5. Dynamické programování

Rozměr: px
Začít zobrazení ze stránky:

Download "5. Dynamické programování"

Transkript

1 5. Dynamické programování BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

2 Dynamické programování Řešení problému redukcí na menší Omezení opakování výpočtu (rozdíl oproti rekurzi) Často zásadní vliv na složitost! lineární/kvadratický vs. exponenciální tj. použitelný vs. nepoužitelný Martin Kačer, BI-EP1, ZS Dynamické programování 2

3 Příklad Fibonacciho čísla 1, 1, 2, 3, 5, 8, 13, 21, 34, F(1) = F(2) = 1 pro N>2: F(N) = F(N-2) + F(N-1) Rekurzivní řešení se nabízí Martin Kačer, BI-EP1, ZS Dynamické programování 3

4 Fibonacciho čísla rekurze F(1) = F(2) = 1 pro N>2: F(N) = F(N-2) + F(N-1) int fib(int n) { if (n <= 2) return 1; return fib(n-2) + fib(n-1); } Martin Kačer, BI-EP1, ZS Dynamické programování 4

5 Strom rekurzivního volání fib(6) fib(4) fib(5) fib(2) fib(3) fib(3) fib(4) fib(1) fib(2) fib(1) fib(2) fib(2) fib(3) fib(1) fib(2) Martin Kačer, BI-EP1, ZS Dynamické programování 5

6 Jak zamezit opakování? Pamatovat si, co už bylo spočítáno Martin Kačer, BI-EP1, ZS Dynamické programování 6

7 Jak zamezit opakování? Pamatovat si, co už bylo spočítáno Martin Kačer, BI-EP1, ZS Dynamické programování 7

8 Jak zamezit opakování? Pamatovat si, co už bylo spočítáno Martin Kačer, BI-EP1, ZS Dynamické programování 8

9 Jak zamezit opakování? Pamatovat si, co už bylo spočítáno Martin Kačer, BI-EP1, ZS Dynamické programování 9

10 Jak zamezit opakování? Pamatovat si, co už bylo spočítáno Martin Kačer, BI-EP1, ZS Dynamické programování 10

11 Jak zamezit opakování? Pamatovat si, co už bylo spočítáno Martin Kačer, BI-EP1, ZS Dynamické programování 11

12 Jak zamezit opakování? Pamatovat si, co už bylo spočítáno Martin Kačer, BI-EP1, ZS Dynamické programování 12

13 Jak zamezit opakování? Pamatovat si, co už bylo spočítáno Martin Kačer, BI-EP1, ZS Dynamické programování 13

14 Jak zamezit opakování? Pamatovat si, co už bylo spočítáno Martin Kačer, BI-EP1, ZS Dynamické programování 14

15 Jak zamezit opakování? Pamatovat si, co už bylo spočítáno Martin Kačer, BI-EP1, ZS Dynamické programování 15

16 Fibonacciho čísla kód int fib(int n) { if (result[n] > 0) return result[n]; if (n <= 2) return result[n] = 1; return result[n] = fib(n-2) + fib(n-1); } Martin Kačer, BI-EP1, ZS Dynamické programování 16

17 Přístup shora Kód velmi podobný rekurzi Pamatujeme si již spočítané Nulování pole Test, zda existuje hodnota Lze použít asociativní tabulku (Map) Často nejjednodušší na představu Může být neefektivní Martin Kačer, BI-EP1, ZS Dynamické programování 17

18 Přístup zdola Z menších instancí generujeme větší Martin Kačer, BI-EP1, ZS Dynamické programování 18

19 Přístup zdola Z menších instanci generujeme větší Martin Kačer, BI-EP1, ZS Dynamické programování 19

20 Přístup zdola Z menších instanci generujeme větší Martin Kačer, BI-EP1, ZS Dynamické programování 20

21 Přístup zdola Z menších instanci generujeme větší Martin Kačer, BI-EP1, ZS Dynamické programování 21

22 Přístup zdola Z menších instanci generujeme větší Martin Kačer, BI-EP1, ZS Dynamické programování 22

23 Fibonacciho čísla kód II int fib(int n) { result[1] = result[2] = 1; for (int i = 3; i <= n; ++i) result[i] = result[i-1] + result[i-2]; return result[n]; } Martin Kačer, BI-EP1, ZS Dynamické programování 23

