4. Rekurze. BI-EP1 Efektivní programování Martin Kačer
|
|
- Dana Vlčková
- před 6 lety
- Počet zobrazení:
Transkript
1 4. Rekurze BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
2 Rekurze co je to? Funkce (metoda) během svého vykonávání způsobí své nové vyvolání Přímo Nepřímo (přes jinou funkci/metodu) Martin Kačer, BI-EP1, ZS Rekurze 2
3 Rekurze proč? Programovací technika V některých jazycích v podstatě jediná možnost pro vyjádření opakování atp. Je stejně silná jako iterace (cykly) Způsob uvažování o problému Může zjednodušit řešení Martin Kačer, BI-EP1, ZS Rekurze 3
4 Rekurze kdy? Rekurzivní povaha problému Hierarchické datové struktury Rekurentní definice Rekurzivní přístup k řešení Převod na jednodušší instanci Rozdělení na více menších podproblémů Martin Kačer, BI-EP1, ZS Rekurze 4
5 Rekurzivní pohled Instance problému (konkrétní zadání) K řešení použijeme řešení menší instance Jedné (lineární rekurze) Více (stromová rekurze) Nejjednodušší instanci vyřešíme Martin Kačer, BI-EP1, ZS Rekurze 5
6 Příklad faktoriál N! = (N-1). N Menší instance (N-1)! Krok řešení N! = (N-1)!. N Základní případ (ukončující podmínka) 0! = 1 Martin Kačer, BI-EP1, ZS Rekurze 6
7 Faktoriál kód Ukončující podmínka Rekurzivní krok int factorial(int n) { if (n < 1) return 1; return n * factorial(n-1); } Martin Kačer, BI-EP1, ZS Rekurze 7
8 Příklad Fibonacciho čísla 1, 1, 2, 3, 5, 8, 13, 21, 34, F(1) = F(2) = 1 pro N>2: F(N) = F(N-2) + F(N-1) Rekurzivní řešení se nabízí Martin Kačer, BI-EP1, ZS Rekurze 8
9 Fibonacciho čísla kód F(1) = F(2) = 1 pro N>2: F(N) = F(N-2) + F(N-1) int fib(int n) { if (n <= 2) return 1; return fib(n-2) + fib(n-1); } Martin Kačer, BI-EP1, ZS Rekurze 9
10 Strom rekurzivního volání fib(6) fib(4) fib(5) fib(2) fib(3) fib(3) fib(4) fib(1) fib(2) fib(1) fib(2) fib(2) fib(3) fib(1) fib(2) Martin Kačer, BI-EP1, ZS Rekurze 10
11 Princip volání funkcí Lokální proměnné systémový zásobník Při volání funkce uložení na zásobník Registry Návratová adresa Parametry funkce Při návratu Odstranění ze zásobníku Předání výsledku Martin Kačer, BI-EP1, ZS Rekurze 11
12 Rekurze funguje stejně Rekurze při vykonávání nic nového Vykonává se stále stejná funkce Stav uložen na zásobníku: Parametry Proměnné Návratové adresy Martin Kačer, BI-EP1, ZS Rekurze 12
13 Rekurze demo int main() { printf( %d\n, A fib(5)); } int fib(int n) { int x; if (n<=2) return 1; B x = fib(n-2); x += C fib(n-1); return x; } ret A main ret x parametry proměnné Martin Kačer, BI-EP1, ZS Rekurze 13
14 Rekurze demo int main() { printf( %d\n, A fib(5)); } int fib(int n) { int x; if (n<=2) return 1; B x = fib(n-2); x += C fib(n-1); return x; } ret B fib n = 5 x ret A main ret x parametry proměnné Martin Kačer, BI-EP1, ZS Rekurze 14
15 Příklad hanojské věže Přesouvání disků mezi třemi trny Po jednom a pouze menší na větší Úkol: přenést z A na B A B C Martin Kačer, BI-EP1, ZS Rekurze 15
16 Hanojské věže jak na to? Rekurzivně N-1 disků z A na C (největší disk nevadí) největší z A na B N-1 disků z C na B A B C Martin Kačer, BI-EP1, ZS Rekurze 16
17 Hanojské věže kód Ukončovací podmínka? Co nejjednodušší => žádný disk! void hanoi(int n, int from, int to, int use) { if (!n) return; hanoi(n-1, from, use, to); move_one(n, from, to); hanoi(n-1, use, to, from); } Martin Kačer, BI-EP1, ZS Rekurze 17
18 Jak vidět rekurzi? Kdyby byla instance problému o maličko menší, uměl bych řešení rozšířit Voláme funkci, aby menší instanci vyřešila (jako když voláme standardní funkci) Je lepší si příliš nepředstavovat úrovně zanoření a zásobník (ale měli bychom znát) Martin Kačer, BI-EP1, ZS Rekurze 18
