MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky
|
|
- Václav Urban
- před 6 lety
- Počet zobrazení:
Transkript
1 MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky Při návrhu elektroakustických soustav, ale i jiných systémů, je vhodné nejprve testovat jejich vlastnosti na modelech. K tomuto účelu se jako výhodné jeví použití Matlab Simulinku, který umožňuje simulovat jak spojité, tak i diskrétní systémy a poskytuje matematický aparát pro analýzu výsledků. Tento příspěvek se zabývá implementací systému pro měření a analýzu modelů založeném na metodě měření pomocí MLS (Maximum-length Sequences). 1 MLS signály Pseudonáhodné signály maximální délky (MLS) jsou binární signály, které se obvykle generují jako posloupnost nul a jedniček m[n] pomocí posuvného registru se zpětnou vazbou (obr. 1). Posuvný registr m[n] Součet modulo 2 Obr. 1: Generátor MLS s periodou L = 255 vzorků Do zpětné vazby se zavádí součet modulo dvě vybraných buněk posuvného registru. Je určeno [3], které buňky je třeba zavést do zpětné vazby, aby tak vznikl skutečně signál maximální délky. Takto generovaný signál je periodický s periodou L =2 N 1, (1) kde N je počet buněk posuvného registru. Pro měření přenosových funkcí soustav se obvykle signál m[n] převádí na symetrický dvouúrovňový signál m[n] mapováním logické 1 na úroveň A a logické 0 na +A, kde A je amplituda signálu. Pro praktickou implementaci generátoru se používá obecnější struktura, která je znázorněna na obrázku 2. Tato struktura umožňuje realizovat generátor MLS libovolného řádu až do řádu M. Posloupnost, která se bude generovat je určena maskou a buňkou posuvného registru, ze která je vedena výstupní posloupnost m[n]. Maska je soubor nul a jedniček, přičemž jednička je v místě, kde má být realizována zpětná vazba. Tam, kde zpětná vazba není, je v masce hodnota nula. Řekněme, že chceme realizovat generátor až do řádu M = 10. Maska pro realizaci generátoru MLS řádu N = 8 pomocí struktury z obr. 2 bude Takový generátor by generoval stejnou posloupnost jako generátor na obr. 1. V tomto případě by byla posloupnost m[n] vedena z buňky číslo 8.
2 Posuvný registr M m[n] Mapování úrovní m[n] Bitový AND Maska Součet modulo 2 Obr. 2: Univerzální struktura generátoru MLS. 2 Měření impulsní odezvy soustavy pomocí MLS Lineární stacionární soustava je zcela popsána pomocí impulsní odezvy h[n]. Soustava lze také popsat pomocí periodické impulsní odezvy h p [n], která je definovaná jako odezva soustavy na periodický jednotkový impuls { 1 pro n mod L =0, δ p [n] = (2) 0 jinde. Mezi impulsní odezvou soustavy h[n] a periodickou impulsní odezvou h p [n] téže soustavy platí následující vztah h p [n] =δ p [n] h[n] = δ p [k]h[n k] = h[n + kl]. (3) k= k= Z tohoto vztahu je zřejmé, že pokud délka impulsní odezvy h[n] přesáhne délku sekvence L, dojde k deformaci původní odezvy. Tento jev se nazývá časový aliasing. Odezva soustavy y p [n] na vstupní periodický signál x p [n] je periodická a platí pro ni vztah L 1 y p [n] =x p [n] h p [n] = x p [k]h p [n k], (4) kde znak představuje operátor cyklické konvoluce. Signály y p [n], x p [n] ah p [n] jsou periodické s periodou L. Definujme vzájemnou cyklickou korelaci R pxy [n] dvou periodických signálů x p [n]ay p [n] takto R pxy [n] =x p [n] y p [n] = 1 L 1 x p [k]y p [k + n], (5) kde znak představuje operátor cyklické korelace a L je perioda signálů x p [n] ay p [n]. Pro autokorelační funkci R pmm [n] MLS signálu platí [2] R pmm [n] =δ p [n] 1. (6) Pokud soustavu vybudíme MLS signálem m[n], lze její periodická impulsní odezva h p [n] vypočítat vzájemnou korelací mezi budicím signálem m[n] a výstupním signálem soustavy y[n] [2]. Platí R pmy [n] =m[n] y p [n] =m[n] (m[n] h p [n]). (7)