24 Snížení spotřeby paměti Postupně zapomínáme, co není potřeba Martin Kačer, BI-EP1, ZS Dynamické programování 24

25 Snížení spotřeby paměti Postupně zapomínáme, co není potřeba Martin Kačer, BI-EP1, ZS Dynamické programování 25

26 Snížení spotřeby paměti Postupně zapomínáme, co není potřeba Martin Kačer, BI-EP1, ZS Dynamické programování 26

27 Snížení spotřeby paměti Postupně zapomínáme, co není potřeba Martin Kačer, BI-EP1, ZS Dynamické programování 27

28 Snížení spotřeby paměti Postupně zapomínáme, co není potřeba Martin Kačer, BI-EP1, ZS Dynamické programování 28

29 Snížení spotřeby paměti Postupně zapomínáme, co není potřeba Martin Kačer, BI-EP1, ZS Dynamické programování 29

30 Fibonacciho čísla kód III int fib(int n) { int res = 1, prev = 1; for (int i = 3; i <= n; ++i) { int nxt = res + prev; prev = res; res = nxt; } return res; } Martin Kačer, BI-EP1, ZS Dynamické programování 30

31 Obecné schéma D.P. Vždy přítomno: Řešení problému pomocí menší instance Pamatování výsledků Obvykle jde: Postup zdola, tj. od nejmenších instancí Odstranění rekurze Často navíc: Zapomínání => menší spotřeba paměti Martin Kačer, BI-EP1, ZS Dynamické programování 31

32 Kde jsme již viděli D.P.? Vybraná neklesající posloupnost Přidávání čísel po jednom Tj. řešení odvodím z řešení menší instance (o číslo kratší posloupnost) O(n. log n) Triangle: Maximální trojúhelníková oblast Z menších trojúhelníků skládám větší O(n) Martin Kačer, BI-EP1, ZS Dynamické programování 32

33 Společná podposloupnost Najděte nejdelší společnou podposloupnost (i nesouvislou) řetězců a b r a k a d a b r a b a r u n k a Martin Kačer, BI-EP1, ZS Dynamické programování 33

34 Společná podposloupnost Najděte nejdelší společnou podposloupnost (i nesouvislou) řetězců a b r a k a d a b ra b a r unka Martin Kačer, BI-EP1, ZS Dynamické programování 34

35 Společná podposloupnost Ono to ale vůbec nemusí být jednoduché Například: a b r a k a d a b r a a b r a k a d a b r a d o b r y k r a m a b r a k Martin Kačer, BI-EP1, ZS Dynamické programování 35

36 Společná podposloupnost Ono to ale vůbec nemusí být jednoduché Například: a b r a k a d a b r a a b r a k a d a b r a d o b r y k r a m a b r a k Martin Kačer, BI-EP1, ZS Dynamické programování 36

37 Rekurzivní řešení Pomohlo by, kdybychom uměli řešení pro jakékoli kratší řetězce? Martin Kačer, BI-EP1, ZS Dynamické programování 37

38 Rekurzivní řešení Pomohlo by, kdybychom uměli řešení pro jakékoli kratší řetězce? xxxxxxxxxxxx A xxxxxxxxxxxxxxx A Martin Kačer, BI-EP1, ZS Dynamické programování 38

39 Rekurzivní řešení Pomohlo by, kdybychom uměli řešení pro jakékoli kratší řetězce? xxxxxxxxxxxx B xxxxxxxxxxxxxxx C Martin Kačer, BI-EP1, ZS Dynamické programování 39

40 Podposloupnost rekurzivně char[] s1, s2; int commonlen (int m1, int m2) { if (m1 == 0 m2 == 0) return 0; if (s1[m1-1] == s2[m2-1]) return 1 + commonlen(m1-1, m2-1); return Math.max( commonlen(m1, m2-1), commonlen(m1-1, m2)); } Martin Kačer, BI-EP1, ZS Dynamické programování 40

41 Podposloupnost dynamicky m m1 a b r a k a d a b r a 0 1 d 2 o 3 b 4 r 5 y 6 k 7 r 8 a 9 m Martin Kačer, BI-EP1, ZS Dynamické programování 41

42 Podposloupnost dynamicky m m1 a b r a k a d a b r a 0 1 d 2 o 3 b 4 r 5 y 6 k 7 r 8 a 9 m +1 Martin Kačer, BI-EP1, ZS Dynamické programování 42

43 Podposloupnost dynamicky m m1 a b r a k a d a b r a 0 1 d 2 o 3 b 4 r 5 y 6 k 7 r 8 a 9 m max Martin Kačer, BI-EP1, ZS Dynamické programování 43

44 Podposloupnost dynamicky int best[][] = new int[len1+1][len2+1]; int commonlen (char[] s1, char[] s2) { for (int i = 0; i <= len1; ++i) best[i][0] = 0; for (int i = 0; i <= len2; ++i) best[0][i] = 0; for (int i = 1; i <= len1; ++i) for (int j = 1; j <= len2; ++j) best[i][j] = (s1[i-1] == s2[j-1])? 1 + best[i-1][j-1] } : Math.max(best[i-1][j], best[i][j-1]); return best[len1][len2]; Martin Kačer, BI-EP1, ZS Dynamické programování 44

