Zvýrazňování řeči pomocí vícekanálového zpracování
|
|
- Matyáš Slavík
- před 6 lety
- Počet zobrazení:
Transkript
1 Zvýrazňování řeči pomocí vícekanálového zpracování Václav Bolom, Pavel Sovka Katedra teorie obvodů Fakulta elektrotechnická České vysoké učení technické v Praze Technická 2, Praha 6 Abstrakt Problém zvýrazňování řeči přítomné ve směsi akustických signálů lze řešit pomocí vícekanálového zpracování. V příspěvku je popsána implementace jedné z metod vícekanálového zpracování označované jako Generalised Sidelobe Canceller (GSC). Metoda je implementována pro zpracování ve frekvenční oblasti pomocí metody sčítání přesahů. V příspěvku jsou ukázány výsledky simulací provedených na umělých testovacích datech. Dále jsou navrženy metody, které vylepšují popisovaný algoritmus. V závěru příspěvku je uveden návrh měřicího pracoviště, na němž budou ověřovány výsledky simulací. Metod směrového příjmu lze využít např. v mobilní komunikaci, v pomůckách pro sluchově postižené, pro sběr dat pro analýzu řeči apod. Úvod Příspěvek se zabývá zvýrazňováním řeči v šumu. Je zde popsána implementace algoritmu vícekanálového zpracování. Popisovaný algoritmus je založen na metodě GSC (Generalized Sidelobe Canceller) [3]. K snímání zvuku ve vícekanálových systémech se používá mikrofonních polí. Popisovaný algoritmus je navržen pro lineární řadu dvanácti mikrofonů s konstantní roztečí 5 cm. V příspěvku budou ukázány výsledky simulací s umělými daty. 2 Vstupní data V simulacích je uvažováno rozložení zdrojů zvukového signálu podle obrázku. Zdroje se nacházejí v dostatečné vzdálenosti od senzorů, takže příchozí signály tvoří rovinné vlny. Užitečný řečový signál dopadá kolmo na řadu a rušení pod úhlem ϕ c. Vzorky užitečného signálu jsou na všech mikrofonech shodné. V případě rušení dochází ke zpoždění τ mezi jednotlivými kanály. Zpoždění závisí na úhlu ϕ c a vzdálenosti mezi mikrofony D. Je dáno vztahem τ = D c cos ϕ c, () kde c je rychlost šíření zvuku. Další zdroje rušení nejsou v tomto modelu uvažovány. Signál na i-tém senzoru je dán vztahem kde s[k] označuje užitečný signál a n i [k] rušení na i-tém senzoru. 2. Modelování vstupních dat x i [k] = s[k] + n i [k], (2) Za užitečný signál byla vybrána nahrávka promluvy pořízené v bezodrazové komoře. Tento signál je shodný pro všechny kanály. Rušení je tvořeno šumovým signálem s normálním rozdělením. Signál byl nejprve zkopírován do všech kanálů. Poté byly kanály zpožděny. Zpoždění vzorků v jednotlivých kanálech odpovídá úhlu ϕ c = 3 a rozteči D = 5cm. Vzhledem k neceločíselnému zpoždění vzorků bylo posunutí provedeno ve frekvenční oblasti [5]. Amplituda vstupních signálů je normována do intervalu,.
