KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni

Rozměr: px
Začít zobrazení ze stránky:

Download "KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni"

Transkript

1 KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni

2 Outline 1 Motivace FT Fourierova transformace 3 DFT Diskrétní Fourierova transformace 4 FFT - Rychlá Fourierova transformace Pavel Karban Rychlá Fourierova transformace /34

3 Outline 1 Motivace FT Fourierova transformace 3 DFT Diskrétní Fourierova transformace 4 FFT - Rychlá Fourierova transformace Pavel Karban Rychlá Fourierova transformace 3/34

4 Motivace Co je Fourierova transformace? Fourierova transformace převádí spojitou funkci z časové oblasti do oblasti kmitočtové. Co je rychlá Fourierova transformace (FFT Fast Fourier Transform)? FFT je rychlá verze diskrétní Fourierovy transformace (DFT - Discrete Fourier Transform). Dobře, co je tedy diskrétní Fourierova transformace? DFT je transformace, která převádí diskrétní signál v časové oblasti do frekvenční oblasti. Tato transformace nachází uplatnění ve zpracování signálu v reálném čase na pomalých procesorech jakou jsou například DSP. Pavel Karban Rychlá Fourierova transformace 4/34

5 Outline 1 Motivace FT Fourierova transformace 3 DFT Diskrétní Fourierova transformace 4 FFT - Rychlá Fourierova transformace Pavel Karban Rychlá Fourierova transformace 5/34

6 Fourierova transformace Základní myšlenkou je Fourierovy transformace je, že každou spojitou funkci lze zapsat jako součet nekonečné řady 1 f (t) = a 0 + (a n cos nω 0t + b n sin nω 0t) = c ne jnω 0t n=1 n=1 Fourierova transformace převádí funkci z časové oblasti do oblasti kmitočtové. Je silnější než Laplaceova transformace, která umožňuje zacházet pouze se signály pro čas t > 0 s počáteční podmínkou, zatímco Fourierova transformace umí zacházet i s časy t < 0. Spojitá Fourierova transformace je definována vztahem X(jω) = x(t) e jωt dt. 1 sin x = ejx e jx j Pavel Karban Rychlá Fourierova transformace 6/34

7 Fourierova transformace Linearita Lineární kombinaci signálů odpovídá lineární kombinace jejich spekter. Posunutí Amplitudové spektrum posunutého signálu se nemění, mění se jen fázové spektrum a to úměrně zpoždění a kmitočtu. Na rozdíl od věty o translaci v Laplaceově transformaci platí věta pro libovolné a, tedy i pro t < 0. Pavel Karban Rychlá Fourierova transformace 7/34

8 Fourierova transformace Fourierův obraz jednotkového skoku Mějme funkci ( f (t) = t > 1 ) ( t < 1 ) Dosazením do základního definičního vztahu tranformace získáme X(jω) = 0,5 1 e jωt dt = = sin 0,5ω. ω 0,5 sin x = ejx e jx j Pavel Karban Rychlá Fourierova transformace 8/34

9 Fourierova transformace funkce spektrum t (s) f (Hz) f (t) = ( t > 1 ) ( t < 1 ) Pavel Karban Rychlá Fourierova transformace 9/34

10 Fourierova transformace funkce t (s) spektrum f (Hz) f (t) = cos(π5t) e πt Pavel Karban Rychlá Fourierova transformace 10/34

11 Outline 1 Motivace FT Fourierova transformace 3 DFT Diskrétní Fourierova transformace 4 FFT - Rychlá Fourierova transformace Pavel Karban Rychlá Fourierova transformace 11/34

12 Diskrétní Fourierova transformace V současné době se číslicové signály užívají daleko častěji než analogové. To znamená, že jsou zadány v podobě číslicových řad a ne nějakých funkcí. Z toho ale plyne, že v takových případech klasické Fourierovy řady nemůžeme použít (protože ty lze aplikovat pouze na dané funkce času). Kromě toho, číslicové signály jsou vesměs konečné a velmi často náhodné. Jak je tedy můžeme analyzovat? Za tím účelem byla vyvinuta metodika použitelná pro zpracování periodických vzorkovaných číslicových signálů. Tato metodika byla založena na požadavku, že pro vzorkovaný periodický signál musí dát výsledek stejný, jako pro původní signál spojitý (nevzorkovaný). Pavel Karban Rychlá Fourierova transformace 1/34