45 Hry obecně Tahové hry často vedou na rekurzi Vysoká operační složitost int getbestresult(state s, Player move) { if (isgameover(s)) return endresult(s); for (State m : getallmoves(s)) { int x = reverseresult( getbestresult(m, other(move))); if (x > best) best = x; } return best; Martin Kačer, BI-EP1, ZS Dynamické programování 45

46 Hry obecně Tahové hry často vedou na rekurzi Vysoká operační složitost Pokud se stavy spojují, lze použít dynamické programování Martin Kačer, BI-EP1, ZS Dynamické programování 46

47 Typické příklady D.P. Posloupnosti Rozdělování Vyhledávání Porovnávání Kombinování prvků Martin Kačer, BI-EP1, ZS Dynamické programování 47

48 Jak poznat D.P. obecně? Rozložení na menší (pod)problém(y) Optimální podstruktura (Bellmanův princip optimality) Část optimálního řešení je opět optimální Martin Kačer, BI-EP1, ZS Dynamické programování 48

49 Dyn. programování souhrn Problémy s rekurzivní povahou Optimální podstruktura Princip podobný jako u rekurze Pamatujeme si výsledky Zásadní rozdíl v časové složitosti!!! Martin Kačer, BI-EP1, ZS Dynamické programování 49

4. Rekurze. BI-EP1 Efektivní programování Martin Kačer

4. Rekurze. BI-EP1 Efektivní programování Martin Kačer 4. Rekurze BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D. 2010-11 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze

Více

Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010

Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu

Více

Dynamické programování

Dynamické programování Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)

Více

BI-EP1 Efektivní programování 1

BI-EP1 Efektivní programování 1 BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D. 2010-11 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze Evropský

Více

Rekurzivní algoritmy

Rekurzivní algoritmy Rekurzivní algoritmy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA) ZS

Více

Rekurze. Pavel Töpfer, 2017 Programování 1-8 1

Rekurze. Pavel Töpfer, 2017 Programování 1-8 1 Rekurze V programování ve dvou hladinách: - rekurzivní algoritmus (řešení úlohy je definováno pomocí řešení podúloh stejného charakteru) - rekurzivní volání procedury nebo funkce (volá sama sebe přímo

Více

Rozklad problému na podproblémy

Rozklad problému na podproblémy Rozklad problému na podproblémy Postupný návrh programu rozkladem problému na podproblémy zadaný problém rozložíme na podproblémy pro řešení podproblémů zavedeme abstraktní příkazy s pomocí abstraktních

Více

Rozklad problému na podproblémy, rekurze

Rozklad problému na podproblémy, rekurze Příprava studijního programu Informatika je podporována projektem financovaným z Evropského sociálního fondu a rozpočtu hlavního města Prahy. Praha & EU: Investujeme do vaší budoucnosti Rozklad problému

Více

Struktura programu v době běhu

Struktura programu v době běhu Struktura programu v době běhu Miroslav Beneš Dušan Kolář Struktura programu v době běhu Vztah mezi zdrojovým programem a činností přeloženého programu reprezentace dat správa paměti aktivace podprogramů

Více

Rozklad problému na podproblémy, rekurze

Rozklad problému na podproblémy, rekurze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Rozklad problému na podproblémy, rekurze BI-PA1 Programování a algoritmizace 1 Katedra teoretické informatiky Miroslav Balík Fakulta informačních

Více

5. přednáška - Rozklad problému na podproblémy

5. přednáška - Rozklad problému na podproblémy 5. přednáška - Rozklad problému na podproblémy Obsah přednášky: Rozklad problému na podproblémy. Rekurze. Algoritmizace (Y36ALG), Šumperk - 5. přednáška 1 Rozklad problému na podproblémy Postupný návrh

Více

Rekurze. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.

Rekurze. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12. Rekurze doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Rekurze 161 / 344 Osnova přednášky

Více

Dynamické programování

Dynamické programování Dynamické programování Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 1 / 26 Memoizace Dynamické programování 2 / 26 Memoizace (Memoization/caching) Pro dlouhotrvající funkce f (x) Jednou

Více

Michal Krátký. Úvod do programovacích jazyků (Java), 2006/2007

Michal Krátký. Úvod do programovacích jazyků (Java), 2006/2007 Úvod do programovacích jazyků (Java) Michal Krátký Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programovacích jazyků (Java), 2006/2007 c 2006 Michal Krátký Úvod do programovacích jazyků

Více

1. Úvodní informace. BI-EP1 Efektivní programování Martin Kačer

1. Úvodní informace. BI-EP1 Efektivní programování Martin Kačer 1. Úvodní informace BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D. 2010-11 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

8. Rekurze. doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze

8. Rekurze. doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 8 1 Základy algoritmizace 8. Rekurze doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří Vokřínek,

Více

Binární soubory (datové, typované)