2 3 Algoritmus GSC Obrázek : Model signálů dopadajících na řadu tří mikrofonů. Struktura algoritmu GSC [3] je zachycena na obrázku 2. Tento algoritmus je ekvivalentní adaptivnímu beamformeru [2]. Na vstupu jsou spektra X i (e jωt ) vstupních signálů x i [k]. Systém se skládá ze dvou větví. Horní větev je tvořena konvenčním beamformerem. Vstupy jsou průměrovány. Váhy w i mají hodnotu M. M představuje počet mikrofonů. Výstupem konvenčního beamformeru je Y b (e jωt ). Ke zvýraznění užitečného signálu dojde díky sečtení všech kanálů. Spodní větev provádí adaptivní potlačování šumu (ANC - Adaptive Noise Cancelation). Cílem této větve je odhadnout rušení přítomné v Y b (e jωt ). Podmínka správné činnosti je oddělení užitečného signálu ze všech kanálů. K tomu slouží blokovací matice BM. Nejčastěji je používána matice s M řádky a M sloupcem. Provádí rozdíl sousedních kanálů a má tvar BM = (3)... Váhy H i jsou řízeny LMS algoritmem [6] tak, aby Y h (e jωt ) byl odhadem rušení přítomného v Y b (e jωt ) ve smyslu nejmenších čtverců. 4 Implementace Obrázek 2: Blokové schéma GSC. Zpracování probíhá ve frekvenční oblasti. V popisovaném algoritmu je využito metody sčítání přesahů (OLA - Overlap And Add) [5]. Blokové schéma celého algoritmu je na obrázku 3. Při segmentaci je využito Hammingova okna a 5% přesahu. Zpracování ve frekvenční oblasti má několik výhod. Při adaptivní filtraci je využito symetrií ve spektru. Stačí tedy zpracovávat pouze polovinu spektra. Další výhodou je možnost rozšíření
3 metody o další zpracování ve frekvenční oblasti. Toho je využito v případě, kdy užitečný signál nedopadá kolmo na řadu. Pro natáčení dopadající vlnoplochy se použije stejné metody jako při generování rušivého signálu. Obrázek 3: Blokové schéma algoritmu využívajícího metody sčítání přesahů. 4. Modifikace algoritmu Metodu GSC lze rozšířit tak, aby potlačovala i nekoherentní rušení. Nekoherentní rušení má na každém senzoru jiný průběh. Bývá způsobeno např. šumem elektrických soustav. Potlačení nekoherentního rušení lze docílit zařazením Wienerova filtru do horní větve za konvenční beamformer [] [7]. Wienerův filtr pracuje ve frekvenční oblasti. Filtr je řízen vstupními spektry X i (e jωt ). 4.2 Návrh měřicího pracoviště Dalším cílem ve výzkumu algoritmů směrového příjmu je ověření simulací v praxi. Naše pracoviště je vybaveno zařízením, které snímá zvuk až z dvanácti mikrofonů zároveň. Návrh pracoviště je schématicky zachycen na obrázku 4. Dalšími součástmi jsou reproduktory a počítač pro sběr dat a vysílání testovacích signálů. Zpracování dat bude probíhat na dalším počítači. Experimenty budou provedeny v bezodrazové komoře. Obrázek 4: Návrh měřicího pracoviště. 5 Výsledky Výstupem systému je jednorozměrný signál zvýrazněné řeči. Obrázek 5 ukazuje časové průběhy vstupního signálu (jednoho kanálu), výstupního signálu a čistého nezašuměného signálu. Tytéž signály zachycuje obrázek 6 na spektrogramech.
4 Vstupni signal (jeden kanal) Vystup Cisty signal Obrázek 5: Časové průběhy vstupních a výstupních dat..5 Vstupni signal (jeden kanal) Vystup Cisty signal Obrázek 6: Spektrogramy vstupních a výstupních dat.
5 6 Závěr Z grafů 5 a 6 je patrno, že popsaná metoda provádí zvýraznění zašuměné řeči. Kvalitu zvýraznění lze posuzovat podle různých kritétií [4]. Jedním z nich je subjektivní posouzení na základě poslechu. Kvalita zvýraznění závisí na počtu použitých kanálů. Pro ilustraci byl zvolen jejich velký počet. Popisovan metoda je vhodná pro potlačení koherentního rušení. Jeho vzorky se objevují ve všech kanálech s časovým posunem. Lepšího zvýraznění lze dosáhnout tím, že je vážený součet vstupů nahrazen vhodnými FIR filtry [3]. Popsaná metoda však pracuje rychleji a má i menší paměťové nároky. Rychlost zpracování může být z jedním z kritérií pro výběr metody pro zpracování v reálném čase. Zvýrazňování řeči pomocí vícekanálového zpracování nalezne uplatnění v mobilní komunikaci, pomůckách pro sluchově postižené, sběru dat pro analýzu řeči apod. Rychlost zpracování je důležitá zejména v prvních dvou případech. 