19 Kopírování seznamu do pole Na vstupu spojový seznam Výsledkem pole se stejnými prvky X Martin Kačer, BI-EP1, ZS Rekurze 19
20 Kopírování seznamu do pole Standardní řešení má 2 průchody: 1. Určení počtu prvků 2. Kopírování Rekurze: Při zanořování počítá prvky Při návratu kopíruje Martin Kačer, BI-EP1, ZS Rekurze 20
21 Seznam rekurzivní krok Zkopírujeme zbytek seznamu do dostatečně velkého pole Na první pozici přidáme první prvek Potřebujeme přidat parametr Kolik prvků na začátku vynechat Martin Kačer, BI-EP1, ZS Rekurze 21
22 Seznam kód Ukončovací podmínka = prázdný seznam Šlo by to bez rekurze napsat kratší? int[] copylist(node head) { return copyrest(0, head); } int[] copyrest(int n, Node head) { if (head == null) return new int[n]; int[] res = copyrest(n+1, head.next); res[n] = head.number; return res; } Martin Kačer, BI-EP1, ZS Rekurze 22
23 Rekurze na co dát pozor Ukončovací podmínka MUSÍ být vždy přítomna Místo na systémovém zásobníku Je omezené, musíme s tím počítat Časová složitost! Někdy nesnadné určit Martin Kačer, BI-EP1, ZS Rekurze 23
24 Rekurze operační složitost Lineární O(h) Kaskádní (k volání) O(k h ) Podrobněji viz BI-EFA Martin Kačer, BI-EP1, ZS Rekurze 24
5. Dynamické programování
5. Dynamické programování BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D. 2010-11 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické
Rekurze. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.
Rekurze doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Rekurze 161 / 344 Osnova přednášky
Struktura programu v době běhu
Struktura programu v době běhu Miroslav Beneš Dušan Kolář Struktura programu v době běhu Vztah mezi zdrojovým programem a činností přeloženého programu reprezentace dat správa paměti aktivace podprogramů
Rozklad problému na podproblémy, rekurze
Příprava studijního programu Informatika je podporována projektem financovaným z Evropského sociálního fondu a rozpočtu hlavního města Prahy. Praha & EU: Investujeme do vaší budoucnosti Rozklad problému
Rekurzivní algoritmy
Rekurzivní algoritmy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA) ZS
Úvod do programování 10. hodina
Úvod do programování 10. hodina RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Umíme z minulé hodiny Syntax Dvojrozměrné pole
Rozklad problému na podproblémy
Rozklad problému na podproblémy Postupný návrh programu rozkladem problému na podproblémy zadaný problém rozložíme na podproblémy pro řešení podproblémů zavedeme abstraktní příkazy s pomocí abstraktních
Rozklad problému na podproblémy, rekurze
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Rozklad problému na podproblémy, rekurze BI-PA1 Programování a algoritmizace 1 Katedra teoretické informatiky Miroslav Balík Fakulta informačních
5. přednáška - Rozklad problému na podproblémy
5. přednáška - Rozklad problému na podproblémy Obsah přednášky: Rozklad problému na podproblémy. Rekurze. Algoritmizace (Y36ALG), Šumperk - 5. přednáška 1 Rozklad problému na podproblémy Postupný návrh
Funkce pokročilé možnosti. Úvod do programování 2 Tomáš Kühr
Funkce pokročilé možnosti Úvod do programování 2 Tomáš Kühr Funkce co už víme u Nebo alespoň máme vědět... J u Co je to funkce? u Co jsou to parametry funkce? u Co je to deklarace a definice funkce? K
BI-EP1 Efektivní programování 1
BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D. 2010-11 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze Evropský
Rekurze. Pavel Töpfer, 2017 Programování 1-8 1