Binární soubory (datové, typované) Binární soubory (datové, typované) - na rozdíl od textových souborů data uložena binárně (ve vnitřním tvaru jako v proměnných programu) není čitelné pro člověka - všechny záznamy téhož typu (může být i

Více

Návrh Designu: Radek Mařík

Návrh Designu: Radek Mařík 1. 7. Najděte nejdelší rostoucí podposloupnost dané posloupnosti. Použijte metodu dynamického programování, napište tabulku průběžných délek částečných výsledků a tabulku předchůdců. a) 5 8 11 13 9 4 1

Více

Základní datové struktury III: Stromy, haldy

Základní datové struktury III: Stromy, haldy Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní

Více

Databáze, sítě a techniky programování X33DSP

Databáze, sítě a techniky programování X33DSP Databáze, sítě a techniky programování X33DSP Anotace: Náplní předmětu jsou některé techniky a metody používané ve výpočetních systémech zaměřených na biomedicínské inženýrství. Cílem je položit jednotný

Více

Dynamické programování

Dynamické programování ALG 0 Dynamické programování zkratka: DP Zdroje, přehledy, ukázky viz https://cw.fel.cvut.cz/wiki/courses/a4balg/literatura_odkazy 0 Dynamické programování Charakteristika Neřeší jeden konkrétní typ úlohy,

Více

Michal Krátký. Úvod do programování. Cíl kurzu. Podmínky získání zápočtu III/III

Michal Krátký. Úvod do programování. Cíl kurzu. Podmínky získání zápočtu III/III Michal Krátký Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 tel.: +420 596 993 239 místnost: A1004 mail: michal.kratky@vsb.cz

Více

Úvod do programování 10. hodina

Úvod do programování 10. hodina Úvod do programování 10. hodina RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Umíme z minulé hodiny Syntax Dvojrozměrné pole

Více

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21. Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky

Více

Datové struktury 2: Rozptylovací tabulky

Datové struktury 2: Rozptylovací tabulky Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy

Více

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12. Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Vyhledávání 201 / 344 Osnova přednášky

Více

Dynamické programování. Optimální binární vyhledávací strom

Dynamické programování. Optimální binární vyhledávací strom The complexity of different algorithms varies: O(n), Ω(n ), Θ(n log (n)), Dynamické programování Optimální binární vyhledávací strom Různé algoritmy mají různou složitost: O(n), Ω(n ), Θ(n log (n)), The

Více

Prohledávání do šířky = algoritmus vlny

Prohledávání do šířky = algoritmus vlny Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé

Více

VYŠŠÍ ODBORNÁ ŠKOLA a STŘEDNÍ PRŮMYSLOVÁ ŠKOLA Mariánská 1100, 407 47 Varnsdorf PROGRAMOVÁNÍ FUNKCE, REKURZE, CYKLY

VYŠŠÍ ODBORNÁ ŠKOLA a STŘEDNÍ PRŮMYSLOVÁ ŠKOLA Mariánská 1100, 407 47 Varnsdorf PROGRAMOVÁNÍ FUNKCE, REKURZE, CYKLY Jméno a příjmení: Školní rok: Třída: VYŠŠÍ ODBORNÁ ŠKOLA a STŘEDNÍ PRŮMYSLOVÁ ŠKOLA Mariánská 1100, 407 47 Varnsdorf 2007/2008 VI2 PROGRAMOVÁNÍ FUNKCE, REKURZE, CYKLY Petr VOPALECKÝ Číslo úlohy: Počet

Více

BI-EP2 Efektivní programování 2

BI-EP2 Efektivní programování 2 BI-EP2 Efektivní programování 2 LS 2017/2018 Ing. Martin Kačer, Ph.D. 2011-18 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze Vznik předmětu

Více

Dynamické programování UIN009 Efektivní algoritmy 1

Dynamické programování UIN009 Efektivní algoritmy 1 Dynamické programování. 10.3.2005 UIN009 Efektivní algoritmy 1 Srovnání metody rozděl a panuj a dynamického programování Rozděl a panuj: top-down Dynamické programování: bottom-up Rozděl a panuj: překrývání

Více

R zné algoritmy mají r znou složitost

R zné algoritmy mají r znou složitost / / zné algoritmy mají r znou složitost Dynamické programování / / Definice funkce Otázka Program f(x,y) = (x = ) (y = ) f(x, y-) + f(x-,y) (x > ) && (y > ) f(,) =? int f(int x, int y) { if ( (x == ) (y

Více

Algoritmizace. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010

Algoritmizace. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Úvod stránky předmětu: https://cw.felk.cvut.cz/doku.php/courses/a4b33alg/start cíle předmětu Cílem je schopnost samostatné implementace různých variant základních