7 Poděkování Tato práce je podporována výzkumným záměrem Transdisciplinární výzkum v biomedicínském inženýrství 2 č. MSM a grantem Modelování biologických a řečových signálů č. GA ČR 2/3/H85. Reference [] Fischer S, Simmer KU. Beamforming microphone arrays for speech acquisition in noisy environments. Speech communication, 2:25 227, 996. [2] Frost OL. An algorithm for linearly constrained adaptive array processing. In IEEE, volume 6, pages , August 972. [3] Griffiths LJ, Charles WJ. An alternative approach to linearly constrained adaptive beamforming. IEEE Transaction on Antenas and Propagation, AP-3(), January 982. [4] Ingerle J. Metody zvýrazňování řečového signálu kombinující směrový příjem a postfiltraci. Disertační práce, FEL ČVUT, Prague, February 23. [5] Sovka P,Pollák P. Vybrané metody číslicového zpracování signálů. Vydavatelství ČVUT, Praha, 23. Skriptum FEL ČVUT. [6] Widrow B, Stearns SD. Adaptive Signal Processing. Prentice-Hall, 985. [7] Zelinski R. A microphone array with adaptive post-filtering for noise reduction in reverberant rooms. In International Conference of Acoustic Speech Signal Processing, pages , New York, 988. Václav Bolom Katedra teorie obvodů, Fakulta Elektrotechnická, České vysoké učení technické v Praze, Technická 2, Praha 6, tel: , bolomv@fel.cvut.cz Pavel Sovka Katedra teorie obvodů, Fakulta Elektrotechnická, České vysoké učení technické v Praze, Technická 2, Praha 6, tel: , sovka@fel.cvut.cz
Zvýrazňování řeči pomocí vícekanálového zpracování
Zvýrazňování řeči pomocí vícekanálového zpracování Václav Bolom, Pavel Sovka Katedra teorie obvodů Fakulta elektrotechnická České vysoké učení technické v Praze Technická 2, 166 27 Praha 6 Abstrakt Úlohu
ADA Semestrální práce. Harmonické modelování signálů
České vysoké učení technické v Praze ADA Semestrální práce Harmonické modelování signálů Jiří Kořínek 31.12.2005 1. Zadání Proveďte rozklad signálu do harmonických komponent (řeč, hudba). Syntetizujte
3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU
3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU V současné době se pro potlačení šumu u řečového signálu používá mnoho různých metod. Jedná se například o metody spektrálního odečítání, Wienerovy filtrace,
ANALÝZA POTLAČOVÁNÍ AKUSTICKÉHO ECHA A DTD DETEKCE V CHYTRÝCH TELEFONECH
ANALÝZA POTLAČOVÁNÍ AKUSTICKÉHO ECHA A DTD DETEKCE V CHYTRÝCH TELEFONECH Jan Klapuch, Petr Pollák České vysoké učení technické v Praze, Fakulta elektrotechnická, K13131 klapujan@fel.cvut.cz, pollak@fel.cvut.cz
SIMULACE ZVUKOVÉHO POLE VÍCE ZDROJŮ
SIMULACE ZVUKOVÉHO POLE VÍCE ZDROJŮ F. Rund Katedra radioelektroniky, Fakulta elektrotechnická, České vysoké učení technické v Praze Abstrakt Studium zvukového pole vytvářeného soustavou jednotlivých zvukových
Analýza chování algoritmu MSAF při zpracování řeči v bojových prostředcích
Analýza chování algoritmu MSAF při zpracování řeči v bojových prostředcích Analysis of MSAF algorithm for speech enhancement in combat vehicles Ing. Jaroslav Hovorka MESIT přístroje spol. s r.o., Uherské
Nabídky spolupráce pro průmysl
Nabídky spolupráce pro průmysl České vysoké učení technické v Praze kontakty Prof. Ing. Pavel Sovka, CSc., e-mail: sovka@fel.cvut.cz doc. Dr. Ing. Jiří Hospodka, email: hospodka@fel.cvut.cz 17. dubna 2012
ANALÝZA A ZPRACOVÁNÍ ŘEČOVÝCH A BIOLOGICKÝCH SIGNÁLŮ SBORNÍK PRACÍ 2006
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Katedra teorie obvodů ANALÝZA A ZPRACOVÁNÍ ŘEČOVÝCH A BIOLOGICKÝCH SIGNÁLŮ SBORNÍK PRACÍ 2006 Editoři sborníku Doc. Ing. Petr Pollák, CSc.
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských
NOVÉ METODY HODNOCENÍ OBRAZOVÉ KVALITY
NOVÉ METODY HODNOCENÍ OBRAZOVÉ KVALITY Stanislav Vítek, Petr Páta, Jiří Hozman Katedra radioelektroniky, ČVUT FEL Praha, Technická 2, 166 27 Praha 6 E-mail: svitek@feld.cvut.cz, pata@feld.cvut.cz, hozman@feld.cvut.cz
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
Analýza a zpracování signálů
Analýza a zpracování ů Digital Signal Processing disciplína, která nám umožňuje nahradit (v případě že nezpracováváme vf y) obvody, dříve složené z rezistorů a kapacitorů, dvěma antialiasingovými filtry,
Wavelet transformace v metodách zvýrazňování řeči
Wavelet transformace v metodách zvýrazňování řeči Petr Opršal 1 1 Katedra elektrických měření, FEI, VŠB Technická Univerzita Ostrava, 17. listopadu 15, 708 33, Ostrava-Poruba oprsal@tiscali.cz Abstrakt.