Rekurze V programování ve dvou hladinách: - rekurzivní algoritmus (řešení úlohy je definováno pomocí řešení podúloh stejného charakteru) - rekurzivní volání procedury nebo funkce (volá sama sebe přímo
Rekurze. Jan Hnilica Počítačové modelování 12
Rekurze Jan Hnilica Počítačové modelování 12 1 Rekurzivní charakter úlohy Výpočet faktoriálu faktoriál : n! = n (n - 1) (n - 2)... 2 1 (0! je definován jako 1) můžeme si všimnout, že výpočet n! obsahuje
Funkce, intuitivní chápání složitosti
Příprava studijního programu Informatika je podporována projektem financovaným z Evropského sociálního fondu a rozpočtu hlavního města Prahy. Praha & EU: Investujeme do vaší budoucnosti Funkce, intuitivní
Dekompozice problému, rekurze
Dekompozice problému, rekurze BI-PA1 Programování a Algoritmizace 1 Ladislav Vagner, Josef Vogel Katedra teoretické informatiky a Katedra softwarového inženýrství Fakulta informačních technologíı České
Michal Krátký. Úvod do programování. Cíl kurzu. Podmínky získání zápočtu III/III
Michal Krátký Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 tel.: +420 596 993 239 místnost: A1004 mail: michal.kratky@vsb.cz
Slepé prohledávání do šířky Algoritmus prohledávání do šířky Při tomto způsobu prohledávání máme jistotu, že vždy nalezneme koncový stav, musíme ale p
Hanojská věž Stavový prostor 1. množina stavů S = {s} 2. množina přechodů mezi stavy (operátorů) Φ = {φ} s k = φ ki (s i ) zadání [1 1 1] řešení [3 3 3] dva možné první tahy: [1 1 2] [1 1 3] který tah
8. Rekurze. doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze
Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 8 1 Základy algoritmizace 8. Rekurze doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří Vokřínek,
Více o konstruktorech a destruktorech
Více o konstruktorech a destruktorech Více o konstruktorech a o přiřazení... inicializovat objekt lze i pomocí jiného objektu lze provést přiřazení mezi objekty v původním C nebylo možné provést přiřazení
5 Rekurze a zásobník. Rekurzivní volání metody
5 Rekurze a zásobník Při volání metody z metody main() se do zásobníku uloží aktivační záznam obsahující - parametry - návratovou adresu, tedy adresu, kde bude program pokračovat v metodě main () po skončení
Základní datové struktury III: Stromy, haldy
Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní
Michal Krátký. Úvod do programovacích jazyků (Java), 2006/2007
Úvod do programovacích jazyků (Java) Michal Krátký Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programovacích jazyků (Java), 2006/2007 c 2006 Michal Krátký Úvod do programovacích jazyků
Správa paměti. doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 /
Správa paměti doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / 597 324 213 http://www.cs.vsb.cz/benes Miroslav.Benes@vsb.cz Obsah přednášky Motivace Úrovně správy paměti. Manuální
Prohledávání do šířky = algoritmus vlny
Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé
Programovací jazyk Haskell
Programovací jazyk Haskell Ing. Lumír Návrat katedra informatiky, D 403 59 732 3252 Historie září 1991 Gofer experimentální jazyk Mark P. Jones únor 1995 Hugs Hugs98 téměř úplná implementace jazyka Haskell
Programovací í jazyk Haskell
Historie Programovací í jazyk Haskell doc. Dr. Ing. Miroslav Beneš katedra informatiky, A-1007 59 732 4213 září 1991 Gofer experimentální jazyk Mark P. Jones únor 1995 Hugs Hugs98 téměř úplná implementace
14.4.2010. Obsah přednášky 7. Základy programování (IZAPR) Přednáška 7. Parametry metod. Parametry, argumenty. Parametry metod.