3 Ve vztahu (7) se vyskytují operace cyklické korelace a cyklické konvoluce. Vzhledem k tomu, že se jedná o lineární operace, můžeme zaměnit jejich pořadí. Po dosazení ze vztahu (6) získáme ( R pmy [n] =(m[n] m[n]) h p [n] = δ p [n] 1 ) h p [n] =. h p [n]. (8) 3 Výpočet cyklické korelace Cyklickou korelaci R pmy [n] dvou signálů m[n] ay p [n] lze zapsat ve tvaru R pmy [n] = 1 L 1 m[k]y p [k + n] = 1 L 1 m[k n]y p [k]. (9) Výslednou sumu ve vztahu (9) lze jednoduše vyjádřit pomocí maticového násobení ve tvaru R pmy = 1 M LY, (10) kde R pmy a Y jsou sloupcové vektory, jejichž prvky jsou R pmy [ ]ay p [ ] ze vztahu (9), matice M L je čtvercová řádu L a obsahuje cyklicky zpožděné verze posloupnosti m[ ]. Například pro MLS řádu N = 3 bude matice M 7 vypadat takto M 7 = + + +, (11) kde symboly + a představují hodnoty +1 a 1. Pro výpočet maticového součinu (10) stačí pouze operace součtu a rozdílu, protože všechny prvky matice M L jsou ±1. Pro nalezení každého členu vektoru R pmy je potřeba právě L 1 součtů. Celkem se tedy musí počítat L(L 1) součtů, neboť výsledný vektor R pmy má L členů. Pokud bude L velké, tak lze říci, že počet potřebných součtů je přibližně L 2. Typické délky používaných signálů jsou řádu 10 3 až 10 5, což znamená, že výpočet cyklické korelace podle vztahu (10) bude nepřijatelně dlouhý. Řešením tohoto problému je využití efektivního algoritmu, který je založen na rychlé Hadamardově transformaci (FHT) [1]. Rychlý algoritmus výpočtu Hadamardovy transformace lze použít pouze pro specifickou třídu Hadamardových matic známou jako matice Sylvesterova typu. Tyto matice existují pouze v řádech 2 k, kde k je nezáporné celé číslo, a obsahují pouze prvky, které jsou ±1. Hadamardovou transformací H{X} vektoru X získáme vektor Y, pro který platí Y = H{X} = H X, (12) kde H je Hadamardova matice Sylvesterova typu. Výpočet Hadamardovy transformace podle (12) lze provést efektivně pomocí průtokové struktury, která je velmi podobná struktuře FFT. Celý princip efektivního algoritmu pro výpočet cyklické korelace je založen na tom, že matici MLS signálu M L lze převést na matici Sylvesterova typu permutacemi jejích řádků a sloupců [1].
4 4 Analýza diskrétní soustavy Pro ukázku uvedeného postupu analyzujme nejprve jednoduchou diskrétní soustavu. Jedná se o IIR filtr 4. řádu typu dolní propust s Čebyševovou aproximací přenosové funkce. Schéma analýzy v Matlab Simulinku je na obrázku 3. Analýza diskrétní soustavy je velmi jednoduchá, protože MLS signál je z principu diskrétní, takže celý systém pracuje v diskrétním čase. b(z) a(z) Signal IR MLS generator Diskretni soustava MLS FFT Imp. odezva FHT Korelace u Abs Ampl. charakteristika Obr. 3: Analýza diskrétní soustavy (číslicového filtru). Na obrázku 4 je znázorněn průběh vypočtené amplitudové frekvenční charakteristiky navrženého filtru v porovnání s frekvenční charakteristikou získanou analýzou pomocí MLS. Jak je zřejmé, oba průběhy jsou shodné. H [db] výpočet analýza pomocí MLS f[hz] Obr. 4: Amplitudová frekvenční charakteristika číslicového filtru typu IIR. 5 Analýza spojité soustavy V případě spojité soustavy není situace tak jednoduchá, jako u soustavy diskrétní. Především je třeba zajistit, aby nedocházelo k nežádoucímu aliasingu. To lze udělat vhodnou volbou parametrů simulace a použitím antialiasingového filtru ještě před převodem ze spojitého do diskrétního času. Schéma analýzy analogové soustavy, filtru 4. řádu typu dolní propust s Čebyševovou aproximací přenosové funkce, je na obrázku 5. Na obrázku 6 je znázorněn detail frekvenční charakteristiky analyzovaného filtru spolu s charakteristikou získanou analýzou soustavy pomocí MLS. Jak je patrné, obě charakteristiky se liší. Odlišnost je způsobena přenosovou funkcí číslico-analogového převodníku.