Nové požadavky na zvukoměrnou techniku a jejich dopad na hygienickou praxi při měření hluku. Ing. Zdeněk Jandák, CSc.
Nové požadavky na zvukoměrnou techniku a jejich dopad na hygienickou praxi při měření hluku Ing. Zdeněk Jandák, CSc. Předpisy Nařízení vlády č. 272/2011 Sb. o ochraně zdraví před nepříznivými účinky hluku
Klasifikace Landau-Kleffnerova syndromu
Klasifikace Landau-Kleffnerova syndromu malých dětí 1. Abstrakt Petr Zlatník ČVUT FEL, K13131 Katedra teorie obvodů Tento příspěvěk pojednává o klasifikaci Landau-Kleffnerova syndromu, který se projevuje
Úkol 1 Zpráva k semestrální práci k předmětu B2M31SYN Syntéza audio signálů Lukáš Krauz krauzluk@fel.cvut.cz Hlavním cílem této úlohy bylo vytvořit za pomoci MIDI souboru, obsahující noty a stopy k jednotlivým
Petr Zlatník, Roman Čmejla. Katedra teorie obvodů, Fakulta elektrotechnická, ČVUT, Praha. Abstrakt
Vyhodnocování promluv dětí s poruchami řeči Petr Zlatník, Roman Čmejla Katedra teorie obvodů, Fakulta elektrotechnická, ČVUT, Praha Abstrakt Příspěvek popisuje metodu, která byla vyvinuta pro vyhodnocení
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky Při návrhu elektroakustických soustav, ale i jiných systémů, je vhodné nejprve
Strategie ACE využívající virtuální elektrody v kochleárních implantátech Nucleus 24
Strategie ACE využívající virtuální elektrody v kochleárních implantátech Nucleus 24 Martin Vondrášek České vysoké učení v Praze, Fakulta elektrotechnická vondram3@fel.cvut.cz Abstrakt: Kochleární implantát
Virtuální elektrody v kochleárních implantátech Nucleus 24
Virtuální elektrody v kochleárních implantátech Nucleus 24 Martin Vondrášek České vysoké učení v Praze, Fakulta elektrotechnická vondram3@fel.cvut.cz Abstrakt: Kochleární implantát je elektronické zařízení,
UŽITÍ KOHERENČNÍ FUNKCE PRO DISTRIBUOVANOU
UŽITÍ KOHERENČNÍ FUNKCE PRO DISTRIBUOVANOU ANALÝZU VÍCEKANÁLOVÝCH SIGNÁLŮ Robert Háva, Aleš Procházka Vysoká škola chemicko-technologická, Abstrakt Ústav počítačové a řídicí techniky Analýza vícekanálových
Využití neuronové sítě pro identifikaci realného systému
1 Portál pre odborné publikovanie ISSN 1338-0087 Využití neuronové sítě pro identifikaci realného systému Pišan Radim Elektrotechnika 20.06.2011 Identifikace systémů je proces, kdy z naměřených dat můžeme
KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni
KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace
Využití RPS pro potlačování šumu v řečových signálech
Využití RPS pro potlačování šumu v řečových signálech Ing. Radek Zezula, Ph.D., Ing. Ivan Koula, Prof. Ing. Zdeněk Smékal, CSc. Ústav telekomunikací Vysoké učení technické v Brně Fakulta elektrotechniky
SIMULACE SYSTÉMŮ S ROZPROSTŘENÝMI PARAMETRY V SIMULINKU
SIMULACE SYSTÉMŮ S ROZPROSTŘENÝMI PARAMETRY V SIMULINKU M. Anderle, P. Augusta 2, O. Holub Katedra řídicí techniky, Fakulta elektrotechnická, České vysoké učení technické v Praze 2 Ústav teorie informace
DTW. Petr Zlatník, Roman Čmejla. zlatnip@fel.cvut.cz, cmejla@fel.cvut.cz. Abstrakt: Příspěvek popisuje metodu, která byla vyvinuta pro vyhodnocení
Vyhodnocování vad řeči dětí s využitím algoritmu DTW Petr Zlatník, Roman Čmejla České vysoké učení technické v Praze, Fakulta elektrotechnická zlatnip@fel.cvut.cz, cmejla@fel.cvut.cz Abstrakt: Příspěvek
Modelování blízkého pole soustavy dipólů
1 Úvod Modelování blízkého pole soustavy dipólů J. Puskely, Z. Nováček Ústav radioelektroniky, Fakulta elektrotechniky a komunikačních technologií, VUT v Brně Purkyňova 118, 612 00 Brno Abstrakt Tento
MĚŘENÍ ČASOVÉHO ZPOŽDĚNÍ MEZI SIGNÁLY MOZKU: APLIKACE V EPILEPTOLOGII Jan Prokš 1, Přemysl Jiruška 2,3
