Stavový model a Kalmanův filtr
|
|
- Bohumír Černý
- před 5 lety
- Počet zobrazení:
Transkript
1 Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál, který měříme Stavem pak je onen signál nezašuměný, který se snažíme odhadnout Jiným příkladem může být zdravotní stav pacienta, který odhadujeme na základě výstupů různých vyšetření Ještě dalším příkladem může být stav křižovatky, který odhadujeme na základě výstupů několika čidel Pokud proces popisujeme lineárním modelem ormálním šumem, můžeme tento model převésa vektorový stavový model prvního řádu To je velmi důležité, protože na stavový model prvního řádu ormálním šumem mohu uplatnit velmi účinný algoritnus, který dělá bodové odhady stavu a který se jmenuje Kalmanův filtr Převod lineárního regresního modelu do stavového tvaru Popis stavového modelu Stavový model se skládá ze dvou částí Za prvé z modelu dynamiky stavu, který říká, jak závisí stav v příštím okamžiku na stavu v okamžiku minulém Tento lineární model prvního řádu vypadá takto: x n = M x n N u n w n Veličina x značí stav, u je řízení a w je normální bílý šum Koeficienty M a N jsou čísla respektive matice, pokud jsou ostatní veličiny vektory Druhou součástí stavového modelu je model měření výstupu, který říká, jak závisí aktuální výstup na aktuálním stavu: y n = A x n B u n v n Koeficienty A a B jsou čísla respektive matice, pokud jsou ostatní veličiny vektory Veličina v je normální bílý šum
2 Převod na stavový model Nyní si na příkladu ukážeme, jak převést lineární regresní model libovolného řádu na stavový model prvního řádu: Máme lineární regresní model druhého řádu s dvěmi řízeními s a t: y n = α β Cy n D E F y n 2 G 2 H 2 K e n Bílý šum má normální rozdělení s rozptylem R: e n N (, R) Vezmeme vektor vstupů a oddělíme část, která patří aktuálním veličinám Tím dostaneme stavový vektor pro minulý čas Ve sloupečkové podobě: x n = y n y n Zvýšením indexů o jedna získáme stavový vektor pro aktuální čas: y n x n = y n Vztah mezi x n a x n určuje čtvercová matice M, kterou vytvoříme takto: V prvním řádku budou koeficienty příslušné veličinám z x n Další řádky jen zajišťují, aby se příslušné veličiny převedly Tedy y n na y n, na, na, apod: M = C D E F G H K Vektor aktuálního řízení vyrobíme také sloupečkový: ( ) sn u n = Matice N tedy bude mít dva sloupce Dosadíme příslušné konstanty tak, abychom na prvním řádku dostali původní rovnici pro výstup (zatím bez šumu) 2
3 a aby se příslušná řízení objevila na příslušných místech stavového vektoru, tedy na místě druhém a třetím: α β N = Šum umístíme na první místo vektoru šumu w n : e n w n = Náš model převedený do stavového tvaru vypadá tedy takto: y n C D E F G H K y n α β y n = y n ( sn ) e n Druhá rovnice pro výstup nám pak pouze vypreparuje příslušný výstup: y n y n = P x n = ( ) y n Poznámka o šumu My jsme šum dosadili do prvé rovnice Mohli jsme jej však dosadit do rovnice druhé Jak to tedy je? Rozhodovat musíme případ od případu Vezměme si např zašuměný signál Šum v první rovnici odpovídá šumu, který bychom naměřili i v nezašuměném signálu Prostě proto, že náš model odpovídá datům jen přibližně Šum v druhé rovnici odpovídá šumu, který vzniká např při přenosu či měření signálu 3