13 Diskrétní Fourierova transformace Uvažujme řadu čísel s N prvky f 0, f 1,..., f N 1 pro něž platí f i = f (t i), kde t i = i t pro i = 1,,..., N 1. O této řadě se předpokládá, že se periodicky opakuje, tedy f i = z i + N. Její Fourierova transformace je definována N 1 F n = f k e j π N kn, n = 0, 1,..., N 1. k=0 Fourierova transformace je schopna odhalit periodicitu v datech a poměry mezi jednotlivými amplitudami. Je třeba si uvědomit, že je-li původní série dat reálná, je série obrazových dat F n obecně komplexní. Dále platí, že F n = F N n pro k = 1,,..., N 1. A protože je F 0 = F n a z důvodů periodicity současně F 0 = F n, je F 0 = F n = F n, takže tento prvek je reálný (a představuje vlastně jakousi stejnosměrnou složku spektra). Pavel Karban Rychlá Fourierova transformace 13/34

14 Diskrétní Fourierova transformace f(t) t (s) f (t) = cos(π0t) t Pavel Karban Rychlá Fourierova transformace 14/34

15 Diskrétní Fourierova transformace ϕ (deg.) F ( ) N = N ( ) Spektrum je dvoustranné (F 0 = F n = F n) Pavel Karban Rychlá Fourierova transformace 15/34

16 Diskrétní Fourierova transformace f (Hz) f = k fs N Pavel Karban Rychlá Fourierova transformace 16/34

17 Diskrétní Fourierova transformace Při práci s Fourierovou transformací číslicových signálů je tedy třeba vzít v úvahu, že pro N vzorků stačí vypočítat jen prvních N / hodnot dvojstranného spektra a ty pak pro získání jednostranného spektra násobit dvěma (protože zbylých N / hodnot jsou veličiny k nim komplexně sdružené a amplitudy spektra jsou dány moduly těchto hodnot). Odtud plyne, že počet kmitočtů ve spektru je také nejvýše rovno N /. Nejvyšší kmitočet takto spočtený se nazývá Nyquistův. Pokud původní signál neobsahuje vyšší kmitočty, než je právě kmitočet Nyquistův, lze jej uvedeným postupem ze vzorků zrekonstruovat zcela exaktně. Většinou se stává, že prvních N vzorků netvoří jednu periodu (je to dokonce téměř pravidlo). Pak ovšem získané hodnoty netvoří přesně spektrum, ale jen jeho aproximaci. Objevují se zde různé chyby a jevu jako celku se říká rozmazání spektra. Pavel Karban Rychlá Fourierova transformace 17/34

18 DFT - Vandermondova matice Na diskrétní Fourierovu transformaci N 1 F n = f k e j π N kn, n = 0, 1,..., N 1. k=0 se můžeme také dívat jako na Vandermondovu matici ω 0 0 ω ω 0 (N 1) ω 1 0 ω ω 1 (N 1) W = ω (N 1) 0 ω (N 1) 1... ω (N 1) (N 1), kde člen ω = e j π N kn. n je řádkový index a k představuje sloupcový index. Oba nabývají hodnot 0, 1,..., N 1. Diskrétní transformaci lze pak zapsat F = W f. Inverzní diskrétní transformaci lze zapsat ve tvaru f = W 1 F. Pavel Karban Rychlá Fourierova transformace 18/34

19 DFT - Vandermondova matice Příklad Vandermondovy matice pro N = [ ] 1 1 W =, 1 1 Jednotlivé členy získáme ω 1,1 = e j π 0 0 = 1, ω 1, = e j π 0 1 = 1, ω,1 = e j π 1 0 = 1, ω, = e j π 1 1 = e jπ = 1. Pavel Karban Rychlá Fourierova transformace 19/34

20 DFT - Vandermondova matice Příklad Vandermondovy matice pro N = j 1 j W 4 = j 1 j Příklad Vandermondovy matice pro N = j j j 1 + j j + j 1 j 1 j 1 j 1 j 1 W 8 = j j j 1 + j j + j j j + j 1 j j j 1 j 1 j 1 j 1 j 1 + j j + j 1 j j j Pavel Karban Rychlá Fourierova transformace 0/34