5 cheby1 butter Signal IR MLS generator Spojita soustava Antialiasingovy filtr MLS FFT FHT Korelace Imp. odezva u Abs Ampl. charakteristika Obr. 5: Analýza spojité soustavy (analogového filtru). Lze odvodit [4], že přenosová funkce číslico-analogového převodníku H DAC (f) mátvar ( ) πf sin f s H DAC (f) =, (13) πf f s kde f s je vzorkovací frekvence. Při této simulaci byla zvolena f s =44,1kHz. Z obr. 6 je tedy zřejmé, že pro získání přesných výsledků je třeba provést kompenzaci inverzní funkcí k funkci (13). H [db] výpočet analýza pomocí MLS f[hz] Obr. 6: Detail amplitudové frekvenční charakteristiky analogového filtru se znázorněnou přenosovou funkcí číslico-analogového převodníku. Na obrázku 7 je schéma analýzy spojité soustavy s kompenzací vlivu číslico-analogového převodu. Ta je prováděna číslicovým filtrem typu FIR řádu 30. Jak je zřejmé z grafu na obrázku 8, výsledek analýzy se shoduje s očekávaným průběhem frekvenční charakteristiky filtru. Jediná podstatná odchylka je v oblasti kmitočtů blízko f s /2, kde se projevuje vliv použitého antialiasingového filtru. 6 Závěr Měření pomocí MLS je efektivní metoda pro stanovení přenosových funkcí lineárních soustav. Bylo ukázáno využití této metody pro analýzu modelů soustav v Matlab Simulinku. Na jednoduchých soustavách byl prezentován princip a přesnost analýzy pomocí MLS. Prezentované bloky lze ovšem použít pro analýzu mnohem složitějších systémů, nejen elektrických, ale například také mechanických a dalších. Projekt byl podporován Grantovou agenturou České republiky, grant č. 102/02/0156.
6 cheby1 butter Signal IR MLS generator SincFiltr Spojita soustava Antialiasingovy filtr MLS FFT FHT Korelace Imp. odezva u Abs Ampl. charakteristika Obr. 7: Analýza spojité soustavy (analogového filtru) s kompenzací přenosové funkce číslico-analogového převodu H [db] výpočet analýza pomocí MLS f[hz] Obr. 8: Amplitudová frekvenční charakteristika analogového filtru. Literatura [1] BORISH, J., ANGEL, J. B. An Efficient Algorithm for Measuring the Impulse Response Using Pseudorandom Noise. J. Audio Eng. Soc., July/August 1983, Vol. 31, No. 7, s [2] RIFE, D. D., VANDERKOOY, J. Transfer-Function Measurement with Maximum- Length Sequences. J. Audio Eng. Soc. June 1989, Vol. 37, No. 6, s [3] VANDERKOOY, J. Aspects of MLS Measuring Systems. J. Audio Eng. Soc. April 1994, Vol. 42, No. 4, s [4] KADLEC, F. Zpracování akustických signálů. Skripta, ČVUT, FEL, Praha, 2002.
SOUSTAV. Measurement and analysis of electro-acoustical systems. Petr Kopecký Λ
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV Abstrakt Measurement and analysis of electro-acoustical systems Petr Kopecký Λ Výkonnou metodou pro měření a analýzu soustav se jeví použití signálů MLS (Maximumlength
MATLAB. F. Rund, A. Novák Katedra radioelektroniky, FEL ČVUT v Praze. Abstrakt
PROBLÉM ŠPATNÉ SYNCHRONIZACE VZORKOVACÍCH KMITOČTŮ U MLS SIGNÁLŮ: MODEL V PROSTŘEDÍ MATLAB F. Rund, A. Novák Katedra radioelektroniky, FEL ČVUT v Praze Abstrakt Chceme-li hodnotit kvalitativní stránku
x p [k]y p [k + n]. (3)
STANOVENÍ VLASTNOSTÍ ELEKTROAKUSTICKÝCH SOUSTAV POMOCÍ PSEUDONÁHODNÝCH SIGNÁLŮ 1 Úod Daid Bursík, František Kadlec ČVUT FEL, katedra radioelektroniky, Technická 2, Praha 6 bursikd@feld.cut.cz, kadlec@feld.cut.cz
KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni
KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace
Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Číslicová filtrace FIR filtry IIR filtry Tyto materiály vznikly za podpory Fondu rozvoje
Číslicové filtry. Honza Černocký, ÚPGM
Číslicové filtry Honza Černocký, ÚPGM Aliasy Digitální filtry Diskrétní systémy Systémy s diskrétním časem atd. 2 Na co? Úprava signálů Zdůraznění Potlačení Detekce 3 Zdůraznění basy 4 Zdůraznění výšky
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš
KVANTOVÁNÍ ZVUKOVÝCH SIGNÁLŮ NÍZKÉ ÚROVNĚ Abstrakt Quantization of acoustic low level signals David Bursík, Miroslav Lukeš Při testování kvality A/D převodníků se používají nejrůznější testovací signály.
základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů
A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky
Flexibilita jednoduché naprogramování a přeprogramování řídícího systému
Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.
Transformace obrazu Josef Pelikán KSVI MFF UK Praha
Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých
31SCS Speciální číslicové systémy Antialiasing
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE 2006/2007 31SCS Speciální číslicové systémy Antialiasing Vypracoval: Ivo Vágner Email: Vagnei1@seznam.cz 1/7 Převod analogového signálu na digitální Složité operace,
A7B31ZZS 10. PŘEDNÁŠKA Návrh filtrů 1. prosince 2014
A7B3ZZS. PŘEDNÁŠKA Návrh filtrů. prosince 24 Návrhy jednoduchých filtrů Návrhy složitějších filtrů Porovnání FIR a IIR Nástroje pro návrh FIR filtrů v MATLABu Nástroje pro návrh IIR filtrů v MATLABu Kvantování
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
Signál v čase a jeho spektrum
Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě
NOVÉ METODY HODNOCENÍ OBRAZOVÉ KVALITY
NOVÉ METODY HODNOCENÍ OBRAZOVÉ KVALITY Stanislav Vítek, Petr Páta, Jiří Hozman Katedra radioelektroniky, ČVUT FEL Praha, Technická 2, 166 27 Praha 6 E-mail: svitek@feld.cvut.cz, pata@feld.cvut.cz, hozman@feld.cvut.cz
Při návrhu FIR filtru řešíme obvykle následující problémy:
Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.
Při návrhu FIR filtru řešíme obvykle následující problémy:
Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.
filtry FIR zpracování signálů FIR & IIR Tomáš Novák
filtry FIR 1) Maximální překývnutí amplitudové frekvenční charakteristiky dolní propusti FIR řádu 100 je podle obr. 1 na frekvenci f=50hz o velikosti 0,15 tedy 1,1dB; přechodové pásmo je v rozsahu frekvencí
Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti
Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů
Základní metody číslicového zpracování signálu část I.
A4M38AVS Aplikace vestavěných systémů Základní metody číslicového zpracování signálu část I. Radek Sedláček, katedra měření, ČVUT v Praze FEL, 2015 Obsah přednášky Úvod, motivace do problematiky číslicového
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací
Rekurentní filtry. Matlab
Rekurentní filtry IIR filtry filtry se zpětnou vazbou a nekonečnou impulsní odezvou Výstupní signál je závislý na vstupu a minulém výstupu. Existují různé konvence zápisu, pozor na to! Někde je záporná
ÚPGM FIT VUT Brno,
Systémy s diskrétním časem Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 LTI systémy v tomto kursu budeme pracovat pouze se systémy lineárními a časově invariantními. Úvod k nim jsme viděli již
Vlastnosti a modelování aditivního
Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),
Měření neelektrických veličin. Fakulta strojního inženýrství VUT v Brně Ústav konstruování
Měření neelektrických veličin Fakulta strojního inženýrství VUT v Brně Ústav konstruování Obsah Struktura měřicího řetězce Senzory Technické parametry senzorů Obrazová příloha Měření neelektrických veličin
Abychom se vyhnuli užití diferenčních sumátorů, je vhodné soustavu rovnic(5.77) upravit následujícím způsobem
Abychom se vyhnuli užití diferenčních sumátorů, je vhodné soustavu rovnic(5.77) upravit následujícím způsobem I 1 = 1 + pl 1 (U 1 +( )), = 1 pc 2 ( I 1+( I 3 )), I 3 = pl 3 (U 3 +( )), 1 U 3 = (pc 4 +1/
Direct Digital Synthesis (DDS)
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Direct Digital Synthesis (DDS) Přímá číslicová syntéza Tyto materiály vznikly za podpory
Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů
Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle
PSK1-9. Číslicové zpracování signálů. Číslicový signál
Název školy: Autor: Anotace: PSK1-9 Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Princip funkce číslicové filtrace signálu Vzdělávací oblast: Informační a komunikační
KOMBINAČNÍ LOGICKÉ OBVODY
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je vstup určen jen výhradně kombinací vstupních veličin. Hodnoty
1) Sestavte v Matlabu funkci pro stanovení výšky geoidu WGS84. 2) Sestavte v Matlabu funkci pro generování C/A kódu GPS družic.
LRAR-Cp ZADÁNÍ Č. úlohy 1 Funkce pro zpracování signálu GPS 1) Sestavte v Matlabu funkci pro stanovení výšky geoidu WGS84. 2) Sestavte v Matlabu funkci pro generování C/A kódu GPS družic. ROZBOR Cílem
Multimediální systémy
Multimediální systémy Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Získání obsahu Jan Outrata (Univerzita Palackého v Olomouci) Multimediální systémy Olomouc, září prosinec
Číslicové zpracování signálů a Fourierova analýza.
Číslicové zpracování signálů a Fourierova analýza www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza
P7: Základy zpracování signálu
P7: Základy zpracování signálu Úvodem - Signál (lat. signum) bychom mohli definovat jako záměrný fyzikální jev, nesoucí informaci o nějaké události. - Signálem je rovněž funkce, která převádí nezávislou
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
VY_32_INOVACE_E 15 03
Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
U Úvod do modelování a simulace systémů
U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení
Způsoby realizace této funkce:
KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační
Využití neuronové sítě pro identifikaci realného systému
1 Portál pre odborné publikovanie ISSN 1338-0087 Využití neuronové sítě pro identifikaci realného systému Pišan Radim Elektrotechnika 20.06.2011 Identifikace systémů je proces, kdy z naměřených dat můžeme
8. Sběr a zpracování technologických proměnných
8. Sběr a zpracování technologických proměnných Účel: dodat v částečně předzpracovaném a pro další použití vhodném tvaru ucelenou informaci o procesu pro následnou analyzu průběhu procesu a pro rozhodování
FILTRACE VE FOURIEROVSKÉM SPEKTRU
1/18 FILTRACE VE FOURIEROVSKÉM SPEKTRU (patří do lineárních integrálních transformací) Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz
ADA Semestrální práce. Harmonické modelování signálů
České vysoké učení technické v Praze ADA Semestrální práce Harmonické modelování signálů Jiří Kořínek 31.12.2005 1. Zadání Proveďte rozklad signálu do harmonických komponent (řeč, hudba). Syntetizujte
Circular Harmonics. Tomáš Zámečník
Circular Harmonics Tomáš Zámečník Úvod Circular Harmonics Reprezentace křivky, která je: podmonožinou RxR uzavřená funkcí úhlu na intervalu Dále budeme hovořit pouze o takovýchto křivkách/funkcích
Návrh frekvenčního filtru
Návrh frekvenčního filtru Vypracoval: Martin Dlouhý, Petr Salajka 25. 9 2010 1 1 Zadání 1. Navrhněte co nejjednodušší přenosovou funkci frekvenčního pásmového filtru Dolní propusti typu Bessel, která bude
Aplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
Diskretizace. 29. dubna 2015
MSP: Domácí příprava č. 3 Vnitřní a vnější popis diskrétních systémů Dopředná Z-transformace Zpětná Z-transformace Řešení diferenčních rovnic Stabilita diskrétních systémů Spojování systémů Diskretizace
Analogově číslicové převodníky
Verze 1 Analogově číslicové převodníky Doplněná inovovaná přednáška Zpracoval: Vladimír Michna Pracoviště: Katedra textilních a jednoúčelových strojů TUL Tento materiál vznikl jako součást projektu In-TECH
Modelování polohových servomechanismů v prostředí Matlab / Simulink
Modelování polohových servomechanismů v prostředí Matlab / Simulink Lachman Martin, Mendřický Radomír Elektrické pohony a servomechanismy 27.11.2013 Struktura programu MATLAB-SIMULINK 27.11.2013 2 SIMULINK
APLIKACE ALGORITMŮ ČÍSLICOVÉHO ZPRACOVÁNÍ SIGNÁLŮ 1. DÍL
David Matoušek, Bohumil Brtník APLIKACE ALGORITMÙ ÈÍSLICOVÉHO ZPRACOVÁNÍ SIGNÁLÙ 1 Praha 2014 David Matoušek, Bohumil Brtník Aplikace algoritmù èíslicového zpracování signálù 1. díl Bez pøedchozího písemného
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 8. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
A7B31ZZS 4. PŘEDNÁŠKA 13. října 2014
A7B31ZZS 4. PŘEDNÁŠKA 13. října 214 A-D převod Vzorkování aliasing vzorkovací teorém Kvantování Analýza reálných signálů v časové oblasti řečové signály biologické signály ---> x[n] Analogově-číslicový
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
teorie elektronických obvodů Jiří Petržela obvodové funkce
Jiří Petržela obvod jako dvojbran dvojbranem rozumíme elektronický obvod mající dvě brány (vstupní a výstupní) dvojbranem může být zesilovač, pasivní i aktivní filtr, tranzistor v některém zapojení, přenosový
[ n. Konvoluce. = 0 jinak. 0 jinak. Užitečné signály (diskrétní verze) Jednotkový skok 1 pro n = 0
Užitečné signály (diskrétní verze) Konvoluce σ Jednotkový skok [ n] Jednotkový impuls (delta funkce) Posunutý jednotkový impuls 1 pro n 0 1 pro n = 0 δ = δ [ n] [ n k] = 0 jinak 0 jinak Proč jsou užitečné?
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31
Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita
Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové
VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ
VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ Markéta Mazálková Katedra komunikačních a informačních systémů Fakulta vojenských technologií,
Zpracování obrazů. Honza Černocký, ÚPGM
Zpracování obrazů Honza Černocký, ÚPGM 1D signál 2 Obrázky 2D šedotónový obrázek (grayscale) Několikrát 2D barevné foto 3D lékařské zobrazování, vektorová grafika, point-clouds (hloubková mapa, Kinect)
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
Operace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
2. Číslicová filtrace
Żpracování signálů a obrazů 2. Číslicová filtrace.......... Petr Česák Zimní semestr 2002/2003 . 2. Číslicová filtrace FIR+IIR ZADÁNÍ Účelem cvičení je seznámit se s průběhem frekvenčních charakteristik
FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth
FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály Systémy: definice, několik příkladů Vlastnosti systémů
7.1. Číslicové filtry IIR
Kapitola 7. Návrh číslicových filtrů Hraniční kmitočty propustného a nepropustného pásma jsou ve většině případů specifikovány v[hz] společně se vzorkovacím kmitočtem číslicového filtru. Návrhové algoritmy
Číselné vyjádření hodnoty. Kolik váží hrouda zlata?