4 Náš šum můžeme rozdělia šumy dva, do první i druhé rovnice Jaké mají mít tyto šumy vlastnosti? Normální rozdělení, nulovou střední hodnotu a rozptyly, jež dají v součtu celkový rozptyl R Tyto dva šumy označíme f a g Pokud dáme rozptyl i do druhé rovnice, výstup z této rovnice už nebude pouhou první položkou stavového vektoru Bude zašuměnou první položkou stavového vektoru Proto tyto dva výstupy odlišíme Ten zašuměný, který přímo měříme, budeme značit y Onen nezašuměný, který bychom chtěli znát, budeme značit Y Stavový model s oběma šumy bude vypadat takto: Y n Y n = C D E F G H K y n = P x n v n = ( ) Y n Y n α Y n Y n β g n ) ( sn V datech máme k dispozici zašuměný výstup y n, rádi bychom ale znali nezašuměný výstup Y n Jak na to? f n, Filtrace a predikce Chceme tedy na základě zašuměných výstupů odhadovat stav Jak budou postupně přicházet data, budou se v našem odhadování neustále opakovat dva kroky - filtrace a predikce Filtrace Jsme v n-tém kole Z minulého kola máme odhad aktuálního stavu pro n-té kolo, ovšem z dat z (n ) kola Nyní dorazila data pro n-té kolo Na základě těchto nových dat opravíme náš odhad aktuálního stavu pro n-té kolo Tomuto se říká filtrace Z Bayesovy věty můžeme pro filtraci odvodiásledující vzorec: f (x n d (n)) = f (y n x n, u n ) f (x n d (n )) f (y n u n, d (n )) 4
5 Tento vzorec je obdobou vzorce pro rozdělení parametrů Tentokrát jsme jej napsali i s příslušnou konstantou ve jmenovateli Význam jednotlivých výrazů je následující: f (x n d (n ))odhad stavu na základě (n ) dat Pokud je stav vektorem, jde o sdružené rozdělení všech položek tohoto vektoru f (x n d (n))opravený odhad stavu na základě n-tých dat f (y n x n, u n )model ve tvaru hustoty pravděpodobnosti Získáme jej z modelu měření výstupu, tedy z druhé rovnice pro stavový model Za u n a y n dosadíme aktuální data f (y n u n, d (n ))normalizační konstanta V tomto výrazu se nevyskytuje neznámý stav Za u n, y n a d (n ) dosadíme Výsledkem je tedy konstanta, která zapříčiní, aby integrál přes celou hustotu pravděpodobnosti byl opravdu Predikce Jsme stále v n-tém kole Máme odhad pro aktuální stav x n Chceme odhadnout stav pro příští, (n ) kolo Ze sdružené hustoty pro stavy x n a x n na základě n-tých dat odvodíme vzorec pro hustotu pravděpodobnosti pro příští stav x n : ˆ f (x n d (n)) = f (x n x n, u n ) f (x n d (n)) dx n Ω Tento vzorec je obdobou vzorce pro rozdělení výstupu Význam jednotlivých výrazů je následující: f (x n d (n))odhad aktuálního stavu na základě n-tých dat Pokud je stav vektorem, jde o sdružené rozdělení všech položek tohoto vektoru Je to výsledek z minulého vzorce f (x n d (n))odhad příštího stavu na základě n-tých dat f (x n x n, u n )model příštího stavu ve tvaru hustoty pravděpodobnosti Získáme jej z modelu dynamiky stavu, tedy z první rovnice pro stavový model Ω dx nintegrujeme přes všechny položky aktuálního stavového vektoru Je to integrál určitý, přes celý definiční obor Poznámka Výpočet dle těchto vzorců, zejména integrace, může být poměrně náročná Pokud jsou všechny šumy gaussovské, můžeme místo vývoje funkcí počítat jen vývoj středních hodnot a rozptylů, což je nesrovnatelně jednodušší Normalita rozdělení se zachová Algoritmus, který toto provádí, se jmenuje Kalmanův filtr 5
6 Kalmanův filtr Kalmanův filtr má dvě části Filtraci a predikci Výstupem filtrace je bodový odhad pro střední hodnoty položek stavového vektoru Tento vektor středních hodnot budeme značit x n n První n znamená, že je to odhad stavu pro n-té kolo, druhé n znamená, že vycházíme z n-tých dat Právě tento vektor je pro nás důležitý, protože jeho první položku budeme interpretovat jako odhad nezašuměného výstupu Druhým výstupem filtrace je kovarianční matice pro položky stavového vektoru Tuto kovarianční matici budeme značit R n n Připomeneme, co je kovarianční matice Na diagonálách najdeme rozptyly pro jednotlivé položky Tyto rozptyly, resp názorněji směrodatné odchylky z nich vytvořené, nám říkají, jak moc bude sdružená gaussovka v tom či onom směru široká Čím budou tyto rozptyly menší, tím přesněji jsou příslušné položky stavového vektoru určeny Členy mimo diagonálu nám říkají, jak jsou jednotlivé položky mezi sebou závislé Nula na i-tém řádku a v j-tém sloupci znamená nezávislost i-té a j-té položky Kladné číslo znamená kladnou korelaci, záporné číslo zápornou V grafu sdružené hustoty pravděpodobnosti se tyto nediagonální členy projeví tím, že sdružená gaussovka bude protáhlá v nějakém šikmém směru Druhou částí Kalmanova filtru je predikce Jejím výstupem budou odhady pro střední hodnoty a kovarianční matice pro příští kolo Vektor bodových odhadů středních hodnot budeme značit x n n, kovarianční matici pro položky stavového vektoru R n n Druhé n připomíná, že stále vycházíme pouze z n- tých dat Vstupem do Kalmanova filtru jsou bodové odhady středních hodnot x n n a kovarianční matice R n n z minulého kola Pro první kolo volím vektor x např nulový a kovarianční matici R s velkými diagonálními členy (např ) To znamená, že svému odhadu prvního stavu x přikládám jen velmi malou váhu a že velkou váhu naopak budou mít přicházející data Správný stav se pak nastaví rychleji Dalšími vstupy jsou matice M, N, A a B z modelu Dalšími vstupy jsou matice kovariancí šumů r w a r v Matice kovariancí šumů U těchto matic se na chvíli zastavíme V našem modelu měla jen první položka šumových vektorů význam, ostatní byly nulové V principu ale můžeme zavést šumy i do ostatních položek šumových vektorů Např šum v druhé a třetí položce vektoru w znamená, že řízení s a t k nám doráží také zašuměné Pokud jsou šumy na první, druhé a třetí pozici šumového vektoru nezávislé, bude mít kovarianční matice šumů r w na prvních třech diagonálních místech rozptyly příslušných vektorů, jinde budou samé nuly Pokud bychom ale chtěli vyjádřit, že např řízení s a t jsou zašuměny sice náhodným, ale stejným šumem, byla by situace trochu náročnější Podrobněji to zde rozebíraebudeme 6
7 Kalmanův filtr Algoritmus Kalmanova filtru vypadá takto: Filtrace: y p = Ax n n Bu n předpověď výstupu R p = r v A R n n A kovariance výstupu R n n = R n n R n n A R p A R n n přepočet kovariance stavu K = R n n A r v Kalmanův gain x n n = x n n K (y n y p ) datová oprava stavu Predikce x n n = M x n n N u n předpověď stavu R n n = r w M R n n M předpověď kovariance stavu Slabina Kalmanova filtru K výpočtu Kalmanova filtru potřebujeme znát matice M, N, A a B a matice kovariancí šumů r w a r v Ty v reálu neznáme Bodový odhad parametrů ještě zvládneme pomocí datové matice To umíme Takže matice M, N, A a B nejsou takovým problémem I celkový šum pomocí datové matice spočteme Ale matice kovariancí šumů? Pokud máme v rovnici měření výstupu jen jeden šum, tak můžeme uvažovat, že právě toto je cca ten šum, který měříme z dat a že šum v nezašuměném signálu bude podstatně menší Ten ale musíme odhadnout Nepříjemné je, že běh Kalmanova filtru na volbě matic kovariancí šumů poměrně závisí Nezbývá tedy, než dobře analyzovat situaci, odhadovat a zkoušet 7
Bodové odhady parametrů a výstupů
Bodové odhady parametrů a výstupů 26. listopadu 2013 Máme rozdělení s neznámými parametry a chceme odhadnout jeden nebo několik příštích výstupů. Již víme, že úplnou informaci v této situaci nese sdružené
Vícerozměrná rozdělení
Vícerozměrná rozdělení 7. září 0 Učivo: Práce s vícerozměrnými rozděleními. Sdružené, marginální, podmíněné rozdělení pravděpodobnosti. Vektorová střední hodnota. Kovariance, korelace, kovarianční matice.
Odhady - Sdružené rozdělení pravděpodobnosti
Odhady - Sdružené rozdělení pravděpodobnosti 4. listopadu 203 Kdybych chtěl znát maximum informací o náhodné veličině, musel bych znát všechny hodnoty, které mohou padnout, a jejich pravděpodobnosti. Tedy
Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.
1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co
Regrese. 28. listopadu Pokud chceme daty proložit vhodnou regresní křivku, musíme obvykle splnit tři úkoly:
Regrese 28. listopadu 2013 Pokud chceme daty proložit vhodnou regresní křivku, musíme obvykle splnit tři úkoly: 1. Ukázat, že data jsou opravdu závislá. 2. Provést regresi. 3. Ukázat, že zvolená křivka
Příklady ke čtvrtému testu - Pravděpodobnost
Příklady ke čtvrtému testu - Pravděpodobnost 6. dubna 0 Instrukce: Projděte si všechny příklady. Každý příklad se snažte pochopit. Pak vymyslete a vyřešte příklad podobný. Tím se ujistíte, že příkladu
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
Zadání Máme data hdp.wf1, která najdete zde: Bodová předpověď: Intervalová předpověď:
Predikce Text o predikci pro upřesnění pro ty, které zajímá, kde se v EViews všechna ta čísla berou. Ruční výpočty u průběžného testu nebudou potřeba. Co bude v závěrečném testu, to nevím. Ale přečíst
Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.
1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
11 Analýza hlavních komponet
11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu
Náhodný vektor a jeho charakteristiky
Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich
Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty
Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava
8 Střední hodnota a rozptyl
Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení
Odhad stavu matematického modelu křižovatek
Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita
AVDAT Klasický lineární model, metoda nejmenších
AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i
Měření dat Filtrace dat, Kalmanův filtr
Měření dat Filtrace dat, Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAMY čtvrtek 28. února 2018 verze: 2018-03-21 16:45 Obsah
Odhad - Problémy se sdruženým rozdělením pravděpodobnosti
Odhad - Problémy se sdruženým rozdělením pravděpodobnosti 20. listopadu 203 V minulém materiálu jsme si ukázali, jak získat sdružené rozdělení pravděpodobnosti. Bylo to celkem jednoduché: Věrohodnostní
NÁHODNÝ VEKTOR. 4. cvičení
NÁHODNÝ VEKTOR 4. cvičení Náhodný vektor Náhodným vektorem rozumíme sloupcový vektor X=(X, X,, X n ) složený z náhodných veličin X, X,, X n, který je charakterizován sdruženým rozdělením pravděpodobnosti.
vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).
Řešené příklady z lineární algebry - část 6 Typové příklady s řešením Příklad 6.: Kvadratickou formu κ(x) = x x 6x 6x x + 8x x 8x x vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých
1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Cvičení 5 - Inverzní matice
Cvičení 5 - Inverzní matice Pojem Inverzní matice Buď A R n n. A je inverzní maticí k A, pokud platí, AA = A A = I n. Matice A, pokud existuje, je jednoznačná. A stačí nám jen jedna rovnost, aby platilo,
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X
Náhodný vektor Náhodný vektor zatím jsme sledovali jednu náhodnou veličinu, její rozdělení a charakteristiky často potřebujeme vyšetřovat vzájemný vztah několika náhodných veličin musíme sledovat jejich
Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. 1 Př. 1: Cestující na vybraném spoji linky MHD byli dotazováni za účelem zjištění spokojenosti s kvalitou MHD. Legenda 1 Velmi spokojen Spokojen 3 Nespokojen 4 Velmi nespokojen
Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.
6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Operace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
Bodové a intervalové odhady parametrů v regresním modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e
1. Přednáška. Ing. Miroslav Šulai, MBA
N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy
Měření dat Filtrace dat, Kalmanův filtr
Měření dat Filtrace dat, Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAMY čtvrtek 28. února 2018 verze: 2018-02-28 12:20 Obsah
AVDAT Náhodný vektor, mnohorozměrné rozdělení
AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární
Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
Obr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu.
Řešení příkladu - klasifikace testovacího subjektu pomocí Bayesova klasifikátoru: ata si vizualizujeme (Obr. ). Objem mozkových komor 9 8 7 6 5 pacienti kontroly testovací subjekt 5 6 Objem hipokampu Obr.
PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti
PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,
Měření závislosti statistických dat
5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru
1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).
Náhodné vektory a matice
Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane
Soustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
Analytická geometrie. c ÚM FSI VUT v Brně
19. září 2007 Příklad 1. Příklad 2. Příklad 3. Příklad 1. Určete obecnou rovnici roviny, která prochází body A = [0, 1, 2], B = [ 1, 0, 3], C = [3, 1, 0]. Příklad 1. A = [0, 1, 2], B = [ 1, 0, 3], C =
Cvičení ze statistiky - 8. Filip Děchtěrenko
Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1
Value at Risk. Karolína Maňáková
Value at Risk Karolína Maňáková Value at risk Historická metoda Model-Building přístup Lineární model variance a kovariance Metoda Monte Carlo Stress testing a Back testing Potenciální ztráta s danou pravděpodobností
AVDAT Mnohorozměrné metody, metody klasifikace
AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Poznámky k předmětu Aplikovaná statistika, 4. téma
Poznámky k předmětu Aplikovaná statistika, 4. téma 4. Náhodné vektory V praxi se nám může hodit postihnout více vlastností jednoho objektu najednou, např. výšku, váhu a pohlaví člověka; rychlost chemické
AVDAT Nelineární regresní model
AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných
10. N á h o d n ý v e k t o r
10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět
Lineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
1 Rozptyl a kovariance
Rozptyl a kovariance Nechť X je náhodná veličina s konečnou střední hodnotou EX Potom rozptyl náhodné veličiny X definujeme jako: DX E(X EX, pokud střední hodnota na pravé straně existuje Podobně jako
Regresní a korelační analýza
Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)
c ÚM FSI VUT v Brně 20. srpna 2007
20. srpna 2007 1. 3 arctg x 1+x 2 dx 2. (x 2 + 2x + 17)e x dx 3. 1 x 3 x dx Vypočtěte integrál: 3 arctg x 1 + x 2 dx Příklad 1. Řešení: Použijeme substituci: arctg x = t 3 arctg x dx = 1 dx = dt 1+x 2
Symetrické a kvadratické formy
Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso
SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ
VÝPOČET PEIÁLNÍH PRIMITIVNÍH FUNKÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Nicméně eistují jisté třídy funkcí, pro které eistuje algoritmus, který vždy vede k výpočtu
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
EUKLIDOVSKÉ PROSTORY
EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,
Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení
Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynom nad R = zobrazení f : R R f(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, kde a i R jsou pevně daná
Poznámky k předmětu Aplikovaná statistika, 4. téma
Poznámky k předmětu Aplikovaná statistika, 4. téma 4. Náhodné vektory V praxi se nám může hodit postihnout více vlastností jednoho objektu najednou, např. výšku, váhu a pohlaví člověka; rychlost chemické
1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1
Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném
AVDAT Geometrie metody nejmenších čtverců
AVDAT Geometrie metody nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model klasický lineární regresní model odhad parametrů MNČ y = Xβ + ε, ε
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 7: Autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Autokorelace - teorie Zopakujte si G-M
Normální rozložení a odvozená rozložení
I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět
BCH kódy. Alena Gollová, TIK BCH kódy 1/27
7. přednáška z algebraického kódování Alena Gollová, TIK 1/27 Obsah 1 Binární Alena Gollová, TIK 2/27 Binární jsou cyklické kódy zadané svými generujícími kořeny. Díky šikovné volbě kořenů opravuje kód
Aplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
ANALYTICKÁ GEOMETRIE V ROVINĚ
ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii
Operace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud
Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X
Náhodný vektor Náhodný vektor zatím jsme sledovali jednu náhodnou veličinu, její rozdělení a charakteristik často potřebujeme všetřovat vzájemný vztah několika náhodných veličin musíme sledovat jejich
Náhodné signály. Honza Černocký, ÚPGM
Náhodné signály Honza Černocký, ÚPGM Signály ve škole a v reálném světě Deterministické Rovnice Obrázek Algoritmus Kus kódu } Můžeme vypočítat Málo informace! Náhodné Nevíme přesně Pokaždé jiné Především
Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
5. Lokální, vázané a globální extrémy
5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,
Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
Soustavy lineárních rovnic-numerické řešení. October 2, 2008
Soustavy lineárních rovnic-numerické řešení October 2, 2008 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2... a n1 x 1 + a n2 x 2 + + a
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
Téma 9: Vícenásobná regrese
Téma 9: Vícenásobná regrese 1) Vytvoření modelu V menu Statistika zvolíme nabídku Vícerozměrná regrese. Aktivujeme kartu Detailní nastavení viz obr.1. Nastavíme Proměnné tak, že v příslušném okně viz.
Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně
Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný
1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
Časové řady, typy trendových funkcí a odhady trendů
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces
Časové řady, typy trendových funkcí a odhady trendů
Časové řady, typy trendových funkcí a odhady trendů Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Jiří Neubauer (Katedra ekonometrie UO Brno) Časové
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
Bodové a intervalové odhady parametrů v regresním modelu
Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1
MÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
Bayesovské metody. Mnohorozměrná analýza dat
Mnohorozměrná analýza dat Podmíněná pravděpodobnost Definice: Uvažujme náhodné jevy A a B takové, že P(B) > 0. Podmíněnou pravěpodobností jevu A za podmínky, že nastal jev B, nazýváme podíl P(A B) P(A