Více

NEJKRATŠÍ CESTY I. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

NEJKRATŠÍ CESTY I. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze NEJKRATŠÍ CESTY I Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 7 Evropský sociální fond Praha & EU: Investujeme do vaší

Více

IB111 Úvod do programování skrze Python

IB111 Úvod do programování skrze Python Vyhledávání, řazení, složitost IB111 Úvod do programování skrze Python 2012 Otrávené studny 8 studen, jedna z nich je otrávená laboratorní rozbor dokáže rozpoznat přítomnost jedu ve vodě je drahý (je časově

Více

2013 Martin Kačer. BI-EP2 Efektivní programování 2

2013 Martin Kačer. BI-EP2 Efektivní programování 2 BI-EP2 Efektivní programování 2 LS 2012/2013 Ing. Martin Kačer, Ph.D. 2013 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze Vznik předmětu

Více

Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.

Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2. 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste

Více

Dekompozice problému, rekurze

Dekompozice problému, rekurze Dekompozice problému, rekurze BI-PA1 Programování a Algoritmizace 1 Ladislav Vagner, Josef Vogel Katedra teoretické informatiky a Katedra softwarového inženýrství Fakulta informačních technologíı České

Více

Stromy, haldy, prioritní fronty

Stromy, haldy, prioritní fronty Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík

Více

Dynamické programování

Dynamické programování Dynamické programování Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol., 207 Datové struktury a algoritmy, B6B36DSA 05/207, Lekce 2

Více

3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem

3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem ČVUT FEL X36PAA - Problémy a algoritmy 3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem Jméno: Marek Handl Datum: 1. 1. 2009 Cvičení: Pondělí 9:00 Zadání Naprogramujte

Více

Správa paměti. doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 /

Správa paměti. doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / Správa paměti doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / 597 324 213 http://www.cs.vsb.cz/benes Miroslav.Benes@vsb.cz Obsah přednášky Motivace Úrovně správy paměti. Manuální

Více

DobSort. Úvod do programování. DobSort Implementace 1/3. DobSort Implementace 2/3. DobSort - Příklad. DobSort Implementace 3/3

DobSort. Úvod do programování. DobSort Implementace 1/3. DobSort Implementace 2/3. DobSort - Příklad. DobSort Implementace 3/3 DobSort Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 V roce 1980 navrhl Dobosiewicz variantu (tzv. DobSort),

Více

12. Globální metody MI-PAA

12. Globální metody MI-PAA Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

11. Přehled prog. jazyků

11. Přehled prog. jazyků Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 11 1 Základy algoritmizace 11. Přehled prog. jazyků doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze

Více

DYNAMICKÉ PROGRAMOVÁNÍ A PROBLÉM BATOHU

DYNAMICKÉ PROGRAMOVÁNÍ A PROBLÉM BATOHU ČVUT V PRAZE FAKULTA INFORMAČNÍCH TECHNOLOGIÍ JAN SCHMIDT A PETR FIŠER MI-PAA DYNAMICKÉ PROGRAMOVÁNÍ A PROBLÉM BATOHU EVROPSKÝ SOCIÁLNÍ FOND PRAHA A EU: INVESTUJEME DO VAŠÍ BUDOUCNOSTI Dynamické programování

Více

Dynamicky vázané metody. Pozdní vazba, virtuální metody

Dynamicky vázané metody. Pozdní vazba, virtuální metody Dynamicky vázané metody Pozdní vazba, virtuální metody Motivace... class TBod protected: float x,y; public: int vrat_pocet_bodu() return 1; ; od třídy TBod odvodíme: class TUsecka: public TBod protected:

Více

Rekurze. Jan Hnilica Počítačové modelování 12

Rekurze. Jan Hnilica Počítačové modelování 12 Rekurze Jan Hnilica Počítačové modelování 12 1 Rekurzivní charakter úlohy Výpočet faktoriálu faktoriál : n! = n (n - 1) (n - 2)... 2 1 (0! je definován jako 1) můžeme si všimnout, že výpočet n! obsahuje

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška desátá Miroslav Kolařík Zpracováno dle R. Bělohlávek, V. Vychodil: Diskrétní matematika 2, http://phoenix.inf.upol.cz/esf/ucebni/dm2.pdf P. Martinek: Základy teoretické informatiky,

Více

6. Základy výpočetní geometrie

6. Základy výpočetní geometrie 6. Základy výpočetní geometrie BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D. 2010-11 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení

Více

Obsah Techniky návrhu algoritmů Rekurze, algoritmy prohledávání s návratem, dynamické programování Rekurze... 5

Obsah Techniky návrhu algoritmů Rekurze, algoritmy prohledávání s návratem, dynamické programování Rekurze... 5 Techniky návrhu algoritmů Rekurze, algoritmy prohledávání s návratem, dynamické programování Zametací technika, metoda rozděl a panuj a prořezávej a hledej Obsah Techniky návrhu algoritmů... 2 Rekurze,