MĚŘENÍ ČASOVÉHO ZPOŽDĚNÍ MEZI SIGNÁLY MOZKU: APLIKACE V EPILEPTOLOGII Jan Prokš, Přemysl Jiruška 2,3 Katedra teorie obvodů, Fakulta elektrotechnická ČVUT, 2 Ústav fyziologie, Univerzita Karlova 2. lékařská
Direct Digital Synthesis (DDS)
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Direct Digital Synthesis (DDS) Přímá číslicová syntéza Tyto materiály vznikly za podpory
31SCS Speciální číslicové systémy Antialiasing
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE 2006/2007 31SCS Speciální číslicové systémy Antialiasing Vypracoval: Ivo Vágner Email: Vagnei1@seznam.cz 1/7 Převod analogového signálu na digitální Složité operace,
Restaurace (obnovení) obrazu při známé degradaci
Restaurace (obnovení) obrazu při známé degradaci Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky
Snímání biologických signálů. A6M31LET Lékařská technika Zdeněk Horčík Katedra teorie obvodů
Snímání biologických signálů A6M31LET Lékařská technika Zdeněk Horčík Katedra teorie obvodů horcik@fel.cvut.cz Snímání biologických signálů problém: převést co nejvěrněji spojitý signál do číslicové podoby
Senzor polohy rotoru vysokootáčkového elektromotoru
Senzor polohy rotoru vysokootáčkového elektromotoru Ing. Vladislav Skála, Ing. Tomáš Koudelka Vedoucí práce: doc. Ing. Martin Novák, Ph.D. Abstrakt Cílem této práce bylo navrhnout a ověřit snímací systém
Měření neelektrických veličin. Fakulta strojního inženýrství VUT v Brně Ústav konstruování
Měření neelektrických veličin Fakulta strojního inženýrství VUT v Brně Ústav konstruování Obsah Struktura měřicího řetězce Senzory Technické parametry senzorů Obrazová příloha Měření neelektrických veličin
Úloha - rozpoznávání číslic
Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání
Druhy sdělovacích kabelů: kroucené metalické páry, koaxiální, světlovodné
7. Přenos informací Druhy sdělovacích kabelů: kroucené metalické páry, koaxiální, světlovodné A-PDF Split DEMO : Purchase from www.a-pdf.com to remove the watermark MODULACE proces, při kterém se, v závislosti
WAVELET TRANSFORMACE V POTLAČOVÁNÍ
WAVELET TRANSFORMACE V POTLAČOVÁNÍ RUŠIVÝCH SLOŽEK OBRAZŮ Andrea Gavlasová, Aleš Procházka Vysoká škola chemicko-technologická, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je zaměřen na problematiku
Centrum kompetence automobilového průmyslu Josefa Božka - 7. GSŘ 2015, Herbertov 6. a
WP15: Snížení problémů hluku a vibrací (tzv. NVH) a zlepšení vibračního pohodlí pro budoucí vozidla Vedoucí konsorcia podílející se na pracovním balíčku České vysoké učení technické v Praze, zodpov. osoba
Systém veřejného ozvučení Bosch Udáváme směr v akustické dokonalosti
Systém veřejného ozvučení Bosch Udáváme směr v akustické dokonalosti 2 Udáváme směr v akustické dokonalosti Rozsáhlé odborné znalosti z akustiky Společnost Bosch má více než 60leté zkušenosti v navrhování
Soustavy se spínanými kapacitory - SC. 1. Základní princip:
Obvody S - popis 1 Soustavy se spínanými kapacitory - S 1. Základní princip: Simulace rezistoru přepínaným kapacitorem viz známý obrázek! (a rovnice) Modifikace základního spínaného obvodu: Obr. 2.1: Zapojení
Vlastnosti a modelování aditivního
Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),
Adaptivní model kardiovaskulárního systému
Adaptivní model kardiovaskulárního systému NIDays 2013 7.11.2013, Praha Fakulta elektrotechnická ČVUT v Praze Matouš Pokorný Obsah prezentace Obsah prezentace Celkem 14 stran, odhadovaný čas prezentace
Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš
KVANTOVÁNÍ ZVUKOVÝCH SIGNÁLŮ NÍZKÉ ÚROVNĚ Abstrakt Quantization of acoustic low level signals David Bursík, Miroslav Lukeš Při testování kvality A/D převodníků se používají nejrůznější testovací signály.