21 Diskrétní Fourierova transformace Je zřejmé, že pro výše uvedený výpočet Fourierovy transformace je třeba určit N N koeficientů (složitost O(N )), což je značné množství a zejména tam, kde počet vzorků dosahuje tisíců nebo desetitisíců, lze očekávat, že počet operací bude značný. Zdlouhavost se pak projevuje zejména tam, kde dochází k opakovaným výpočtům na mnoha signálech. Už od počátku 0. století proto existovala snaha o jejich redukci. Ta se povedla v 60. letech 0. století (Cooley-Tukey algoritmus) a od té doby se možnosti úsporných metod stále zvyšují. Základní metodě tohoto typu říkáme rychlá Fourierova transformace. Pavel Karban Rychlá Fourierova transformace 1/34

22 Outline 1 Motivace FT Fourierova transformace 3 DFT Diskrétní Fourierova transformace 4 FFT - Rychlá Fourierova transformace Pavel Karban Rychlá Fourierova transformace /34

23 Rychlá Fourierova transformace Rychlá Fourierova transformace je způsob výpočtu diskrétní Fourierovy transformace, kterým získáme stejné výsledky, ale mnohem rychleji. Klasická metoda DFT potřebuje O(N ) operací zatímco pouze O(N log N ). Nejznámnější algoritmus výpočtu představili v roce 1965 J. W. Cooley and J. W. Tukey (stejný algoritmus byl znám Carlu Friedrichu Gaussovi v roce již v roce 1805). Pavel Karban Rychlá Fourierova transformace 3/34

24 Rychlá Fourierova transformace V klasické podobě lze provádět pro signály, u nichž bylo sejmuto p vzorků, v současné době existují už i sofistikovanější algoritmy, které umožňují provést rychlou transformaci pro libovolný počet vzorků. Vysvětleme si stručně postup klasické metody. N 1 F n = f k e j π N kn, n = 1,,..., N 1. k=0 Nyní si rozdělme vzorky signálu na dvě skupiny, a to sudé vzorky a liché vzorky následujícím způsobem e n = f n, o n = f n+1, n = 0, 1,..., N Pavel Karban Rychlá Fourierova transformace 4/34

25 Rychlá Fourierova transformace Pak lze zapsat transformaci ve tvaru = N 1 k=0 F n = N 1 k=0 e n e j π N (k)n + e j π N n ) (e n e j π N (k)n + o n e j π N (k+1)n = N 1 k=0 o n e j π N (k)n, n = 0, 1,..., N 1. Nyní označme E n = N 1 k=0 e n e j π N (k)n, O n = N 1 k=0 o n e j π N (k)n. Pavel Karban Rychlá Fourierova transformace 5/34

26 Rychlá Fourierova transformace E n = N 1 k=0 e n e j π N (k)n, O n = N 1 k=0 o n e j π N (k)n. Obdobným postupem bychom získali členy pro n N. Vzhledem k periodicitě platí E n+ N = E n a O n+ N = O n. Pomocí výrazů E a O lze pak výslednou transformaci ve tvaru F n = E n N E n + e πi N n O n pro n < N e πi N (n N ) O n N pro n N. Pavel Karban Rychlá Fourierova transformace 6/34

27 Rychlá Fourierova transformace Tím jsme transformaci obsahující N bodů rozdělili na dvě transformace obsahující N / bodů a stejným způsobem budeme pokračovat dál směrem do dalších dělení, až bude výsledná posloupnost mít jen dva prvky. Počet operací kompletní transformace se tak zmenší z O(N ) na O(N log N ) Jednoduchá, ale ne efektivní, implementace je formou rekurzivní funkce. Pavel Karban Rychlá Fourierova transformace 7/34

28 Rychlá Fourierova transformace 1 d e f fft_ct_dt ( x ) : N = l e n ( x ) 3 4 i f N & 1 : 5 r e t u r n [ x math. e ( j math. p i 1. 0 / N ) ] 6 e l s e : 7 M = N // 8 9 x_e = x [ 0 : N : ] 10 x_o = x [ 1 : N : ] 11 X_e = fft_ct_dt ( x_e ) 1 X_o = fft_ct_dt ( x_o ) X = [ ] 15 f o r n i n r a n g e (M) : 16 X += [ X_e [ n ] + X_o [ n ] 17 math. e ( j math. p i ( n ) / N ) ] 18 f o r n i n r a n g e (M,N ) : 19 X += [ X_e [ n M] X_o [ n M] 0 math. e ( j math. p i ( n M) / N ) ] 1 r e t u r n X Pavel Karban Rychlá Fourierova transformace 8/34