Čísla a logika Číselné vyjádření hodnoty Au Kolik váží hrouda zlata? Dekadické vážení Když přidám osmé závaží g, váha se převáží => závaží zase odeberu a začnu přidávat závaží x menší 7 závaží g 2 závaží
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci OBSAH A CÍLE SEMINÁŘE: Opakování a procvičení vybraných
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické
r Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F.
Systé my, procesy a signály I - sbírka příkladů NEŘ EŠENÉPŘ ÍKADY r 223 Odvoď te přenosovou funkci obvodů na obr26, je-li vstupem napě tí u a výstupem napě tí Uvaž ujte Ω, H a F u u u a) b) c) u u u d)
Kepstrální analýza řečového signálu
Semestrální práce Václav Brunnhofer Kepstrální analýza řečového signálu 1. Charakter řečového signálu Lidská řeč je souvislý, časově proměnný proces. Je nositelem určité informace od řečníka k posluchači
Základní metody číslicového zpracování signálu a obrazu část II.
A4M38AVS Aplikace vestavěných systémů Přednáška č. 8 Základní metody číslicového zpracování signálu a obrazu část II. Radek Sedláček, katedra měření, ČVUT FEL, 2015 Obsah přednášky Převzorkování decimace,
Automatizační technika. Regulační obvod. Obsah
30.0.07 Akademický rok 07/08 Připravil: Radim Farana Automatizační technika Regulátory Obsah Analogové konvenční regulátory Regulátor typu PID Regulátor typu PID i Regulátor se dvěma stupni volnosti Omezení
Analýza a zpracování signálů
Analýza a zpracování ů Digital Signal Processing disciplína, která nám umožňuje nahradit (v případě že nezpracováváme vf y) obvody, dříve složené z rezistorů a kapacitorů, dvěma antialiasingovými filtry,
3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU
3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU V současné době se pro potlačení šumu u řečového signálu používá mnoho různých metod. Jedná se například o metody spektrálního odečítání, Wienerovy filtrace,
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi
Snímání biologických signálů. A6M31LET Lékařská technika Zdeněk Horčík Katedra teorie obvodů
Snímání biologických signálů A6M31LET Lékařská technika Zdeněk Horčík Katedra teorie obvodů horcik@fel.cvut.cz Snímání biologických signálů problém: převést co nejvěrněji spojitý signál do číslicové podoby
Identifikace a řízení nelineárního systému pomocí Hammersteinova modelu
1 Portál pre odborné publikovanie ISSN 1338-0087 Identifikace a řízení nelineárního systému pomocí Hammersteinova modelu Brázdil Michal Elektrotechnika 25.04.2011 V praxi se často setkáváme s procesy,
II. Úlohy na vložené cykly a podprogramy
II. Úlohy na vložené cykly a podprogramy Společné zadání pro příklady 1. - 10. začíná jednou ze dvou možností popisu vstupních dat. Je dána posloupnost (neboli řada) N reálných (resp. celočíselných) hodnot.
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 1. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
11MAMY LS 2017/2018. Úvod do Matlabu. 21. února Skupina 01. reseni2.m a tak dále + M souborem zadané funkce z příkladu 3 + souborem skupina.