Základy programování (IZAPR) Přednáška 7 Ing. Michael Bažant, Ph.D. Katedra softwarových technologií Kancelář č. 229, Náměstí Čs. legií Michael.Bazant@upce.cz Obsah přednášky 7 Parametry metod, předávání
Lineární spojový seznam (úvod do dynamických datových struktur)
Lineární spojový seznam (úvod do dynamických datových struktur) Jan Hnilica Počítačové modelování 11 1 Dynamické datové struktury Definice dynamické struktury jsou vytvářeny za běhu programu z dynamicky
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška desátá Miroslav Kolařík Zpracováno dle R. Bělohlávek, V. Vychodil: Diskrétní matematika 2, http://phoenix.inf.upol.cz/esf/ucebni/dm2.pdf P. Martinek: Základy teoretické informatiky,
Mělká a hluboká kopie
Karel Müller, Josef Vogel (ČVUT FIT) Mělká a hluboká kopie BI-PA2, 2011, Přednáška 5 1/28 Mělká a hluboká kopie Ing. Josef Vogel, CSc Katedra softwarového inženýrství Katedra teoretické informatiky, Fakulta
Je n O(n 2 )? Je n 2 O(n)? Je 3n 5 +2n Θ(n 5 )? Je n 1000 O(2 n )? Je 2 n O(n 2000 )? Cvičení s kartami aneb jak rychle roste exponenciála.
Příklady: Je n O(n 2 )? Je n 2 O(n)? Je 3n 5 +2n 3 +1000 Θ(n 5 )? Je n 1000 O(2 n )? Je 2 n O(n 2000 )? Cvičení s kartami aneb jak rychle roste exponenciála. Další pojmy složitosti Složitost v nejlepším
Rekurze. IB111 Úvod do programování skrze Python
Rekurze IB111 Úvod do programování skrze Python 2015 1 / 64 XKCD: Tabletop Roleplaying https://xkcd.com/244/ 2 / 64 To iterate is human, to recurse divine. (L. Peter Deutsch) 3 / 64 Rekurze použití funkce
Časová a prostorová složitost algoritmů
.. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová
1. Úvodní informace. BI-EP1 Efektivní programování Martin Kačer
1. Úvodní informace BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D. 2010-11 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické
Programování v jazyce JavaScript
Programování v jazyce JavaScript Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Pavel Štěpán, 2011 Dědičnost objektů BI-JSC Evropský sociální fond
Algoritmizace a programování
Algoritmizace a programování Procedurální programování Rekurze Jazyk C České vysoké učení technické Fakulta elektrotechnická Ver.1.10 J. Zděnek 2015 Procedurální programování - zásady Postupný návrh programu
Stromy. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol.
Stromy Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol., 2018, B6B36DSA 01/2018, Lekce 9 https://cw.fel.cvut.cz/wiki/courses/b6b36dsa/start
MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ
MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ 1) PROGRAM, ZDROJOVÝ KÓD, PŘEKLAD PROGRAMU 3 2) HISTORIE TVORBY PROGRAMŮ 3 3) SYNTAXE A SÉMANTIKA 3 4) SPECIFIKACE
Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy
Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný
DYNAMICKÉ PROGRAMOVÁNÍ A PROBLÉM BATOHU
ČVUT V PRAZE FAKULTA INFORMAČNÍCH TECHNOLOGIÍ JAN SCHMIDT A PETR FIŠER MI-PAA DYNAMICKÉ PROGRAMOVÁNÍ A PROBLÉM BATOHU EVROPSKÝ SOCIÁLNÍ FOND PRAHA A EU: INVESTUJEME DO VAŠÍ BUDOUCNOSTI Dynamické programování
Dynamicky vázané metody. Pozdní vazba, virtuální metody
Dynamicky vázané metody Pozdní vazba, virtuální metody Motivace... class TBod protected: float x,y; public: int vrat_pocet_bodu() return 1; ; od třídy TBod odvodíme: class TUsecka: public TBod protected:
Základní datové struktury
Základní datové struktury Martin Trnečka Katedra informatiky, Přírodovědecká fakulta Univerzita Palackého v Olomouci 4. listopadu 2013 Martin Trnečka (UPOL) Algoritmická matematika 1 4. listopadu 2013
Statické proměnné a metody. Tomáš Pitner, upravil Marek Šabo
Statické proměnné a metody Tomáš Pitner, upravil Marek Šabo Úvod Se statickou metodou jsme se setkali už u úplně prvního programu - Hello, world! public class Demo { public static void main(string[] args)
Rekurze. Princip a použití rekurze. Převod rekurze na iteraci.