Více

Slepé prohledávání do šířky Algoritmus prohledávání do šířky Při tomto způsobu prohledávání máme jistotu, že vždy nalezneme koncový stav, musíme ale p

Slepé prohledávání do šířky Algoritmus prohledávání do šířky Při tomto způsobu prohledávání máme jistotu, že vždy nalezneme koncový stav, musíme ale p Hanojská věž Stavový prostor 1. množina stavů S = {s} 2. množina přechodů mezi stavy (operátorů) Φ = {φ} s k = φ ki (s i ) zadání [1 1 1] řešení [3 3 3] dva možné první tahy: [1 1 2] [1 1 3] který tah

Více

NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze NP-ÚPLNÉ PROBLÉMY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 13 Evropský sociální fond Praha & EU: Investujeme do

Více

Cvičení z logiky II.

Cvičení z logiky II. Cvičení z logiky II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 https://edux.fit.cvut.cz/courses/bi-mlo/lectures/

Více

Rekurze a rychlé třídění

Rekurze a rychlé třídění Rekurze a rychlé třídění Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2017 1 / 54 Rekurze Rychlé třídění 2 / 54 Rekurze Recursion Rekurze = odkaz na sama sebe, definice za pomoci sebe

Více

6. Tahy / Kostry / Nejkratší cesty

6. Tahy / Kostry / Nejkratší cesty 6. Tahy / Kostry / Nejkratší cesty BI-EP2 Efektivní programování 2 LS 2017/2018 Ing. Martin Kačer, Ph.D. 2011-18 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké

Více

Programování: základní konstrukce, příklady, aplikace. IB111 Programování a algoritmizace

Programování: základní konstrukce, příklady, aplikace. IB111 Programování a algoritmizace Programování: základní konstrukce, příklady, aplikace IB111 Programování a algoritmizace 2011 Připomenutí z minule, ze cvičení proměnné, výrazy, operace řízení výpočtu: if, for, while funkce příklady:

Více

Vzdálenost uzlů v neorientovaném grafu

Vzdálenost uzlů v neorientovaném grafu Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující

Více

2. Mřížky / Záplavové vyplňování

2. Mřížky / Záplavové vyplňování 2. Mřížky / Záplavové vyplňování BI-EP2 Efektivní programování 2 LS 2017/2018 Ing. Martin Kačer, Ph.D. 2011-18 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké

Více

KTE / ZPE Informační technologie

KTE / ZPE Informační technologie 4 KTE / ZPE Informační technologie Ing. Petr Kropík, Ph.D. email: pkropik@kte.zcu.cz tel.: +420 377 63 4639, +420 377 63 4606 (odd. informatiky) Katedra teoretické elektrotechniky FEL ZČU Plzeň Největší

Více

5 Rekurze a zásobník. Rekurzivní volání metody

5 Rekurze a zásobník. Rekurzivní volání metody 5 Rekurze a zásobník Při volání metody z metody main() se do zásobníku uloží aktivační záznam obsahující - parametry - návratovou adresu, tedy adresu, kde bude program pokračovat v metodě main () po skončení

Více

Časová složitost algoritmů, řazení a vyhledávání

Časová složitost algoritmů, řazení a vyhledávání Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Časová složitost algoritmů, řazení a vyhledávání BI-PA1 Programování a algoritmizace 1 Katedra teoretické informatiky Miroslav Balík Fakulta

Více

Kombinatorika, výpočty

Kombinatorika, výpočty Kombinatorika, výpočty Radek Pelánek IV122 Styl jednoduché výpočty s čísly vesměs spíše opakování + pár dílčích zajímavostí užitečný trénink programování Kombinace, permutace, variace Daná množina M s

Více

Algoritmy výpočetní geometrie

Algoritmy výpočetní geometrie Algoritmy výpočetní geometrie prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)

Více

PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LL SYNTAKTICKÁ ANALÝZA DOKONČENÍ, IMPLEMENTACE.

PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LL SYNTAKTICKÁ ANALÝZA DOKONČENÍ, IMPLEMENTACE. PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LL SYNAKICKÁ ANALÝZA DOKONČENÍ, IMPLEMENACE. VLASNOSI LL GRAMAIK A JAZYKŮ. 2011 Jan Janoušek BI-PJP Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Gramatika

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Procedurální programování Rekurze Jazyk C České vysoké učení technické Fakulta elektrotechnická Ver.1.10 J. Zděnek 2015 Procedurální programování - zásady Postupný návrh programu

Více

Martin Flusser. November 1, 2016

Martin Flusser. November 1, 2016 ZPRO cvičení 4 Martin Flusser Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague November 1, 2016 Outline I 1 Outline 2 Cykly 3 Cykly cvičení 4 Rekurze 5 Rekurze