11MAMY LS 2017/2018 Cvičení č. 2: 21. 2. 2018 Úvod do Matlabu. Jan Přikryl 21. února 2018 Po skupinách, na které jste se doufám rozdělili samostatně včera, vyřešte tak, jak nejlépe svedete, níže uvedená
Spektrální analýza a diskrétní Fourierova transformace. Honza Černocký, ÚPGM
Spektrální analýza a diskrétní Fourierova transformace Honza Černocký, ÚPGM Povídání o cosinusovce 2 Argument cosinusovky 0 2p a pak každé 2p perioda 3 Cosinusovka s diskrétním časem Úkol č. 1: vyrobit
Teoretická elektrotechnika - vybrané statě
Teoretická elektrotechnika - vybrané statě David Pánek EK 63 panek50@kte.zcu.cz Fakulta elektrotechnická Západočeská univerzita v Plzni September 26, 202 David Pánek EK 63 panek50@kte.zcu.cz Teoretická
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné
DSY-4. Analogové a číslicové modulace. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
DSY-4 Analogové a číslicové modulace Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti DSY-4 analogové modulace základní číslicové modulace vícestavové modulace modulace s rozprostřeným
" Furierova transformace"
UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM FAKULTA ŽIVOTNÍHO PROSTŘEDÍ " Furierova transformace" Seminární práce z předmětu Dálkový průzkum Země Marcela Bartošová, Veronika Bláhová OŽP, 3.ročník
Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction
Analýza lineárních regulačních systémů v časové doméně V Modelice (ale i v Simulinku) máme blok TransfeFunction Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control
elektrické filtry Jiří Petržela filtry se spínanými kapacitory
Jiří Petržela motivace miniaturizace vytvoření plně integrovaného filtru jednotnou technologií redukce plochy na čipu snížení ceny výhody koncepce spínaných kapacitorů (SC) koeficienty přenosové funkce
Předmět A3B31TES/Př. 13
Předmět A3B31TES/Př. 13 PS 1 1 Katedra teorie obvodů, místnost č. 523, blok B2 Přednáška 13: Kvantování, modulace, stavový popis PS Předmět A3B31TES/Př. 13 květen 2015 1 / 28 Obsah 1 Kvantování 2 Modulace
Modelování a simulace Lukáš Otte
Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast
CW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace
polyfázové filtry (multirate filters) cascaded integrator comb filter (CIC) A0M38SPP - Signálové procesory v praxi - přednáška 8 2
A0M38SPP - Signálové procesory v praxi - přednáška 8 2 Decimace snížení vzorkovací frekvence Interpolace zvýšení vzorkovací frekvence Obecné převzorkování signálu faktorem I/D Efektivní způsoby implementace
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
KONVERZE VZORKOVACÍHO KMITOČTU
VOLUME: 8 NUMBER: 00 BŘEZEN KONVERZE VZORKOVACÍHO KMITOČTU Jan VITÁSEK Katedra telekomunikační techniky, Fakulta elektrotechniky a informatiky, VŠB-TU Ostrava, 7. Listopadu 5, 708 33 Ostrava-Poruba, Česká
Šifrová ochrana informací věk počítačů PS5-1
Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-1 1 Osnova šifrová ochrana využívající výpočetní techniku např. Feistelova šifra; symetrické a asymetrické šifry;
DIGITÁLNÍ FILTRACE V REÁLNÍM ČASE PRO ZPRACOVÁNÍ BIOMEDICÍNSKÝCH SIGNÁLŮ POMOCÍ MATLAB - XPC TARGET
DIGITÁLNÍ FILTRACE V REÁLNÍM ČASE PRO ZPRACOVÁNÍ BIOMEDICÍNSKÝCH SIGNÁLŮ POMOCÍ MATLAB - XPC TARGET Grobelný David, Martinák Lukáš, Nevřiva Pavel, Plešivčák Přemysl Department of measurement and control,
P9 Provozní tvary kmitů
P9 Provozní tvary kmitů (měření a vyhodnocení) Pozn. Matematické základy pro tuto přednášku byly uvedeny v přednáškách Metody spektrální analýzy mechanických systémů Co jsou provozní tvary kmitů? Provozní
Pro tvorbu samostatně spustitelných aplikací je k dispozici Matlab library.
1.1 Matlab Matlab je interaktivní systém pro vědecké a technické výpočty založený na maticovém kalkulu. Umožňuje řešit velkou oblast numerických problémů, aniž byste museli programovat vlastní program.