Rekurze. Princip a použití rekurze. Převod rekurze na iteraci. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
6. Základy výpočetní geometrie
6. Základy výpočetní geometrie BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D. 2010-11 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení
Databáze, sítě a techniky programování X33DSP
Databáze, sítě a techniky programování X33DSP Anotace: Náplní předmětu jsou některé techniky a metody používané ve výpočetních systémech zaměřených na biomedicínské inženýrství. Cílem je položit jednotný
Dynamické programování
Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
Spojová implementace lineárních datových struktur
Spojová implementace lineárních datových struktur doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB
VYŠŠÍ ODBORNÁ ŠKOLA a STŘEDNÍ PRŮMYSLOVÁ ŠKOLA Mariánská 1100, 407 47 Varnsdorf PROGRAMOVÁNÍ FUNKCE, REKURZE, CYKLY
Jméno a příjmení: Školní rok: Třída: VYŠŠÍ ODBORNÁ ŠKOLA a STŘEDNÍ PRŮMYSLOVÁ ŠKOLA Mariánská 1100, 407 47 Varnsdorf 2007/2008 VI2 PROGRAMOVÁNÍ FUNKCE, REKURZE, CYKLY Petr VOPALECKÝ Číslo úlohy: Počet
Michal Krátký. Úvod do programovacích jazyků (Java), 2006/2007
Úvod do programovacích jazyků (Java) Michal Krátký 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programovacích jazyků (Java), 2006/2007 c 2006 Michal Krátký Úvod do programovacích jazyků
8 Třídy, objekty, metody, předávání argumentů metod
8 Třídy, objekty, metody, předávání argumentů metod Studijní cíl Tento studijní blok má za cíl pokračovat v základních prvcích jazyka Java. Konkrétně bude věnována pozornost třídám a objektům, instančním
DobSort. Úvod do programování. DobSort Implementace 1/3. DobSort Implementace 2/3. DobSort - Příklad. DobSort Implementace 3/3
DobSort Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 V roce 1980 navrhl Dobosiewicz variantu (tzv. DobSort),
Řešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C
Hanojské věže - 3 kolíky A, B, C - na A je N disků různé velikosti, seřazené od největšího (dole) k nejmenšímu (nahoře) - kolíky B a C jsou prázdné - úkol: přenést všechny disky z A na B, mohou se odkládat
Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010
Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu
Martin Flusser. November 1, 2016
ZPRO cvičení 4 Martin Flusser Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague November 1, 2016 Outline I 1 Outline 2 Cykly 3 Cykly cvičení 4 Rekurze 5 Rekurze
2. Mřížky / Záplavové vyplňování
2. Mřížky / Záplavové vyplňování BI-EP2 Efektivní programování 2 LS 2017/2018 Ing. Martin Kačer, Ph.D. 2011-18 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké
NetBeans platforma. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
NetBeans platforma Aplikační programování v Javě (BI-APJ) - 7 Ing. Jiří Daněček Katedra softwarového inženýrství Fakulta informačních technologií ČVUT Praha Evropský sociální fond Praha & EU: Investujeme
Programování v jazyce JavaScript
Programování v jazyce JavaScript Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Pavel Štěpán, 2011 Funkce podrobněji BI-JSC Evropský sociální fond
Rekurze a zásobník. Jak se vypočítá rekurzivní program? volání metody. vyšší adresy. main(){... fa(); //push ret1... } ret1
Rekurze a zásobník Jak se vypočítá rekurzivní program? volání metody vyšší adresy ret1 main(){... fa(); //push ret1... PC ret2 void fa(){... fb(); //push ret2... return //pop void fb(){... return //pop
Stromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
Stromy. Příklady. Rekurzivní datové struktury. Základní pojmy
Základní pojmy Stromy doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / 597 324 213 http://www.cs.vsb.cz/benes Miroslav.Benes@vsb.cz Graf uzly hrany orientované / neorientované Souvislý
2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus pro vyhledání položky v binárním stromu.
Informatika 10. 9. 2013 Jméno a příjmení Rodné číslo 1) Napište algoritmus pro rychlé třídění (quicksort). 2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus
Algoritmy a datové struktury
Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu
Michal Krátký. Úvod do programovacích jazyků (Java), 2006/2007
Úvod do programovacích jazyků (Java) Michal Krátký 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programovacích jazyků (Java), 2006/2007 c 2006 Michal Krátký Úvod do programovacích jazyků
BI-EP2 Efektivní programování 2
BI-EP2 Efektivní programování 2 LS 2017/2018 Ing. Martin Kačer, Ph.D. 2011-18 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze Vznik předmětu
Programování 3. hodina. RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015
Programování 3. hodina RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Umíme z minulé hodiny Implementace zásobníku a fronty pomocí
Definice funkcí a procedur. Mnoho operací provozujeme opakovaně, proto je hloupé programovat je při každém použití znovu.
