KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni
|
|
- Milada Slavíková
- před 6 lety
- Počet zobrazení:
Transkript
1 KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni
2 Outline 1 Motivace FT Fourierova transformace 3 DFT Diskrétní Fourierova transformace 4 FFT - Rychlá Fourierova transformace Pavel Karban Rychlá Fourierova transformace /34
3 Outline 1 Motivace FT Fourierova transformace 3 DFT Diskrétní Fourierova transformace 4 FFT - Rychlá Fourierova transformace Pavel Karban Rychlá Fourierova transformace 3/34
4 Motivace Co je Fourierova transformace? Fourierova transformace převádí spojitou funkci z časové oblasti do oblasti kmitočtové. Co je rychlá Fourierova transformace (FFT Fast Fourier Transform)? FFT je rychlá verze diskrétní Fourierovy transformace (DFT - Discrete Fourier Transform). Dobře, co je tedy diskrétní Fourierova transformace? DFT je transformace, která převádí diskrétní signál v časové oblasti do frekvenční oblasti. Tato transformace nachází uplatnění ve zpracování signálu v reálném čase na pomalých procesorech jakou jsou například DSP. Pavel Karban Rychlá Fourierova transformace 4/34
5 Outline 1 Motivace FT Fourierova transformace 3 DFT Diskrétní Fourierova transformace 4 FFT - Rychlá Fourierova transformace Pavel Karban Rychlá Fourierova transformace 5/34
6 Fourierova transformace Základní myšlenkou je Fourierovy transformace je, že každou spojitou funkci lze zapsat jako součet nekonečné řady 1 f (t) = a 0 + (a n cos nω 0t + b n sin nω 0t) = c ne jnω 0t n=1 n=1 Fourierova transformace převádí funkci z časové oblasti do oblasti kmitočtové. Je silnější než Laplaceova transformace, která umožňuje zacházet pouze se signály pro čas t > 0 s počáteční podmínkou, zatímco Fourierova transformace umí zacházet i s časy t < 0. Spojitá Fourierova transformace je definována vztahem X(jω) = x(t) e jωt dt. 1 sin x = ejx e jx j Pavel Karban Rychlá Fourierova transformace 6/34
7 Fourierova transformace Linearita Lineární kombinaci signálů odpovídá lineární kombinace jejich spekter. Posunutí Amplitudové spektrum posunutého signálu se nemění, mění se jen fázové spektrum a to úměrně zpoždění a kmitočtu. Na rozdíl od věty o translaci v Laplaceově transformaci platí věta pro libovolné a, tedy i pro t < 0. Pavel Karban Rychlá Fourierova transformace 7/34
8 Fourierova transformace Fourierův obraz jednotkového skoku Mějme funkci ( f (t) = t > 1 ) ( t < 1 ) Dosazením do základního definičního vztahu tranformace získáme X(jω) = 0,5 1 e jωt dt = = sin 0,5ω. ω 0,5 sin x = ejx e jx j Pavel Karban Rychlá Fourierova transformace 8/34
9 Fourierova transformace funkce spektrum t (s) f (Hz) f (t) = ( t > 1 ) ( t < 1 ) Pavel Karban Rychlá Fourierova transformace 9/34
10 Fourierova transformace funkce t (s) spektrum f (Hz) f (t) = cos(π5t) e πt Pavel Karban Rychlá Fourierova transformace 10/34
11 Outline 1 Motivace FT Fourierova transformace 3 DFT Diskrétní Fourierova transformace 4 FFT - Rychlá Fourierova transformace Pavel Karban Rychlá Fourierova transformace 11/34