Moderní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
U Úvod do modelování a simulace systémů
U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení
Úvod do medicínské informatiky pro Bc. studium. 6. přednáška
Metody zpracování biosignálů 6. přednáška 1 Biosignály Živé objekty produkují signály biologického původu. Tyto signály mohou být elektrické (např. elektrické potenciály vznikající při svalové činnosti),
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS
Název práce: DIAGNOSTIKA KONTAKTNĚ ZATÍŽENÝCH POVRCHŮ S VYUŽITÍM VYBRANÝCH POSTUPŮ ZPRACOVÁNÍ SIGNÁLU AKUSTICKÉ EMISE
Ing. 1 /12 Název práce: DIAGNOSTIKA KONTAKTNĚ ZATÍŽENÝCH POVRCHŮ S VYUŽITÍM VYBRANÝCH POSTUPŮ ZPRACOVÁNÍ SIGNÁLU AKUSTICKÉ EMISE Školitel: doc.ing. Pavel Mazal CSc Ing. 2 /12 Obsah Úvod do problematiky
GUI PRO DEMONSTRACI PRINCIPŮ BINAURÁLNÍ LOKALIZACE ZDROJŮ ZVUKU
GUI PRO DEMONSTRACI PRINCIPŮ BINAURÁLNÍ LOKALIZACE ZDROJŮ ZVUKU O. Glaser, F. Rund, D. Štorek Katedra radioelektroniky, Fakulta elektrotechnická, České vysoké učení technické v Praze Abstrakt Tento článek
CW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
Technický list. Změňte svá očekávání
Technický list Změňte svá očekávání flip 40 Sluchadlo Flip nabízí všechny funkce, které uživatelé sluchadel chtějí nejvíce: jednoduché ovládání, možnost bezdrátového připojení a rozměry, které dělají sluchadlo
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ
VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro
Hlavní parametry rádiových přijímačů
Hlavní parametry rádiových přijímačů Zpracoval: Ing. Jiří Sehnal Pro posouzení základních vlastností rádiových přijímačů jsou zavedena normalizovaná kritéria parametry, podle kterých se rádiové přijímače
Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně. www.feec.vutbr.cz
Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně www.feec.vutbr.cz Historie Fakulty elektrotechnické Fakulta elektrotechnická byla založena v roce 1959 720 studentů, 18
METODY POTLAČENÍ ŠUMU PRO ROZPOZNÁVAČE ŘEČI
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT
BMII. B i o m e d i c a l D a t a P r o c e s s i n g G r o u p
BMII České vysoké učení technické v Praze Fakulta elektrotechnická Magisterský program Biomedicínské inženýrství a informatika na ČVUT FEL Praha Olga Štěpánková (Kat.kybernetiky), step@labe.felk.cvut.cz
Měření dat Filtrace dat, Kalmanův filtr
Měření dat Filtrace dat, Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAMY čtvrtek 28. února 2018 verze: 2018-03-21 16:45 Obsah
Protiopatření eliminující proudovou analýzu
SIX Research Centre Vysoké učení technické v Brně martinasek@feec.vutbr.cz crypto.utko.feec.vutbr.cz Proudová analýza (PA) V dnešní době představuje efektivní a úspěšný způsob útoku cílený na bezpečné
VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ
VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ Markéta Mazálková Katedra komunikačních a informačních systémů Fakulta vojenských technologií,
Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722
Základy a aplikace digitálních modulací Josef Dobeš Katedra radioelektroniky (13137), blok B2, místnost 722 dobes@fel.cvut.cz 6. října 2014 České vysoké učení technické v Praze, Fakulta elektrotechnická
Historie, současnost a budoucnost anténní techniky
Historie, současnost a budoucnost anténní techniky Miloš Mazánek ČVUT Praha, katedra elektromagnetického pole mazanekm@fel.cvut.cz Úvod Fyzikální limity platí. Rozdílná je pouze jejich (fyzikálních limitů)
Měření dat Filtrace dat, Kalmanův filtr
Měření dat Filtrace dat, Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAMY čtvrtek 28. února 2018 verze: 2018-02-28 12:20 Obsah
SYNTÉZA AUDIO SIGNÁLŮ
SYNTÉZA AUDIO SIGNÁLŮ R. Čmejla Fakulta elektrotechnická, ČVUT v Praze Abstrakt Příspěvek pojednává o technikách číslicové audio syntézy vyučovaných v předmětu Syntéza multimediálních signálů na Elektrotechnické
Stavový model a Kalmanův filtr
Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,
Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně
Aplikace UNS v biomedicíně aplikace v medicíně postup při zpracování úloh Aplikace UNS v medicíně Důvod: nalezení exaktnějších, levnějších a snadnějších metod určování diagnóz pro lékaře nalezení šetrnějších
PSK1-9. Číslicové zpracování signálů. Číslicový signál
Název školy: Autor: Anotace: PSK1-9 Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Princip funkce číslicové filtrace signálu Vzdělávací oblast: Informační a komunikační
I. Současná analogová technika
IAS 2010/11 1 I. Současná analogová technika Analogové obvody v moderních komunikačních systémech. Vývoj informatických technologií v poslední dekádě minulého století digitalizace, zvýšení objemu přenášených
Magisterský program Biomedicínské inženýrství a informatika na ČVUT FEL Praha
České vysoké učení technické v Praze Fakulta elektrotechnická Magisterský program Biomedicínské inženýrství a informatika na ČVUT FEL Praha Olga Štěpánková, Lenka Lhotská Filip Železný, Jan Havlík Katedra
Kompresní metody první generace
Kompresní metody první generace 998-20 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Stillg 20 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca / 32 Základní pojmy komprese
Kapitola 9: Návrh vstupního zesilovače
Kapitola 9: Návrh vstupního zesilovače Vstupní zesilovač musí zpracovat celý dynamický rozsah mikrofonu s přijatelným zkreslením a nízkým ekvivalentním šumovým odporem. To s sebou nese určité specifické
Problematika disertační práce a současný stav řešení. Filip Hort
Problematika disertační práce a současný stav řešení školitel: doc. Ing. Pavel Mazal, CSc. 2 /18 OBSAH Téma disertační práce Zdroje AE na ložiscích Úprava zkušebního zařízení Vyhodnocování experimentálních
2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2
Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací
Ultrazvuková defektoskopie. M. Kreidl, R. Šmíd, V. Matz, S. Štarman
Ultrazvuková defektoskopie M. Kreidl, R. Šmíd, V. Matz, S. Štarman Praha 2011 ISBN 978-80-254-6606-3 2 OBSAH 1. Předmluva 7 2. Základní pojmy 9 2.1. Fyzikální základy ultrazvuku a akustické veličiny 9
Číslicový Voltmetr s ICL7107
České vysoké učení technické v Praze Fakulta elektrotechnická Analogové předzpracování signálu a jeho digitalizace Číslicový Voltmetr s ICL7107 Ondřej Tomíška Petr Česák Petr Ornst 2002/2003 ZADÁNÍ: 1)
TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY
TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY V PROSTŘEDÍ MATLAB K. Nováková, J. Kukal FJFI, ČVUT v Praze ÚPŘT, VŠCHT Praha Abstrakt Při rozpoznávání D binárních objektů z jejich diskrétní realizace se využívají
Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics
Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí
Přenosový kanál dvojbrany
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA NA PROSEKU EVROPSKÝ SOCIÁLNÍ FOND Přenosový kanál dvojbrany PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL
NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe. Adam Novozámský (novozamsky@utia.cas.cz)
NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe Adam Novozámský (novozamsky@utia.cas.cz) TEORIE Šum a jeho odstranění ŠUM Co je to šum v obrázku a jak vzniká? Jaké známe typy šumu? ŠUM V obrázku
5. Umělé neuronové sítě. Neuronové sítě
Neuronové sítě Přesný algoritmus práce přírodních neuronových systémů není doposud znám. Přesto experimentální výsledky na modelech těchto systémů dávají dnes velmi slibné výsledky. Tyto systémy, včetně
PRACOVNÍ NÁVRH VYHLÁŠKA. ze dne o způsobu stanovení pokrytí signálem televizního vysílání
PRACOVNÍ NÁVRH VYHLÁŠKA ze dne 2008 o způsobu stanovení pokrytí signálem televizního vysílání Český telekomunikační úřad stanoví podle 150 odst. 5 zákona č. 127/2005 Sb., o elektronických komunikacích
Primární zpracování radarového signálu dopplerovská filtrace