Definice funkcí a procedur Mnoho operací provozujeme opakovaně, proto je hloupé programovat je při každém použití znovu. Definice funkcí a procedur Mnoho operací provozujeme opakovaně, proto je hloupé
Fronta (Queue) Úvod do programování. Fronta implementace. Fronta implementace pomocí pole 1/4. Fronta implementace pomocí pole 3/4
Fronta (Queue) Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Fronta uplatňuje mechanismus přístupu FIFO first
Úvod do programování. Lekce 5
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Inovace a zvýšení atraktivity studia optiky reg. č.: CZ.1.07/2.2.00/07.0289 Úvod do programování Lekce 5 Tento projekt je spolufinancován Evropským
prohled av an ı graf u Karel Hor ak, Petr Ryˇsav y 16. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT
prohledávání grafů Karel Horák, Petr Ryšavý 16. března 2016 Katedra počítačů, FEL, ČVUT Příklad 1 Nad frontou (queue) byly provedeny následující operace: push(1) push(2) print(poll()) print(peek()) print(peek())
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK)
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) Strom / tree uzel, vrchol / node, vertex hrana / edge vnitřní uzel
Abstraktní třídy, polymorfní struktury
Karel Müller, Josef Vogel (ČVUT FIT) Abstraktní třídy, polymorfní struktury BI-PA2, 2011, Přednáška 9 1/32 Abstraktní třídy, polymorfní struktury Ing. Josef Vogel, CSc Katedra softwarového inženýrství
Pole a Funkce. Úvod do programování 1 Tomáš Kühr
Pole a Funkce Úvod do programování 1 Tomáš Kühr (Jednorozměrné) pole u Datová struktura u Lineární u Homogenní = prvky stejného datového typu u Statická = předem určený počet prvků u Pole umožňuje pohodlně
Obsah Techniky návrhu algoritmů Rekurze, algoritmy prohledávání s návratem, dynamické programování Rekurze... 5
Techniky návrhu algoritmů Rekurze, algoritmy prohledávání s návratem, dynamické programování Zametací technika, metoda rozděl a panuj a prořezávej a hledej Obsah Techniky návrhu algoritmů... 2 Rekurze,
Přednáška 3. Rekurze 1
Paradigmata programování 1 Přednáška 3. Rekurze 1 Michal Krupka KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI Obsah 1 Příklady 2 Rekurzivní procedury a rekurzivní výpočetní proces 3 Další příklady
Úvod do programovacích jazyků (Java)
Úvod do programovacích jazyků (Java) Michal Krátký Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programovacích jazyků (Java), 2007/2008 c 2006 2008 Michal Krátký Úvod do programovacích
PODOBÁ SE JAZYKU C S NĚKTERÝMI OMEZENÍMI GLOBÁLNÍ PROMĚNNÉ. NSWI162: Sémantika programů 2
PI JE JEDNODUCHÝ IMPERATIVNÍ PROGRAMOVACÍ JAZYK OBSAHUJE PODPORU ANOTACÍ NEOBSAHUJE NĚKTERÉ TYPICKÉ KONSTRUKTY PROGRAMOVACÍCH JAZYKŮ JAKO JSOU REFERENCE, UKAZATELE, GLOBÁLNÍ PROMĚNNÉ PODOBÁ SE JAZYKU C
Jednoznačné a nejednoznačné gramatiky
BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 2/36 Jednoznačné a nejednoznačné gramatiky BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 4/36 Automaty a gramatiky(bi-aag) 11.
Programování v C++ 1, 14. cvičení
Programování v C++ 1, 14. cvičení výpustka, přetěžování funkcí, šablony funkcí 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 2 funkcí
Abstraktní datové typy
Karel Müller, Josef Vogel (ČVUT FIT) Abstraktní datové typy BI-PA2, 2011, Přednáška 10 1/27 Abstraktní datové typy Ing. Josef Vogel, CSc Katedra softwarového inženýrství Katedra teoretické informatiky,
1. lekce. do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme:
1. lekce 1. Minimální program do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme: #include #include int main() { printf("hello world!\n"); return 0; 2.
1. Programování proti rozhraní
1. Programování proti rozhraní Cíl látky Cílem tohoto bloku je seznámení se s jednou z nejdůležitější programátorskou technikou v objektově orientovaném programování. Tou technikou je využívaní rozhraní
1. lekce. do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme:
1. lekce 1. Minimální program do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme: #include #include int main() { printf("hello world!\n"); return 0; 2.
Funkce, procedury, složitost
Funkce, procedury, složitost BI-PA1 Programování a Algoritmizace 1 Miroslav Baĺık, Ladislav Vagner a Josef Vogel Katedra teoretické informatiky a Katedra softwarového inženýrství Fakulta informačních technologíı
Správné vytvoření a otevření textového souboru pro čtení a zápis představuje
f1(&pole[4]); funkci f1 předáváme hodnotu 4. prvku adresu 4. prvku adresu 5. prvku hodnotu 5. prvku symbolická konstanta pro konec souboru je eof EOF FEOF feof Správné vytvoření a otevření textového souboru
Programování v jazyce JavaScript
Programování v jazyce JavaScript Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Pavel Štěpán, 2011 Anonymní funkce BI-JSC Evropský sociální fond
Abstraktní datové typy: zásobník
Abstraktní datové typy: zásobník doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / 597 324 213 http://www.cs.vsb.cz/benes Miroslav.Benes@vsb.cz Abstraktní datové typy omezené rozhraní
PROHLEDÁVÁNÍ GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
PROHLEDÁVÁNÍ GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 4 Evropský sociální fond Praha & EU: Investujeme do
Operační systémy. Cvičení 4: Programování v C pod Unixem
Operační systémy Cvičení 4: Programování v C pod Unixem 1 Obsah cvičení Řídící struktury Funkce Dynamická alokace paměti Ladění programu Kde najít další informace Poznámka: uvedené příklady jsou dostupné
DSA, První krok: máme dokázat, že pro left = right vrátí volání f(array, elem, left, right)
Indukcí dokažte následující výrok: pokud lef t a right jsou parametry funkce f a platí left right, pak volání f(array, left, right) vrátí minimální hodnotu z hodnot všech prvků v poli array na indexech
Algoritmy výpočetní geometrie
Algoritmy výpočetní geometrie prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK)
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) Strom / tree uzel, vrchol / node, vertex hrana / edge vnitřní uzel
Michal Krátký. Úvod do programovacích jazyků (Java), 2006/2007
Úvod do programovacích jazyků (Java) Michal Krátký Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programovacích jazyků (Java), 2006/2007 c 2006 Michal Krátký Úvod do programovacích jazyků
Pointery II. Jan Hnilica Počítačové modelování 17
Pointery II 1 Pointery a pole Dosavadní způsob práce s poli zahrnoval: definici pole jakožto kolekce proměnných (prvků) jednoho typu, umístěných v paměti za sebou int pole[10]; práci s jednotlivými prvky
Pokročilé programování v jazyce C pro chemiky (C3220) Třídy v C++
Pokročilé programování v jazyce C pro chemiky (C3220) Třídy v C++ Třídy v C++ Třídy jsou uživatelsky definované typy podobné strukturám v C, kromě datových položek (proměnných) však mohou obsahovat i funkce
KTE / ZPE Informační technologie
4 KTE / ZPE Informační technologie Ing. Petr Kropík, Ph.D. email: pkropik@kte.zcu.cz tel.: +420 377 63 4639, +420 377 63 4606 (odd. informatiky) Katedra teoretické elektrotechniky FEL ZČU Plzeň Největší
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu Autor Jazyk Téma sady didaktických materiálů Téma didaktického materiálu Vyučovací předmět Cílová skupina (ročník) Úroveň
Obecná informatika. Matematicko-fyzikální fakulta Univerzity Karlovy v Praze. Podzim 2012
Obecná informatika Přednášející Putovních přednášek Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Podzim 2012 Přednášející Putovních přednášek (MFF UK) Obecná informatika Podzim 2012 1 / 18
Základní způsoby: -Statické (přidělění paměti v čase překladu) -Dynamické (přiděleno v run time) v zásobníku na haldě
Metody přidělování paměti Základní způsoby: -Statické (přidělění paměti v čase překladu) -Dynamické (přiděleno v run time) v zásobníku na haldě Důležitá hlediska jazykových konstrukcí: Dynamické typy Dynamické
Lineární datové struktury
Lineární datové struktury doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Lineární datové