29 Rychlá Fourierova transformace y ( ) t ( ) Funkce f (t) = cos(πft) o frekvenci f = 0,1 Hz vzorkovaná f s = 1 Hz Pavel Karban Rychlá Fourierova transformace 9/34

30 Rychlá Fourierova transformace 14 1 N = N = N = f/f s Spektrum pro různé hodnoty N (N musí být vždy nejméně tak velké jako je počet vzorků) Pavel Karban Rychlá Fourierova transformace 30/34

31 Diskrétní Fourierova transformace 6 4 f(t) t (s) f = cos(π10t) + sin(π7t) + šum s nulovou průměrnou hodnotou Pavel Karban Rychlá Fourierova transformace 31/34

32 Diskrétní Fourierova transformace f (Hz) f = cos(π10t) + sin(π7t) + šum s nulovou průměrnou hodnotou Pavel Karban Rychlá Fourierova transformace 3/34

33 Děkuji za pozornost Pavel Karban Rychlá Fourierova transformace 33/34

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Transformace obrazu Josef Pelikán KSVI MFF UK Praha

Transformace obrazu Josef Pelikán KSVI MFF UK Praha Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých

Více

31ZZS 9. PŘEDNÁŠKA 24. listopadu 2014

31ZZS 9. PŘEDNÁŠKA 24. listopadu 2014 3ZZS 9. PŘEDNÁŠKA 24. listopadu 24 SPEKTRÁLNÍ ANALÝZA Fourierovy řady Diskrétní Fourierovy řady Fourierova transformace Diskrétní Fourierova transformace Spektrální analýza Zobrazení signálu ve frekvenční

Více

Úvod do zpracování signálů

Úvod do zpracování signálů 1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování

Více

Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnáván

Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnáván Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnávání Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Periodicita v časových

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz, Kamenice 3, 4. patro, dv.č.424 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. FREKVENČNÍ TRASFORMACE SPOJITÉ

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické

Více

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy

Více

Číslicové zpracování signálů a Fourierova analýza.

Číslicové zpracování signálů a Fourierova analýza. Číslicové zpracování signálů a Fourierova analýza www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza

Více

Osnova. Idea ASK/FSK/PSK ASK Amplitudové... Strana 1 z 16. Celá obrazovka. Konec Základy radiotechniky

Osnova. Idea ASK/FSK/PSK ASK Amplitudové... Strana 1 z 16. Celá obrazovka. Konec Základy radiotechniky Pulsní kódová modulace, amplitudové, frekvenční a fázové kĺıčování Josef Dobeš 24. října 2006 Strana 1 z 16 Základy radiotechniky 1. Pulsní modulace Strana 2 z 16 Pulsní šířková modulace (PWM) PAM, PPM,

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné

Více

Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015

Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015 Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31

Více

FOURIEROVA TRANSFORMACE FOURIEROVA VĚTA

FOURIEROVA TRANSFORMACE FOURIEROVA VĚTA FOURIEROVA TRANSFORMACE FOURIEROVA VĚTA V kapitole o Fourierových řadách byla dokázána Fourierova věta (připomeňte si, že f(x = (f(x + + f(x /2: VĚTA Necht f je po částech hladká na R a R f konverguje

Více

Filtrace snímků ve frekvenční oblasti. Rychlá fourierova transformace

Filtrace snímků ve frekvenční oblasti. Rychlá fourierova transformace Filtrace snímků ve frekvenční oblasti Rychlá fourierova transformace semestrální práce z předmětu KIV/ZVI zpracoval: Jan Bařtipán A03043 bartipan@students.zcu.cz Obsah Úvod....3 Diskrétní Fourierova transformace

Více

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové

Více

FOURIEROVA TRANSFORMACE

FOURIEROVA TRANSFORMACE FOURIEROVA TRANSFORMACE FOURIEROVA VĚTA V kapitole o Fourierových řadách byla dokázána (připomeňte si, že f(x) = (f(x + ) + f(x ))/2): VĚTA. Necht f je po částech hladká na R a R f konverguje. Potom f(x)

Více

Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722

Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722 Základy a aplikace digitálních modulací Josef Dobeš Katedra radioelektroniky (13137), blok B2, místnost 722 dobes@fel.cvut.cz 6. října 2014 České vysoké učení technické v Praze, Fakulta elektrotechnická

Více

MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky

MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky Při návrhu elektroakustických soustav, ale i jiných systémů, je vhodné nejprve

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

P7: Základy zpracování signálu

P7: Základy zpracování signálu P7: Základy zpracování signálu Úvodem - Signál (lat. signum) bychom mohli definovat jako záměrný fyzikální jev, nesoucí informaci o nějaké události. - Signálem je rovněž funkce, která převádí nezávislou

Více

ÚPGM FIT VUT Brno, periodické a harmonické posloupnosti. konvoluce Fourierova transformace s diskrétním časem

ÚPGM FIT VUT Brno, periodické a harmonické posloupnosti. konvoluce Fourierova transformace s diskrétním časem Diskrétní signály a jejich frekvenční analýza. Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz opakování základy o diskrétních signálech. periodické a harmonické posloupnosti operace s diskrétními

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

A/D převodníky - parametry

A/D převodníky - parametry A/D převodníky - parametry lineární kvantování -(kritériem je jednoduchost kvantovacího obvodu), parametry ADC : statické odstup signálu od kvantizačního šumu SQNR, efektivní počet bitů n ef, dynamický

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

Metody výpočtu limit funkcí a posloupností

Metody výpočtu limit funkcí a posloupností Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou

Více

[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici

[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici [1] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A = 0 pro singulární matici, det A 0 pro regulární matici používá se při řešení lineárních soustav... a v mnoha dalších aplikacích

Více

Fourierova transformace

Fourierova transformace Fourierova transformace EO Přednáška Pavel Máša ÚVODEM Známe Fourierovy řady v komplexním tvaru f(t) = 1X k= 1 A k e jk! t Spektrum této řady je diskrétní A k = 1 T Obvody tedy musíme řešit v HUS člen

Více

Při návrhu FIR filtru řešíme obvykle následující problémy:

Při návrhu FIR filtru řešíme obvykle následující problémy: Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

Základní pojmy o signálech

Základní pojmy o signálech Základní pojmy o signálech klasifikace signálů transformace časové osy energie a výkon periodické signály harmonický signál jednotkový skok a impuls Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Více

Komplexní analýza. Fourierovy řady. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Fourierovy řady. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Fourierovy řady Martin Bohata Katedra matematiky FEL ČVU v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Fourierovy řady 1 / 20 Úvod Často se setkáváme s periodickými

Více

7.1. Číslicové filtry IIR

7.1. Číslicové filtry IIR Kapitola 7. Návrh číslicových filtrů Hraniční kmitočty propustného a nepropustného pásma jsou ve většině případů specifikovány v[hz] společně se vzorkovacím kmitočtem číslicového filtru. Návrhové algoritmy

Více

základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů

základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky

Více

31SCS Speciální číslicové systémy Antialiasing

31SCS Speciální číslicové systémy Antialiasing ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE 2006/2007 31SCS Speciální číslicové systémy Antialiasing Vypracoval: Ivo Vágner Email: Vagnei1@seznam.cz 1/7 Převod analogového signálu na digitální Složité operace,

Více

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš KVANTOVÁNÍ ZVUKOVÝCH SIGNÁLŮ NÍZKÉ ÚROVNĚ Abstrakt Quantization of acoustic low level signals David Bursík, Miroslav Lukeš Při testování kvality A/D převodníků se používají nejrůznější testovací signály.

Více

Multimediální systémy

Multimediální systémy Multimediální systémy Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Získání obsahu Jan Outrata (Univerzita Palackého v Olomouci) Multimediální systémy Olomouc, září prosinec

Více

1 Zpracování a analýza tlakové vlny

1 Zpracování a analýza tlakové vlny 1 Zpracování a analýza tlakové vlny 1.1 Cíl úlohy Prostřednictvím této úlohy se naučíte a zopakujete: analýzu biologických signálů v časové oblasti, analýzu biologických signálů ve frekvenční oblasti,

Více

Digitalizace převod AS DS (analogový diskrétní signál )

Digitalizace převod AS DS (analogový diskrétní signál ) Digitalizace signálu v čase Digitalizace převod AS DS (analogový diskrétní signál ) v amplitudě Obvykle převod spojité předlohy (reality) f 1 (t/x,...), f 2 ()... připomenutí Digitalizace: 1. vzorkování

Více

Fourierova transformace

Fourierova transformace Fourierova transformace Jean Baptiste Joseph Fourier (768-83) Jeho obdivovatel (nedatováno) Opáčko harmonických signálů Spojitý harmonický signál ( ) = cos( ω + ϕ ) x t C t C amplituda ω úhlová frekvence

Více

sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx.

sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx. Použití mocniných řad Nejprve si ukážeme dvě jednoduchá použití Taylorových řad. Příklad Spočtěte následující limitu: ( ) sin(x) lim. x x ( ) Najdeme lim sin(x) x x pomocí mocninné řady pro funkci sin(x)

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo 0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový

Více

A7B31ZZS 10. PŘEDNÁŠKA Návrh filtrů 1. prosince 2014

A7B31ZZS 10. PŘEDNÁŠKA Návrh filtrů 1. prosince 2014 A7B3ZZS. PŘEDNÁŠKA Návrh filtrů. prosince 24 Návrhy jednoduchých filtrů Návrhy složitějších filtrů Porovnání FIR a IIR Nástroje pro návrh FIR filtrů v MATLABu Nástroje pro návrh IIR filtrů v MATLABu Kvantování

Více

Modulace analogových a číslicových signálů

Modulace analogových a číslicových signálů Modulace analogových a číslicových signálů - rozdělení, vlastnosti, způsob použití. Kódování na fyzické vrstvě komunikačního kanálu. Metody zabezpečení přenosu. Modulace analogových a číslicových signálů

Více

Kapitola 2: Spojitost a limita funkce 1/20

Kapitola 2: Spojitost a limita funkce 1/20 Kapitola 2: Spojitost a limita funkce 1/20 Okolí bodu 2/20 Značení: a R, ε > 0 O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a)

Více

Rezonanční obvod jako zdroj volné energie

Rezonanční obvod jako zdroj volné energie 1 Rezonanční obvod jako zdroj volné energie Ing. Ladislav Kopecký, 2002 Úvod Dlouho mi vrtalo hlavou, proč Tesla pro svůj vynález přístroje pro bezdrátový přenos energie použil název zesilující vysílač

Více

ZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH. Jiří Tůma

ZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH. Jiří Tůma ZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH SYSTÉMŮ UŽITÍM FFT Jiří Tůma Štramberk 1997 ii Anotace Cílem této knihy je systematicky popsat metody analýzy signálů z mechanických systémů a strojních zařízení. Obsahem

Více

" Furierova transformace"

 Furierova transformace UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM FAKULTA ŽIVOTNÍHO PROSTŘEDÍ " Furierova transformace" Seminární práce z předmětu Dálkový průzkum Země Marcela Bartošová, Veronika Bláhová OŽP, 3.ročník

Více

VI. Derivace složené funkce.

VI. Derivace složené funkce. VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,

Více

Circular Harmonics. Tomáš Zámečník

Circular Harmonics. Tomáš Zámečník Circular Harmonics Tomáš Zámečník Úvod Circular Harmonics Reprezentace křivky, která je: podmonožinou RxR uzavřená funkcí úhlu na intervalu Dále budeme hovořit pouze o takovýchto křivkách/funkcích

Více

teorie elektronických obvodů Jiří Petržela obvodové funkce

teorie elektronických obvodů Jiří Petržela obvodové funkce Jiří Petržela obvod jako dvojbran dvojbranem rozumíme elektronický obvod mající dvě brány (vstupní a výstupní) dvojbranem může být zesilovač, pasivní i aktivní filtr, tranzistor v některém zapojení, přenosový

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky

X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky X3EO - Elektrické obvody Kmitočtové charakteristiky Doc. Ing. Petr Pollák, CSc. Letní semestr 5/6!!! Volné šíření není povoleno!!! Fázory a spektra Fázor harmonického průběhu Û m = U m e jϕ ut) = U m sinωt

Více

ÚPGM FIT VUT Brno,

ÚPGM FIT VUT Brno, Systémy s diskrétním časem Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 LTI systémy v tomto kursu budeme pracovat pouze se systémy lineárními a časově invariantními. Úvod k nim jsme viděli již

Více

(Cramerovo pravidlo, determinanty, inverzní matice)

(Cramerovo pravidlo, determinanty, inverzní matice) KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce

Více

9. cvičení z Matematické analýzy 2

9. cvičení z Matematické analýzy 2 9. cvičení z Matematické analýzy 7. listopadu -. prosince 7 9. Určete Fourierovu řadu periodického rozšíření funkce ft = t na, a její součet. Definice: Necht f je -periodická funkce, která je integrabilní

Více

Kapitola 1: Reálné funkce 1/13

Kapitola 1: Reálné funkce 1/13 Kapitola 1: Reálné funkce 1/13 Číselné množiny 2/13 N = {1, 2, 3, 4,... }... přirozená čísla N 0 = N {0} = {0, 1, 2, 3, 4,... } Z = {..., 2, 1, 0, 1, 2, 3, 4,... }... celá čísla Q = { p q p, q Z}... racionální

Více

Střední průmyslová škola elektrotechnická a informačních technologií Brno

Střední průmyslová škola elektrotechnická a informačních technologií Brno Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:

Více

Fouriérova transformace, konvoluce, dekonvoluce, Fouriérovské integrály

Fouriérova transformace, konvoluce, dekonvoluce, Fouriérovské integrály co byste měli umět po dnešní lekci: používat funkce pro výpočet FFT (Fast Fourier Transformation) spočítat konvoluci/dekonvoluci pomocí FFT použít FFT při výpočtu určitých integrálů vědět co je nízko\vysoko

Více

Laplaceova transformace

Laplaceova transformace Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP pondělí 23. března

Více

2 Teoretický úvod Základní princip harmonické analýzy Podmínky harmonické analýzy signálů Obdelník Trojúhelník...

2 Teoretický úvod Základní princip harmonické analýzy Podmínky harmonické analýzy signálů Obdelník Trojúhelník... Obsah 1 Zadání 1 2 Teoretický úvod 1 2.1 Základní princip harmonické analýzy.................. 1 2.2 Podmínky harmonické analýzy signálů................. 1 3 Obecné matematické vyjádření 2 4 Konkrétní

Více

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její

Více

Operace s maticemi. 19. února 2018

Operace s maticemi. 19. února 2018 Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice

Více

Kapitola 1: Reálné funkce 1/20

Kapitola 1: Reálné funkce 1/20 Kapitola 1: Reálné funkce 1/20 Funkce jedné proměnné 2/20 Definice: Necht M R. Jestliže každému x M je přiřazeno jistým předpisem f právě jedno y R, říkáme, že y je funkcí x. x... nezávisle proměnná (neboli

Více

0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému

0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému 2 1 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 x 1 2 Jméno a příjmení: ID.č. 9.5.2016 1. Řešte diferenciální rovnici: y + 2xy x 2 + 3 = sin x x 2 + 3. y = C cos x x 2 + 1 2. Vypočtěte z 2 e z dz, kde je křivka

Více

doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1

doc. Dr. Ing. Elias TOMEH   Elias Tomeh / Snímek 1 doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Frekvenční spektrum Dělení frekvenčního pásma (počet čar) Průměrování Časovou váhovou funkci Elias Tomeh / Snímek 2 Vzorkovací

Více

Nauka o Kmitání Přednáška č. 4

Nauka o Kmitání Přednáška č. 4 Nauka o Kmitání Přednáška č. 4 Odezva lineárního systému na obecnou periodickou budící funkci Ing. Antonín Skarolek, Ph.D. Katedra mechaniky, pružnosti a pevnosti Technická Univerzita v Liberci 213 Ustálená

Více

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Laplaceova transformace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Laplaceova transformace 1 / 18 Definice Definice Laplaceovou

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction

Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction Analýza lineárních regulačních systémů v časové doméně V Modelice (ale i v Simulinku) máme blok TransfeFunction Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control

Více

DSY-4. Analogové a číslicové modulace. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

DSY-4. Analogové a číslicové modulace. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti DSY-4 Analogové a číslicové modulace Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti DSY-4 analogové modulace základní číslicové modulace vícestavové modulace modulace s rozprostřeným