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE K13137 - Katedra radioelektroniky A2M37RSY Jméno Stud. rok Stud. skupina Ročník Lab. skupina Václav Dajčar 2011/2012 2. 101 - Datum zadání Datum odevzdání Klasifikace
12 Metody snižování barevného prostoru
12 Metody snižování barevného prostoru Studijní cíl Tento blok je věnován základním metodám pro snižování barevného rozsahu pro rastrové obrázky. Postupně zde jsou vysvětleny důvody k použití těchto algoritmů
OKRUHY MODELOVÝCH SITUACÍ
OKRUHY MODELOVÝCH SITUACÍ k atestační zkoušce z praktické části vzdělávání v atestačním oboru Klinické inženýrství se zaměřením Zpracování a analýza biosignálů 29 úloh Obsah atestační zkoušky odpovídá
Anotace. Klíčová slova: 1. Úvod
Vladana Djordjevic, Václav Gerla, Lenka Lhotská, Vladimír Krajča 28 MULTIMEDIÁLNÍ PODPORA VE VÝUCE BIOMEDICÍNSKÉHO INŽENÝRSTVÍ Vladana Djordjevic, Václav Gerla, Lenka Lhotská, Vladimír Krajča Anotace Tento
Biomedicínské inženýrství na ČVUT FEL
Biomedicínské inženýrství na ČVUT FEL Přehled pracovišť katedra fyziky elektrotechnologie elektromagnetického pole teorie obvodů kybernetiky mikroelektroniky počítačů měření témata fyzikální metody v medicíně
Experimentální realizace Buquoyovy úlohy
Experimentální realizace Buquoyovy úlohy ČENĚK KODEJŠKA, JAN ŘÍHA Přírodovědecká fakulta Univerzity Palackého, Olomouc Abstrakt Tato práce se zabývá experimentální realizací Buquoyovy úlohy. Jedná se o
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické
Anti Aliasing. Ondřej Burkert. atrey.karlin.mff.cuni.cz/~ondra/ ~ondra/stranka
Anti Aliasing Ondřej Burkert atrey.karlin.mff.cuni.cz/~ondra/ ~ondra/stranka Úvod Co je to anti - aliasing? Aliasing = vznik artefaktů v důsledku podvzorkování při vzorkování (sampling) obrazu podvzorkování
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné
Akustický přijímač přeměňuje energii akustického pole daného místa na energii elektrického pole
Akustické přijímače Akustický přijímač přeměňuje energii akustického pole daného místa na energii elektrického pole jeho součástí je elektromechanický měnič Při přeměně kmitů plynu = mikrofon Při přeměně
Modernizace a inovace výpočetní kapacity laboratoří ITE pro účely strojového učení. Jiří Málek
Modernizace a inovace výpočetní kapacity laboratoří ITE pro účely strojového učení Jiří Málek Cíl projektu Cíl: Zefektivnění vzdělávání na ITE* v oblasti strojového učení pomocí posílení dostupné výpočetní
ROZPOZNÁVÁNÍ AKUSTICKÉHO SIGNÁLU ŘEČI S PODPOROU VIZUÁLNÍ INFORMACE
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky a mezioborových inženýrských studií ROZPOZNÁVÁNÍ AKUSTICKÉHO SIGNÁLU ŘEČI S PODPOROU VIZUÁLNÍ INFORMACE AUTOREFERÁT DISERTAČNÍ PRÁCE 2005 JOSEF CHALOUPKA
Měření teploty, tlaku a vlhkosti vzduchu s přenosem dat přes internet a zobrazování na WEB stránce
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Katedra mikroelektroniky Měření teploty, tlaku a vlhkosti vzduchu s přenosem dat přes internet a zobrazování na WEB stránce Zadání Stávající
MODEL LIDSKÉHO UCHA V PROSTŘEDÍ MATLAB
MODEL LIDSKÉHO UCHA V PROSTŘEDÍ MATLAB F. Rund Katedra radioelektroniky, FEL ČVUT v Praze Abstrakt Pro studium kvalitativních aspektů zpracování zvukové informace v procesu slyšení je důležitá detailní
Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak)
Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak) Autor: Doc. Ing. Josef Formánek, Ph.D. Tvorba grafické vizualizace principu
Napínání řetězů a řemenů / Pružné elementy Nástroje pro montáž řemenů
Elektronický měřič napnutí řemene Sonic 308C Pro kontrolu napnutí řemene měřením frekvence Správné montážní napnutí pohonných řemenů je základem pro jejich optimální výkon a dlouhou životnost. Elektronický
Neuronové časové řady (ANN-TS)
Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci
Transformace obrazu Josef Pelikán KSVI MFF UK Praha
Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých