................
VíceLEKCE10-RAD Otázky
Řady -ekv ne ŘADY ČÍSEL 1. limita posloupnosti (operace založená na vzdálenosti bodů) 2. supremum nebo infimum posloupnosti (operace založená na uspořádání bodů). Z hlavních struktur reálných čísel zbývá
Více(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí
1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální
VíceÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika AA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika AA0 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2005 () Jsou dány matice A = AB BA. [ AB BA
VíceFAKULTA STAVEBNÍ MATEMATIKA I MODUL 7 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL 7 NEURČITÝ INTEGRÁL STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Daněček, Oldřich Dlouhý,
VíceÚvod, základní pojmy, funkce
Úvod, základní pojmy, funkce Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 1. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 69 Obsah 1 Matematická logika 2 Množiny 3 Funkce,
VícePetr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Neurčitý integrál Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
Více8.2. Exaktní rovnice. F(x, y) x. dy. df = dx + y. Nyní budeme hledat odpověd na otázku, zda a jak lze od této diferenciální formule
Cíle Ve výkladu o funkcích dvou proměnných jsme se seznámili také s jejich diferenciálem prvního řádu, který je pro funkci F(x, y) vyjádřen výrazem df dx + dy. Nyní budeme hledat odpověd na otázku, zda
Více