Více

Funkce pokročilé možnosti. Úvod do programování 2 Tomáš Kühr

Funkce pokročilé možnosti. Úvod do programování 2 Tomáš Kühr Funkce pokročilé možnosti Úvod do programování 2 Tomáš Kühr Funkce co už víme u Nebo alespoň máme vědět... J u Co je to funkce? u Co jsou to parametry funkce? u Co je to deklarace a definice funkce? K

Více

1. Dynamické programování

1. Dynamické programování . Dynamické programování V této kapitole prozkoumáme ještě jednu techniku návrhu algoritmů, která je založená na rekurzivním rozkladu problému na podproblémy. V tom je podobná metodě Rozděl a panuj, ovšem

Více

Základní datové struktury

Základní datové struktury Základní datové struktury Martin Trnečka Katedra informatiky, Přírodovědecká fakulta Univerzita Palackého v Olomouci 4. listopadu 2013 Martin Trnečka (UPOL) Algoritmická matematika 1 4. listopadu 2013

Více

Řešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C

Řešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C Hanojské věže - 3 kolíky A, B, C - na A je N disků různé velikosti, seřazené od největšího (dole) k nejmenšímu (nahoře) - kolíky B a C jsou prázdné - úkol: přenést všechny disky z A na B, mohou se odkládat

Více

10. Složitost a výkon

10. Složitost a výkon Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 10 1 Základy algoritmizace 10. Složitost a výkon doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří

Více

Časová a prostorová složitost algoritmů

Časová a prostorová složitost algoritmů .. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová

Více

Dynamické programování

Dynamické programování Dynamické programování Rekurzivní funkce je taková funkce, která při svém běhu volá sama sebe, často i více než jednou, což v důsledku může vést na exponenciální algoritmus. Dynamické programování je technika,

Více

Přednáška. Správa paměti II. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012

Přednáška. Správa paměti II. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Přednáška Správa paměti II. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského

Více

Dynamické datové struktury III.

Dynamické datové struktury III. Dynamické datové struktury III. Halda. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra aplikované

Více

Mělká a hluboká kopie

Mělká a hluboká kopie Karel Müller, Josef Vogel (ČVUT FIT) Mělká a hluboká kopie BI-PA2, 2011, Přednáška 5 1/28 Mělká a hluboká kopie Ing. Josef Vogel, CSc Katedra softwarového inženýrství Katedra teoretické informatiky, Fakulta

Více

Spojová implementace lineárních datových struktur

Spojová implementace lineárních datových struktur Spojová implementace lineárních datových struktur doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB

Více

Abstraktní datové typy

Abstraktní datové typy Karel Müller, Josef Vogel (ČVUT FIT) Abstraktní datové typy BI-PA2, 2011, Přednáška 10 1/27 Abstraktní datové typy Ing. Josef Vogel, CSc Katedra softwarového inženýrství Katedra teoretické informatiky,

Více

Aproximativní algoritmy UIN009 Efektivní algoritmy 1

Aproximativní algoritmy UIN009 Efektivní algoritmy 1 Aproximativní algoritmy. 14.4.2005 UIN009 Efektivní algoritmy 1 Jak nakládat s NP-těžkými úlohami? Speciální případy Aproximativní algoritmy Pravděpodobnostní algoritmy Exponenciální algoritmy pro data

Více

Dynamické programování

Dynamické programování ALG 11 Dynamické programování Úloha batohu neomezená Úloha batohu /1 Úloha batohu / Knapsack problem Máme N předmětů, každý s váhou Vi a cenou Ci (i = 1, 2,..., N) a batoh s kapacitou váhy K. Máme naložit

Více

Funkce, intuitivní chápání složitosti

Funkce, intuitivní chápání složitosti Příprava studijního programu Informatika je podporována projektem financovaným z Evropského sociálního fondu a rozpočtu hlavního města Prahy. Praha & EU: Investujeme do vaší budoucnosti Funkce, intuitivní

Více

Zpětnovazební učení Michaela Walterová Jednoocí slepým,

Zpětnovazební učení Michaela Walterová Jednoocí slepým, Zpětnovazební učení Michaela Walterová Jednoocí slepým, 17. 4. 2019 V minulých dílech jste viděli Tři paradigmata strojového učení: 1) Učení s učitelem (supervised learning) Trénovací data: vstup a požadovaný

Více

Rekurze. IB111 Úvod do programování skrze Python

Rekurze. IB111 Úvod do programování skrze Python Rekurze IB111 Úvod do programování skrze Python 2015 1 / 64 XKCD: Tabletop Roleplaying https://xkcd.com/244/ 2 / 64 To iterate is human, to recurse divine. (L. Peter Deutsch) 3 / 64 Rekurze použití funkce