12 Diskrétní Fourierova transformace V současné době se číslicové signály užívají daleko častěji než analogové. To znamená, že jsou zadány v podobě číslicových řad a ne nějakých funkcí. Z toho ale plyne, že v takových případech klasické Fourierovy řady nemůžeme použít (protože ty lze aplikovat pouze na dané funkce času). Kromě toho, číslicové signály jsou vesměs konečné a velmi často náhodné. Jak je tedy můžeme analyzovat? Za tím účelem byla vyvinuta metodika použitelná pro zpracování periodických vzorkovaných číslicových signálů. Tato metodika byla založena na požadavku, že pro vzorkovaný periodický signál musí dát výsledek stejný, jako pro původní signál spojitý (nevzorkovaný). Pavel Karban Rychlá Fourierova transformace 1/34
13 Diskrétní Fourierova transformace Uvažujme řadu čísel s N prvky f 0, f 1,..., f N 1 pro něž platí f i = f (t i), kde t i = i t pro i = 1,,..., N 1. O této řadě se předpokládá, že se periodicky opakuje, tedy f i = z i + N. Její Fourierova transformace je definována N 1 F n = f k e j π N kn, n = 0, 1,..., N 1. k=0 Fourierova transformace je schopna odhalit periodicitu v datech a poměry mezi jednotlivými amplitudami. Je třeba si uvědomit, že je-li původní série dat reálná, je série obrazových dat F n obecně komplexní. Dále platí, že F n = F N n pro k = 1,,..., N 1. A protože je F 0 = F n a z důvodů periodicity současně F 0 = F n, je F 0 = F n = F n, takže tento prvek je reálný (a představuje vlastně jakousi stejnosměrnou složku spektra). Pavel Karban Rychlá Fourierova transformace 13/34
14 Diskrétní Fourierova transformace f(t) t (s) f (t) = cos(π0t) t Pavel Karban Rychlá Fourierova transformace 14/34
15 Diskrétní Fourierova transformace ϕ (deg.) F ( ) N = N ( ) Spektrum je dvoustranné (F 0 = F n = F n) Pavel Karban Rychlá Fourierova transformace 15/34
16 Diskrétní Fourierova transformace f (Hz) f = k fs N Pavel Karban Rychlá Fourierova transformace 16/34
17 Diskrétní Fourierova transformace Při práci s Fourierovou transformací číslicových signálů je tedy třeba vzít v úvahu, že pro N vzorků stačí vypočítat jen prvních N / hodnot dvojstranného spektra a ty pak pro získání jednostranného spektra násobit dvěma (protože zbylých N / hodnot jsou veličiny k nim komplexně sdružené a amplitudy spektra jsou dány moduly těchto hodnot). Odtud plyne, že počet kmitočtů ve spektru je také nejvýše rovno N /. Nejvyšší kmitočet takto spočtený se nazývá Nyquistův. Pokud původní signál neobsahuje vyšší kmitočty, než je právě kmitočet Nyquistův, lze jej uvedeným postupem ze vzorků zrekonstruovat zcela exaktně. Většinou se stává, že prvních N vzorků netvoří jednu periodu (je to dokonce téměř pravidlo). Pak ovšem získané hodnoty netvoří přesně spektrum, ale jen jeho aproximaci. Objevují se zde různé chyby a jevu jako celku se říká rozmazání spektra. Pavel Karban Rychlá Fourierova transformace 17/34
18 DFT - Vandermondova matice Na diskrétní Fourierovu transformaci N 1 F n = f k e j π N kn, n = 0, 1,..., N 1. k=0 se můžeme také dívat jako na Vandermondovu matici ω 0 0 ω ω 0 (N 1) ω 1 0 ω ω 1 (N 1) W = ω (N 1) 0 ω (N 1) 1... ω (N 1) (N 1), kde člen ω = e j π N kn. n je řádkový index a k představuje sloupcový index. Oba nabývají hodnot 0, 1,..., N 1. Diskrétní transformaci lze pak zapsat F = W f. Inverzní diskrétní transformaci lze zapsat ve tvaru f = W 1 F. Pavel Karban Rychlá Fourierova transformace 18/34
19 DFT - Vandermondova matice Příklad Vandermondovy matice pro N = [ ] 1 1 W =, 1 1 Jednotlivé členy získáme ω 1,1 = e j π 0 0 = 1, ω 1, = e j π 0 1 = 1, ω,1 = e j π 1 0 = 1, ω, = e j π 1 1 = e jπ = 1. Pavel Karban Rychlá Fourierova transformace 19/34
20 DFT - Vandermondova matice Příklad Vandermondovy matice pro N = j 1 j W 4 = j 1 j Příklad Vandermondovy matice pro N = j j j 1 + j j + j 1 j 1 j 1 j 1 j 1 W 8 = j j j 1 + j j + j j j + j 1 j j j 1 j 1 j 1 j 1 j 1 + j j + j 1 j j j Pavel Karban Rychlá Fourierova transformace 0/34
21 Diskrétní Fourierova transformace Je zřejmé, že pro výše uvedený výpočet Fourierovy transformace je třeba určit N N koeficientů (složitost O(N )), což je značné množství a zejména tam, kde počet vzorků dosahuje tisíců nebo desetitisíců, lze očekávat, že počet operací bude značný. Zdlouhavost se pak projevuje zejména tam, kde dochází k opakovaným výpočtům na mnoha signálech. Už od počátku 0. století proto existovala snaha o jejich redukci. Ta se povedla v 60. letech 0. století (Cooley-Tukey algoritmus) a od té doby se možnosti úsporných metod stále zvyšují. Základní metodě tohoto typu říkáme rychlá Fourierova transformace. Pavel Karban Rychlá Fourierova transformace 1/34
22 Outline 1 Motivace FT Fourierova transformace 3 DFT Diskrétní Fourierova transformace 4 FFT - Rychlá Fourierova transformace Pavel Karban Rychlá Fourierova transformace /34
23 Rychlá Fourierova transformace Rychlá Fourierova transformace je způsob výpočtu diskrétní Fourierovy transformace, kterým získáme stejné výsledky, ale mnohem rychleji. Klasická metoda DFT potřebuje O(N ) operací zatímco pouze O(N log N ). Nejznámnější algoritmus výpočtu představili v roce 1965 J. W. Cooley and J. W. Tukey (stejný algoritmus byl znám Carlu Friedrichu Gaussovi v roce již v roce 1805). Pavel Karban Rychlá Fourierova transformace 3/34
24 Rychlá Fourierova transformace V klasické podobě lze provádět pro signály, u nichž bylo sejmuto p vzorků, v současné době existují už i sofistikovanější algoritmy, které umožňují provést rychlou transformaci pro libovolný počet vzorků. Vysvětleme si stručně postup klasické metody. N 1 F n = f k e j π N kn, n = 1,,..., N 1. k=0 Nyní si rozdělme vzorky signálu na dvě skupiny, a to sudé vzorky a liché vzorky následujícím způsobem e n = f n, o n = f n+1, n = 0, 1,..., N Pavel Karban Rychlá Fourierova transformace 4/34
25 Rychlá Fourierova transformace Pak lze zapsat transformaci ve tvaru = N 1 k=0 F n = N 1 k=0 e n e j π N (k)n + e j π N n ) (e n e j π N (k)n + o n e j π N (k+1)n = N 1 k=0 o n e j π N (k)n, n = 0, 1,..., N 1. Nyní označme E n = N 1 k=0 e n e j π N (k)n, O n = N 1 k=0 o n e j π N (k)n. Pavel Karban Rychlá Fourierova transformace 5/34
26 Rychlá Fourierova transformace E n = N 1 k=0 e n e j π N (k)n, O n = N 1 k=0 o n e j π N (k)n. Obdobným postupem bychom získali členy pro n N. Vzhledem k periodicitě platí E n+ N = E n a O n+ N = O n. Pomocí výrazů E a O lze pak výslednou transformaci ve tvaru F n = E n N E n + e πi N n O n pro n < N e πi N (n N ) O n N pro n N. Pavel Karban Rychlá Fourierova transformace 6/34
27 Rychlá Fourierova transformace Tím jsme transformaci obsahující N bodů rozdělili na dvě transformace obsahující N / bodů a stejným způsobem budeme pokračovat dál směrem do dalších dělení, až bude výsledná posloupnost mít jen dva prvky. Počet operací kompletní transformace se tak zmenší z O(N ) na O(N log N ) Jednoduchá, ale ne efektivní, implementace je formou rekurzivní funkce. Pavel Karban Rychlá Fourierova transformace 7/34
28 Rychlá Fourierova transformace 1 d e f fft_ct_dt ( x ) : N = l e n ( x ) 3 4 i f N & 1 : 5 r e t u r n [ x math. e ( j math. p i 1. 0 / N ) ] 6 e l s e : 7 M = N // 8 9 x_e = x [ 0 : N : ] 10 x_o = x [ 1 : N : ] 11 X_e = fft_ct_dt ( x_e ) 1 X_o = fft_ct_dt ( x_o ) X = [ ] 15 f o r n i n r a n g e (M) : 16 X += [ X_e [ n ] + X_o [ n ] 17 math. e ( j math. p i ( n ) / N ) ] 18 f o r n i n r a n g e (M,N ) : 19 X += [ X_e [ n M] X_o [ n M] 0 math. e ( j math. p i ( n M) / N ) ] 1 r e t u r n X Pavel Karban Rychlá Fourierova transformace 8/34
29 Rychlá Fourierova transformace y ( ) t ( ) Funkce f (t) = cos(πft) o frekvenci f = 0,1 Hz vzorkovaná f s = 1 Hz Pavel Karban Rychlá Fourierova transformace 9/34
30 Rychlá Fourierova transformace 14 1 N = N = N = f/f s Spektrum pro různé hodnoty N (N musí být vždy nejméně tak velké jako je počet vzorků) Pavel Karban Rychlá Fourierova transformace 30/34
31 Diskrétní Fourierova transformace 6 4 f(t) t (s) f = cos(π10t) + sin(π7t) + šum s nulovou průměrnou hodnotou Pavel Karban Rychlá Fourierova transformace 31/34
32 Diskrétní Fourierova transformace f (Hz) f = cos(π10t) + sin(π7t) + šum s nulovou průměrnou hodnotou Pavel Karban Rychlá Fourierova transformace 3/34
33 Děkuji za pozornost Pavel Karban Rychlá Fourierova transformace 33/34
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
VíceTransformace obrazu Josef Pelikán KSVI MFF UK Praha
Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých
Více31ZZS 9. PŘEDNÁŠKA 24. listopadu 2014
3ZZS 9. PŘEDNÁŠKA 24. listopadu 24 SPEKTRÁLNÍ ANALÝZA Fourierovy řady Diskrétní Fourierovy řady Fourierova transformace Diskrétní Fourierova transformace Spektrální analýza Zobrazení signálu ve frekvenční
VíceÚvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
VícePeriodicita v časové řadě, její popis a identifikace, exponenciální vyrovnáván
Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnávání Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Periodicita v časových
VíceSIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz, Kamenice 3, 4. patro, dv.č.424 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. FREKVENČNÍ TRASFORMACE SPOJITÉ
VíceSIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické
VíceLineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti
Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů
VíceFunkce komplexní proměnné a integrální transformace
Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na
VíceFOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth
FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického
VíceLineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
VíceLineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
VíceČíslicové zpracování signálů a Fourierova analýza.
Číslicové zpracování signálů a Fourierova analýza www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza
VíceOsnova. Idea ASK/FSK/PSK ASK Amplitudové... Strana 1 z 16. Celá obrazovka. Konec Základy radiotechniky
Pulsní kódová modulace, amplitudové, frekvenční a fázové kĺıčování Josef Dobeš 24. října 2006 Strana 1 z 16 Základy radiotechniky 1. Pulsní modulace Strana 2 z 16 Pulsní šířková modulace (PWM) PAM, PPM,
VíceSIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné
VíceModelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31
VíceFOURIEROVA TRANSFORMACE FOURIEROVA VĚTA
FOURIEROVA TRANSFORMACE FOURIEROVA VĚTA V kapitole o Fourierových řadách byla dokázána Fourierova věta (připomeňte si, že f(x = (f(x + + f(x /2: VĚTA Necht f je po částech hladká na R a R f konverguje
VíceFiltrace snímků ve frekvenční oblasti. Rychlá fourierova transformace
Filtrace snímků ve frekvenční oblasti Rychlá fourierova transformace semestrální práce z předmětu KIV/ZVI zpracoval: Jan Bařtipán A03043 bartipan@students.zcu.cz Obsah Úvod....3 Diskrétní Fourierova transformace
VíceLineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita
Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové
VíceFOURIEROVA TRANSFORMACE
FOURIEROVA TRANSFORMACE FOURIEROVA VĚTA V kapitole o Fourierových řadách byla dokázána (připomeňte si, že f(x) = (f(x + ) + f(x ))/2): VĚTA. Necht f je po částech hladká na R a R f konverguje. Potom f(x)
VíceZáklady a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722
Základy a aplikace digitálních modulací Josef Dobeš Katedra radioelektroniky (13137), blok B2, místnost 722 dobes@fel.cvut.cz 6. října 2014 České vysoké učení technické v Praze, Fakulta elektrotechnická
VíceMĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky Při návrhu elektroakustických soustav, ale i jiných systémů, je vhodné nejprve
VíceSignál v čase a jeho spektrum
Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě
VíceP7: Základy zpracování signálu
P7: Základy zpracování signálu Úvodem - Signál (lat. signum) bychom mohli definovat jako záměrný fyzikální jev, nesoucí informaci o nějaké události. - Signálem je rovněž funkce, která převádí nezávislou
VíceÚPGM FIT VUT Brno, periodické a harmonické posloupnosti. konvoluce Fourierova transformace s diskrétním časem
Diskrétní signály a jejich frekvenční analýza. Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz opakování základy o diskrétních signálech. periodické a harmonické posloupnosti operace s diskrétními
VíceInterpolace, ortogonální polynomy, Gaussova kvadratura
Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť
VíceA/D převodníky - parametry
A/D převodníky - parametry lineární kvantování -(kritériem je jednoduchost kvantovacího obvodu), parametry ADC : statické odstup signálu od kvantizačního šumu SQNR, efektivní počet bitů n ef, dynamický
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
VíceMetody výpočtu limit funkcí a posloupností
Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou
Více[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici
[1] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A = 0 pro singulární matici, det A 0 pro regulární matici používá se při řešení lineárních soustav... a v mnoha dalších aplikacích
VíceFourierova transformace
Fourierova transformace EO Přednáška Pavel Máša ÚVODEM Známe Fourierovy řady v komplexním tvaru f(t) = 1X k= 1 A k e jk! t Spektrum této řady je diskrétní A k = 1 T Obvody tedy musíme řešit v HUS člen
VícePři návrhu FIR filtru řešíme obvykle následující problémy:
Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
VíceZákladní pojmy o signálech
Základní pojmy o signálech klasifikace signálů transformace časové osy energie a výkon periodické signály harmonický signál jednotkový skok a impuls Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz
VíceKomplexní analýza. Fourierovy řady. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Fourierovy řady Martin Bohata Katedra matematiky FEL ČVU v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Fourierovy řady 1 / 20 Úvod Často se setkáváme s periodickými
Více7.1. Číslicové filtry IIR
Kapitola 7. Návrh číslicových filtrů Hraniční kmitočty propustného a nepropustného pásma jsou ve většině případů specifikovány v[hz] společně se vzorkovacím kmitočtem číslicového filtru. Návrhové algoritmy
Vícezákladní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů
A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky
Více31SCS Speciální číslicové systémy Antialiasing
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE 2006/2007 31SCS Speciální číslicové systémy Antialiasing Vypracoval: Ivo Vágner Email: Vagnei1@seznam.cz 1/7 Převod analogového signálu na digitální Složité operace,
VíceQuantization of acoustic low level signals. David Bursík, Miroslav Lukeš
KVANTOVÁNÍ ZVUKOVÝCH SIGNÁLŮ NÍZKÉ ÚROVNĚ Abstrakt Quantization of acoustic low level signals David Bursík, Miroslav Lukeš Při testování kvality A/D převodníků se používají nejrůznější testovací signály.
VíceMultimediální systémy
Multimediální systémy Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Získání obsahu Jan Outrata (Univerzita Palackého v Olomouci) Multimediální systémy Olomouc, září prosinec
Více1 Zpracování a analýza tlakové vlny
1 Zpracování a analýza tlakové vlny 1.1 Cíl úlohy Prostřednictvím této úlohy se naučíte a zopakujete: analýzu biologických signálů v časové oblasti, analýzu biologických signálů ve frekvenční oblasti,
VíceDigitalizace převod AS DS (analogový diskrétní signál )
Digitalizace signálu v čase Digitalizace převod AS DS (analogový diskrétní signál ) v amplitudě Obvykle převod spojité předlohy (reality) f 1 (t/x,...), f 2 ()... připomenutí Digitalizace: 1. vzorkování
VíceFourierova transformace
Fourierova transformace Jean Baptiste Joseph Fourier (768-83) Jeho obdivovatel (nedatováno) Opáčko harmonických signálů Spojitý harmonický signál ( ) = cos( ω + ϕ ) x t C t C amplituda ω úhlová frekvence
Vícesin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx.
Použití mocniných řad Nejprve si ukážeme dvě jednoduchá použití Taylorových řad. Příklad Spočtěte následující limitu: ( ) sin(x) lim. x x ( ) Najdeme lim sin(x) x x pomocí mocninné řady pro funkci sin(x)
VícePRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.
PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
Více1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
VícePRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE
PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
Více10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
VíceA7B31ZZS 10. PŘEDNÁŠKA Návrh filtrů 1. prosince 2014
A7B3ZZS. PŘEDNÁŠKA Návrh filtrů. prosince 24 Návrhy jednoduchých filtrů Návrhy složitějších filtrů Porovnání FIR a IIR Nástroje pro návrh FIR filtrů v MATLABu Nástroje pro návrh IIR filtrů v MATLABu Kvantování
VíceModulace analogových a číslicových signálů
Modulace analogových a číslicových signálů - rozdělení, vlastnosti, způsob použití. Kódování na fyzické vrstvě komunikačního kanálu. Metody zabezpečení přenosu. Modulace analogových a číslicových signálů
VíceKapitola 2: Spojitost a limita funkce 1/20
Kapitola 2: Spojitost a limita funkce 1/20 Okolí bodu 2/20 Značení: a R, ε > 0 O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a)
VíceRezonanční obvod jako zdroj volné energie
1 Rezonanční obvod jako zdroj volné energie Ing. Ladislav Kopecký, 2002 Úvod Dlouho mi vrtalo hlavou, proč Tesla pro svůj vynález přístroje pro bezdrátový přenos energie použil název zesilující vysílač
VíceZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH. Jiří Tůma
ZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH SYSTÉMŮ UŽITÍM FFT Jiří Tůma Štramberk 1997 ii Anotace Cílem této knihy je systematicky popsat metody analýzy signálů z mechanických systémů a strojních zařízení. Obsahem
Více" Furierova transformace"
UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM FAKULTA ŽIVOTNÍHO PROSTŘEDÍ " Furierova transformace" Seminární práce z předmětu Dálkový průzkum Země Marcela Bartošová, Veronika Bláhová OŽP, 3.ročník
VíceVI. Derivace složené funkce.
VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,
VíceCircular Harmonics. Tomáš Zámečník
Circular Harmonics Tomáš Zámečník Úvod Circular Harmonics Reprezentace křivky, která je: podmonožinou RxR uzavřená funkcí úhlu na intervalu Dále budeme hovořit pouze o takovýchto křivkách/funkcích
Víceteorie elektronických obvodů Jiří Petržela obvodové funkce
Jiří Petržela obvod jako dvojbran dvojbranem rozumíme elektronický obvod mající dvě brány (vstupní a výstupní) dvojbranem může být zesilovač, pasivní i aktivní filtr, tranzistor v některém zapojení, přenosový
VíceMatematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
VíceMatematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
VíceX31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky
X3EO - Elektrické obvody Kmitočtové charakteristiky Doc. Ing. Petr Pollák, CSc. Letní semestr 5/6!!! Volné šíření není povoleno!!! Fázory a spektra Fázor harmonického průběhu Û m = U m e jϕ ut) = U m sinωt
VíceÚPGM FIT VUT Brno,
Systémy s diskrétním časem Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 LTI systémy v tomto kursu budeme pracovat pouze se systémy lineárními a časově invariantními. Úvod k nim jsme viděli již
Více(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
Více9. cvičení z Matematické analýzy 2
9. cvičení z Matematické analýzy 7. listopadu -. prosince 7 9. Určete Fourierovu řadu periodického rozšíření funkce ft = t na, a její součet. Definice: Necht f je -periodická funkce, která je integrabilní
VíceKapitola 1: Reálné funkce 1/13
Kapitola 1: Reálné funkce 1/13 Číselné množiny 2/13 N = {1, 2, 3, 4,... }... přirozená čísla N 0 = N {0} = {0, 1, 2, 3, 4,... } Z = {..., 2, 1, 0, 1, 2, 3, 4,... }... celá čísla Q = { p q p, q Z}... racionální
VíceStřední průmyslová škola elektrotechnická a informačních technologií Brno
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:
VíceFouriérova transformace, konvoluce, dekonvoluce, Fouriérovské integrály
co byste měli umět po dnešní lekci: používat funkce pro výpočet FFT (Fast Fourier Transformation) spočítat konvoluci/dekonvoluci pomocí FFT použít FFT při výpočtu určitých integrálů vědět co je nízko\vysoko
VíceLaplaceova transformace
Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP pondělí 23. března
Více2 Teoretický úvod Základní princip harmonické analýzy Podmínky harmonické analýzy signálů Obdelník Trojúhelník...
Obsah 1 Zadání 1 2 Teoretický úvod 1 2.1 Základní princip harmonické analýzy.................. 1 2.2 Podmínky harmonické analýzy signálů................. 1 3 Obecné matematické vyjádření 2 4 Konkrétní
VíceMatematika (KMI/PMATE)
Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její
VíceOperace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
VíceKapitola 1: Reálné funkce 1/20
Kapitola 1: Reálné funkce 1/20 Funkce jedné proměnné 2/20 Definice: Necht M R. Jestliže každému x M je přiřazeno jistým předpisem f právě jedno y R, říkáme, že y je funkcí x. x... nezávisle proměnná (neboli
Více0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému
2 1 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 x 1 2 Jméno a příjmení: ID.č. 9.5.2016 1. Řešte diferenciální rovnici: y + 2xy x 2 + 3 = sin x x 2 + 3. y = C cos x x 2 + 1 2. Vypočtěte z 2 e z dz, kde je křivka
Vícedoc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1
doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Frekvenční spektrum Dělení frekvenčního pásma (počet čar) Průměrování Časovou váhovou funkci Elias Tomeh / Snímek 2 Vzorkovací
VíceNauka o Kmitání Přednáška č. 4
Nauka o Kmitání Přednáška č. 4 Odezva lineárního systému na obecnou periodickou budící funkci Ing. Antonín Skarolek, Ph.D. Katedra mechaniky, pružnosti a pevnosti Technická Univerzita v Liberci 213 Ustálená
VíceKomplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Laplaceova transformace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Laplaceova transformace 1 / 18 Definice Definice Laplaceovou
VíceDEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
VíceAnalýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction
Analýza lineárních regulačních systémů v časové doméně V Modelice (ale i v Simulinku) máme blok TransfeFunction Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control
VíceDSY-4. Analogové a číslicové modulace. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
DSY-4 Analogové a číslicové modulace Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti DSY-4 analogové modulace základní číslicové modulace vícestavové modulace modulace s rozprostřeným
VíceTSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY
TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY V PROSTŘEDÍ MATLAB K. Nováková, J. Kukal FJFI, ČVUT v Praze ÚPŘT, VŠCHT Praha Abstrakt Při rozpoznávání D binárních objektů z jejich diskrétní realizace se využívají
VíceČíslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Číslicová filtrace FIR filtry IIR filtry Tyto materiály vznikly za podpory Fondu rozvoje
VíceNěkolik aplikací. Kapitola 12
Kapitola 12 Několik aplikací Diskrétní a rychlá Fourierova transformace Diskrétní Fourierova transformace spočívá ve změně reprezentace polynomu s koeficienty v nějakém tělese T Obvyklá reprezentace polynomu
VíceSpektrální analyzátory
Lubomír Slavík TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Materiál vznikl v rámci projektu ESF (CZ.1.07/2.2.00/07.0247), který je spolufinancován Evropským
VíceALGEBRA. Téma 5: Vektorové prostory
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)
VíceFunkce. Limita a spojitost
Funkce. Limita a spojitost skriptum J. Neustupa text Funkce (úvod) na této web stránce III.2 Fce - základní pojmy 1. Definice, def. obor D(f), obor hodnot H(f), graf 2. Fce složená, omezená, 3. Fce sudá,
VíceDiferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
VíceMatematika I (KMI/PMATE)
Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce
VíceANALÝZA LIDSKÉHO HLASU
ANALÝZA LIDSKÉHO HLASU Pomůcky mikrofon MCA-BTA, LabQuest, program LoggerPro (nebo LoggerLite), tabulkový editor Excel, program Mathematica Postup Z každodenní zkušenosti víme, že každý lidský hlas je
VíceFP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci OBSAH A CÍLE SEMINÁŘE: Opakování a procvičení vybraných
Více1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
VíceUniverzita Karlova v Praze procesy II. Zuzana. funkce
Náhodné 1 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze email: praskova@karlin.mff.cuni.cz 11.-12.3. 2010 1 Outline Lemma 1: 1. Nechť µ, ν jsou konečné míry na borelovských
VíceTéma 2: Pravděpodobnostní vyjádření náhodných veličin
0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování
Více0.1 Funkce a její vlastnosti
0.1 Funkce a její vlastnosti Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost (m) čas (t) výše úrokové sazby v bance (i) cena
VíceVlastnosti a modelování aditivního
Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),
VíceMatice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n
[1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem
VíceIII. MKP vlastní kmitání
Jiří Máca - katedra mechaniky - B325 - tel. 2 2435 4500 maca@fsv.cvut.cz III. MKP vlastní kmitání 1. Rovnice vlastního kmitání 2. Rayleighova Ritzova metoda 3. Jacobiho metoda 4. Metoda inverzních iterací
VíceCvi ení 2. Cvi ení 2. Modelování systém a proces. Mgr. Lucie Kárná, PhD. March 5, 2018
Modelování systém a proces Mgr. Lucie Kárná, PhD karna@fd.cvut.cz March 5, 2018 1 Gracké moºnosti Matlabu 2 Zobrazení signálu 3 4 Analýza signálu Gracké moºnosti Matlabu Základní gracké p íkazy I Graf
VíceTéma 2: Pravděpodobnostní vyjádření náhodných veličin
0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník
VíceDirect Digital Synthesis (DDS)
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Direct Digital Synthesis (DDS) Přímá číslicová syntéza Tyto materiály vznikly za podpory
VíceFunkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Funkce a limita Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VíceČíslicové zpracování a analýza signálů (BCZA) Spektrální analýza signálů
Číslcové zpracování a analýza sgnálů (BCZA) Spektrální analýza sgnálů 5. Spektrální analýza sgnálů 5. Spektrální analýza determnstckých sgnálů 5.. Dskrétní spektrální analýza perodckých sgnálů 5..2 Dskrétní
Více