Více

TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY

TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY V PROSTŘEDÍ MATLAB K. Nováková, J. Kukal FJFI, ČVUT v Praze ÚPŘT, VŠCHT Praha Abstrakt Při rozpoznávání D binárních objektů z jejich diskrétní realizace se využívají

Více

Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická

Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Číslicová filtrace FIR filtry IIR filtry Tyto materiály vznikly za podpory Fondu rozvoje

Více

Několik aplikací. Kapitola 12

Několik aplikací. Kapitola 12 Kapitola 12 Několik aplikací Diskrétní a rychlá Fourierova transformace Diskrétní Fourierova transformace spočívá ve změně reprezentace polynomu s koeficienty v nějakém tělese T Obvyklá reprezentace polynomu

Více

Spektrální analyzátory

Spektrální analyzátory Lubomír Slavík TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Materiál vznikl v rámci projektu ESF (CZ.1.07/2.2.00/07.0247), který je spolufinancován Evropským

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

Funkce. Limita a spojitost

Funkce. Limita a spojitost Funkce. Limita a spojitost skriptum J. Neustupa text Funkce (úvod) na této web stránce III.2 Fce - základní pojmy 1. Definice, def. obor D(f), obor hodnot H(f), graf 2. Fce složená, omezená, 3. Fce sudá,

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Matematika I (KMI/PMATE)

Matematika I (KMI/PMATE) Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce

Více

ANALÝZA LIDSKÉHO HLASU

ANALÝZA LIDSKÉHO HLASU ANALÝZA LIDSKÉHO HLASU Pomůcky mikrofon MCA-BTA, LabQuest, program LoggerPro (nebo LoggerLite), tabulkový editor Excel, program Mathematica Postup Z každodenní zkušenosti víme, že každý lidský hlas je

Více

FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci OBSAH A CÍLE SEMINÁŘE: Opakování a procvičení vybraných

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Univerzita Karlova v Praze procesy II. Zuzana. funkce

Univerzita Karlova v Praze   procesy II. Zuzana. funkce Náhodné 1 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze email: praskova@karlin.mff.cuni.cz 11.-12.3. 2010 1 Outline Lemma 1: 1. Nechť µ, ν jsou konečné míry na borelovských

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování

Více

0.1 Funkce a její vlastnosti

0.1 Funkce a její vlastnosti 0.1 Funkce a její vlastnosti Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost (m) čas (t) výše úrokové sazby v bance (i) cena

Více

Vlastnosti a modelování aditivního

Vlastnosti a modelování aditivního Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

III. MKP vlastní kmitání

III. MKP vlastní kmitání Jiří Máca - katedra mechaniky - B325 - tel. 2 2435 4500 maca@fsv.cvut.cz III. MKP vlastní kmitání 1. Rovnice vlastního kmitání 2. Rayleighova Ritzova metoda 3. Jacobiho metoda 4. Metoda inverzních iterací

Více

Cvi ení 2. Cvi ení 2. Modelování systém a proces. Mgr. Lucie Kárná, PhD. March 5, 2018

Cvi ení 2. Cvi ení 2. Modelování systém a proces. Mgr. Lucie Kárná, PhD. March 5, 2018 Modelování systém a proces Mgr. Lucie Kárná, PhD karna@fd.cvut.cz March 5, 2018 1 Gracké moºnosti Matlabu 2 Zobrazení signálu 3 4 Analýza signálu Gracké moºnosti Matlabu Základní gracké p íkazy I Graf

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník

Více

Direct Digital Synthesis (DDS)

Direct Digital Synthesis (DDS) ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Direct Digital Synthesis (DDS) Přímá číslicová syntéza Tyto materiály vznikly za podpory

Více

Funkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Funkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Funkce a limita Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

Číslicové zpracování a analýza signálů (BCZA) Spektrální analýza signálů

Číslicové zpracování a analýza signálů (BCZA) Spektrální analýza signálů Číslcové zpracování a analýza sgnálů (BCZA) Spektrální analýza sgnálů 5. Spektrální analýza sgnálů 5. Spektrální analýza determnstckých sgnálů 5.. Dskrétní spektrální analýza perodckých sgnálů 5..2 Dskrétní

Více