Více

Programování v C++ 1, 14. cvičení

Programování v C++ 1, 14. cvičení Programování v C++ 1, 14. cvičení výpustka, přetěžování funkcí, šablony funkcí 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 2 funkcí

Více

NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk

NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk Pavel Töpfer Katedra softwaru a výuky informatiky MFF UK MFF Malostranské nám., 4. patro, pracovna 404 pavel.topfer@mff.cuni.cz http://ksvi.mff.cuni.cz/~topfer

Více

Základní způsoby: -Statické (přidělění paměti v čase překladu) -Dynamické (přiděleno v run time) v zásobníku na haldě

Základní způsoby: -Statické (přidělění paměti v čase překladu) -Dynamické (přiděleno v run time) v zásobníku na haldě Metody přidělování paměti Základní způsoby: -Statické (přidělění paměti v čase překladu) -Dynamické (přiděleno v run time) v zásobníku na haldě Důležitá hlediska jazykových konstrukcí: Dynamické typy Dynamické

Více

Algoritmy I, složitost

Algoritmy I, složitost A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??

Více

Vyhledávání v textu. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava

Vyhledávání v textu. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Vyhledávání v textu doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 9. března 209 Jiří Dvorský (VŠB TUO) Vyhledávání v textu 402

Více

Základní způsoby: -Statické (přidělění paměti v čase překladu) -Dynamické (přiděleno v run time) v zásobníku na haldě

Základní způsoby: -Statické (přidělění paměti v čase překladu) -Dynamické (přiděleno v run time) v zásobníku na haldě Metody přidělování paměti Základní způsoby: -Statické (přidělění paměti v čase překladu) -Dynamické (přiděleno v run time) v zásobníku na haldě Důležitá hlediska jazykových konstrukcí: Dynamické typy Dynamické

Více

Náplň. v.0.03 16.02.2014. - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění

Náplň. v.0.03 16.02.2014. - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění Náplň v.0.03 16.02.2014 - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění Spojení dvou samostatně setříděných polí void Spoj(double apole1[], int adelka1, double

Více

Programování v Pythonu

Programování v Pythonu ƒeské vysoké u ení technické v Praze FIT Programování v Pythonu Ji í Znamená ek P íprava studijního programu Informatika je podporována projektem nancovaným z Evropského sociálního fondu a rozpo tu hlavního

Více

Binární vyhledávací stromy pokročilé partie

Binární vyhledávací stromy pokročilé partie Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald

Více

Dynamické programování

Dynamické programování Algoritmická matematika 3 KMI/ALM3 Mgr. Petr Osička, Ph.D ZS 2014 1 Základní princip Dynamické programování Princip dynamického programování je založen na podobné myšlence jako rozděl a panuj. Vstupní

Více

Fronta (Queue) Úvod do programování. Fronta implementace. Fronta implementace pomocí pole 1/4. Fronta implementace pomocí pole 3/4

Fronta (Queue) Úvod do programování. Fronta implementace. Fronta implementace pomocí pole 1/4. Fronta implementace pomocí pole 3/4 Fronta (Queue) Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Fronta uplatňuje mechanismus přístupu FIFO first

Více

Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy

Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný

Více

Seminář z IVT Algoritmizace. Slovanské gymnázium Olomouc Tomáš Kühr

Seminář z IVT Algoritmizace. Slovanské gymnázium Olomouc Tomáš Kühr Seminář z IVT Algoritmizace Slovanské gymnázium Olomouc Tomáš Kühr Algoritmizace - o čem to je? Zatím jsme se zabývali především tím, jak určitý postup zapsat v konkrétním programovacím jazyce (např. C#)

Více

Content Aware Image Resizing

Content Aware Image Resizing Content Aware Image Resizing (dle článku Shaie Avidana a Ariela Shamira) Václav Vlček (1. roč. NMgr., Teoretická informatika) 6.12.2007 1 O co jde? Změna rozměrů obrázku se zachováním významu Klasická

Více

Rekurze. IB111 Úvod do programování

Rekurze. IB111 Úvod do programování Rekurze IB111 Úvod do programování 2016 1 / 69 XKCD: Tabletop Roleplaying https://xkcd.com/244/ 2 / 69 To iterate is human, to recurse divine. (L. Peter Deutsch) 3 / 69 Rekurze použití funkce při její

Více

8) Jaké jsou důvody pro použití víceprůchodového překladače Dříve hlavně kvůli úspoře paměti, dnes spíše z důvodu optimalizace

8) Jaké jsou důvody pro použití víceprůchodového překladače Dříve hlavně kvůli úspoře paměti, dnes spíše z důvodu optimalizace 1) Charakterizujte křížový překladač Překlad programu probíhá na jiném procesoru, než exekuce. Hlavním důvodem je náročnost překladače na cílovém stroji by ho nemuselo být možné rozběhnout. 2. Objasněte

Více